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Shallow water sound source localization using the1

iterative beamforming method in an image framework2

Xun Wang∗, Shahram Khazaie, Luca Margheri, and Pierre Sagaut3

Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, 13451 Marseille Cedex 13, France4

Abstract5

Shallow water is a complicated sound propagation medium due to mul-6

tiple reflections by water surface and bottom, imprecisely measured sound7

speed, noisy environment, etc. Therefore, in order to localize a shallow wa-8

ter sound source, classical signal processing techniques must be improved by9

taking these complexities into account. In this work, the multiple reflections10

and uncertain reflectivity of water bottom are explicitly modeled. In the pro-11

posed model, a measured signal is a mixture of the direct propagation from12

the source and the multiple reflections. Instead of solving the Helmholtz13

equation with boundary conditions of reflections, each signal is interpreted14

as a superposition of signals emitting from the physical source and its image15

sources in a free space, which results in a fast computation of sound propa-16

gation. Then, the source location, along with its amplitude, reflection paths17

and power loss of bottom reflection, is estimated via the iterative beamform-18

ing (IB) method, which alternatively estimates the source contributions and19

performs beamforming on these estimates until convergence. This approach20

does not need to compute the sound propagation for all the possible source21

locations in a large space, which thus leads to a low computational cost. Fi-22

nally, numerical simulations are introduced to illustrate the advantage of the23

proposed model and the source estimation method. The sensitivity of the24

proposed method with respect to model parameter uncertainties is also inves-25

tigated via a full uncertainty quantification analysis. The localization error26

of IB is proved to be acceptable in the given error range of sound speed and27

water depth. Besides, the IB source estimate is more sensitive to the sound28

speed while the matched-field processing methods have a stronger sensitivity29

to the water depth: this result can guide the choice of source localization30

method in the different cases of model parameter uncertainties.31
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1. Introduction35

Sound source localization in shallow water is a challenging issue due to the36

complexity of sound propagation environment and the difficulty of acoustical37

measurements. Contrary to the ideal assumption in the classical source lo-38

calization problem, experimental results obtained in shallow water acoustics39

are always submitted to different kinds of uncertainties [1, 2]. Inhomoge-40

neous and random sound speed profile [3–7], imprecise locations of sensors41

[8–10], sound reflections by ships, water surface and bottom [11, 12], noisy42

environment (due to shipping lanes for example) and presence of internal43

waves [11, 13, 14] are all sources of uncertainties which may dramatically44

affect the estimation result of sound source. Due to the complicated nature45

of the underwater environment, until now no signal processing method for46

source localization can be employed to eliminate all the bad effects from the47

aforementioned uncertainties. In this study, a model quantifying the mul-48

tiple reflections between the water surface and bottom is proposed. The49

reflectivity of water bottom is assumed to be unknown.50

By posing the boundary conditions at the water surface and bottom,51

the depth-dependent function of sound wave in a Pekeris waveguide can be52

analytically solved [2]. However, in order to compute the Helmholtz equation,53

numerical methods, e.g., wavenumber integration [15] or normal modes [16],54

have to be used. These approaches involve a low computational cost but55

is not negligible when a very large number of sound propagation has to be56

calculated, which is generally the case of source localization. Alternatively,57

this paper considers an image source approach [2, 11, 17, 18], in which the58

reflections between the two boundaries can be described by the images of59

the physical source. In this case, the boundary conditions are not needed60

and the sound propagation can be considered in a free-field. Furthermore,61

the unknown loss of bottom reflection, which depends on the water bottom62

properties, is also quantified in this image source model via the amplitudes of63

the image sources. Finally, by identifying the multiple sources (the physical64

source and its images) in the free-field, the sound source in the shallow water65

environment can be localized. The reflectivity of water bottom can also be66

decided via the estimated amplitudes of the sources.67
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Near-field acoustical holography (NAH), time reversal and beamforming68

are the most widely used signal processing techniques dedicated to the sound69

source localization problem. NAH [19] back-propagates the sound field from70

the measurement plane to a surface near the sound source, which guarantees71

a high resolution by taking evanescent waves into account. However, this72

approach only works for the near-field source. The time reversal method73

[20–24] inverses the measured signal in time and reinject it back into the74

same medium. This approach is able to refocus the source and return a75

super-resolution result in a medium with multiple reflections, scattering and76

refractions [23]. However, time reversal is sensitive to the model uncertainty:77

if the environmental parameters (e.g., sound speed profile) were imprecisely78

known, it could not even return a source estimate. Classical beamforming79

(CB) [25–27] estimates the direction of arrival of plane wave or the location80

of point source via the delay of signal arrival. However, CB is still limited in81

the frequency range and minimum resolvable source separation, particularly82

for the underwater case which has a relatively small size of microphone ar-83

ray and long sound propagation distance. Matched-field processing (MFP)84

[3–5, 28, 29] is a generalized beamforming method which takes the sound85

field complexity into account. Conventional and Capon’s [30] approaches86

are the most widely used MFP methods, the former is more stable with re-87

spect to the model parameter uncertainties while the latter returns a super-88

resolution source localization. Furthermore, the MFP approaches can not89

only localize the sound source but also estimate the parameters related to90

the sound propagation environment. However, MFP needs to discretize the91

space of source location and other unknown parameters which often involves92

a large number of sound field computation. Iterative beamforming [10, 31]93

is a maximum likelihood (ML) approach for multiple sources, based on the94

expectation-maximization (EM) algorithm [32, 33]. This method assumes95

that each acoustical measurement is a sum of latent signals emitted from the96

multiple sources. Given an initial value of source parameters, IB iteratively97

computes the latent signals (source contributions) using the current fit of98

parameters and then performs beamforming on these source contributions to99

estimate the corresponding source location and amplitude. The theory of the100

EM algorithm guarantees the increase of likelihood function of model param-101

eter after each iteration and the final result is a maximum likelihood estimate102

(MLE) of the sound sources [32]. This parametric mechanism of IB is able103

to avoid the limit of spatial resolution and augment the frequency range of104

CB. In this paper, the IB approach is used to solve the source localization105
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problem in the framework of image sources.106

Since the underwater environment is complicated and some of the envi-107

ronmental parameters cannot be precisely measured, the sensitivity of the108

source localization method with respect to these parameters must be investi-109

gated. Kriging method [34, 35] is an efficient tool to build response surfaces110

for surrogate modeling, which is extensively used in uncertainty quantifica-111

tion (UQ) in mechanics [36, 37] and fluid dynamics [38–40]. In this work, a112

response surface of the estimated sound source as a function of uncertain pa-113

rameters (water depth and sound velocity) is built using the Kriging method.114

Then, a quasi-Monte Carlo sampling of the response surface is used to ob-115

tain the probability density function (PDF) of the source estimate and to116

quantify the sensitivities of the source estimation methods with respect to117

the uncertain environmental parameters.118

In this paper, the problem of sound source localization in a shallow wa-119

ter environment is investigated. The sound waves are emitted from a single120

source and reflected by the water surface and bottom. The sound propa-121

gation process is considered via the image source model. The single source122

localization problem is then transferred to a multiple-source estimation prob-123

lem in a free-field, which is solved via the IB method. The organization of124

this paper is as follows. Section 2 introduces the proposed image source125

model. In Section 3, the source estimation methods are briefly introduced126

first; the algorithm for estimating a shallow water source using IB is then127

explicitly given. Section 4 presents experimental results on simulated data.128

In Section 5, the sensitivity of the source localization methods to the uncer-129

tain parameters of sound speed and water depth is investigated. Finally, the130

conclusions and perspectives are given in Section 6.131

2. Sound propagation in a shallow water environment132

2.1. Model description133

In this section, the sound propagation model in a shallow water envi-134

ronment is presented. It is assumed that the acoustic field is produced by135

a sound source radiating continuous time signals at r0 = (x0, y0, z0). The136

sound wave propagates through the underwater medium and is measured by137

an array of sensors whose coordinates are r′m = (x′
m, y

′
m, z

′
m),m = 1, · · · ,M .138

Figure 1 shows the problem in 3D space, in which the cross and circles repre-139

sent the source and microphone locations respectively. By assuming that the140
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Figure 1: Description of the model in 3D space. The cross and circles represent the source
and microphone locations, respectively.

medium is sourceless except at r0, the sound pressure p̃(r, t) as a function of141

spatial coordinate r = (x, y, z) and time t is governed by the wave equation142

(

∇2 −
1

v2
∂2

∂t2

)

p̃(r, t) = δ(r− r0)W̃ (t), (1)

in which v represents the sound speed, W̃ (t) is a deterministic function of143

source signal in the time domain, and δ is the Dirac delta function. Taking144

Fourier transform of the both sides of Eq. (1) with respect to t results in145

the following Helmholtz equation for the sound field p(r, f) in the frequency146

domain:147
(

∇2 + k2
)

p(r, f) = δ(r− r0)W (f), (2)

where k = 2πf/v is the wavenumber, f is the frequency, and W (f) is the148

Fourier transform of W̃ (t). The solution of the wave equation depends on149

the boundary condition. The water surface (z = 0) is assumed to be totally150

mirror reflective. The bottom (z = d < 0) is smooth and has a frequency-151

dependent reflectivity (denoted by α(f) ∈ [0, 1]). Moreover, the sound waves152

propagating through the bottom are assumed to be fully absorbed by the153
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bottom, i.e., no sound wave reflects back to the considered shallow water154

region {r : z ∈ [d, 0]}.155

2.2. Image source model156

In this work, the sound wave equation and source localization are consid-157

ered in an image source framework. The canonical (Pekeris) shallow water158

acoustic waveguide is considered. The sound speed field is assumed as a159

constant. The wavelength is much smaller than the water depth and wave160

propagation range such that the ray theory and the image method can be161

applied. The sound emitted from the source is reflected by the water surface162

and bottom. An acoustical measurement obtained by each microphone is163

a superposition of contributions from the direct propagation and the reflec-164

tions. Figure 2 demonstrates this multiple reflection problem: the solid lines165

display the direct propagation (P0) and the other three paths of reflections166

(upper reflection P1, lower reflection P2 and upper lower reflections P3).167

Instead of solving the wave equation Eq. (2) with the boundary condition,168

the sound pressure at each point r is seen as a mixture of contributions169

propagating from the physical and image sources in a free-field:170

p(r, f) =
∞
∑

s=0

(−1)n(s)α(f)n
−(s)A0G(r|rs, f)

=
∞
∑

s=0

(−1)n(s)α(f)n
−(s)A0

ejk‖r−rs‖

4π‖r− rs‖
, (3)

in which rs (s ≥ 1) represents the locations of the image sources, A0 is the
amplitude of the physical source r0, n(s) stands for the number of reflections
of s-th mode ((s + 1)-th term in Eq. (3)), and n−(s) is the corresponding
number of bottom reflections. The coefficient (−1)n(s) corresponds to the sign
change after each reflection due to the pressure-release boundary condition
and αn−(s) means that the remaining power after each bottom reflection is
|αA|2, where α ∈ [0, 1] is the reflectivity and A represents the amplitude of
incident wave. Note that all the image sources are in the same line {r : x =
x0, y = y0}, as shown in Figure 2. The z-coordinates zs of the image sources
are obtained by successively imaging z0 (symmetric with respect to the two
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boundaries z = 0 and z = d):

z4i = z0 − 2id, (4a)

z4i+1 = −z0 − 2id, (4b)

z4i+2 = −z0 + 2(i+ 1)d, (4c)

z4i+3 = z0 + 2(i+ 1)d, (4d)

in which i ∈ {0, 1, 2, · · · }. Figure 2 shows the locations of the first four171

sources, i.e., i = 0 in Eq. (4). It is remarkable that the image source locations172

rs, s ∈ {1, 2, 3, · · · }, do not depend on the observation point. Therefore, the173

sound pressure p(r, f) measured at any point r can be seen as being generated174

by the image sources. Under the image source sorting method in Eq. (4), the175

corresponding number of reflections and number of bottom reflections are176

n(s) = [(s + 1)/2] and n−(s) = [(s + 2)/4], in which [·] stands for the floor177

function. Therefore, the amplitudes of the image sources are178

As = (−1)n(s)αn−(s)A0 = (−1)[
s+1

2 ]α[
s+2

4 ]A0, s = 1, 2, · · · . (5)

By considering the measurement noise and ignoring the terms larger than179

S (become negligible after several bottom reflections, depending on the de-180

sired precision and the reflectivity α), the measured sound pressure from181

m-th microphone is182

p(r′m) =
S
∑

s=0

As
ejk‖r

′

m−rs‖

4π‖r′m − rs‖
+ em,m = 1, · · · ,M, (6)

in which the amplitudes As is obtained from Eq. (5) for s ≥ 1 and the mea-183

surement error em is assumed to follow a 0-mean complex-valued Gaussian184

distribution [41].185

In the framework of image method, the sound propagation can be analyt-186

ically computed, such that the source localization can be rapidly performed,187

which is crucial in the source localization problem. In Section 3, acoustic188

imaging techniques are employed to visualize all the (physical and image)189

sound sources. Since the presence of the two boundaries are known, the real190

(physical) sound source can be identified from its images.191

3. Sound source localization using iterative beamforming192

In this section, a shallow water sound source is localized. This single193

source localization problem with multiple reflections is transferred to a mul-194
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Figure 2: Sound propagation with multiple reflections on the water surface (z = 0) and
bottom (z = d). The crosses and circles represent the (physical and image) sound sources
and microphone locations, respectively. The solid and dashed lines stand for the physical
and image sound propagation paths.

tiple source localization problem in a free-field using the image source ap-195

proach, as introduced in Section 2.2. The data used are T snapshots of196

sound pressure measurements in the frequency domain, denoted as p =197

(p1, · · · ,pT ). Each snapshot pt = (p1t, · · · , pMt)
T includes the measure-198

ments from M microphones, in which (·)T stands for the operation of vector199

transpose.200

In Sections 3.1 and 3.2, two sound source localization methods (CB and201

IB) are introduced. The detailed source localization strategy is given in202

Section 3.3. Finally, for comparison in terms of computational cost, the203

MFP methods for the single source based on the image source method are204

introduced in Section 3.4.205

3.1. Classical beamforming206

The CB method [25, 26] is based on the assumption of single source. In207

this case, each snapshot of the measurement pt reads208

pt = A0G(r0) + et, (7)

in which G(r0) = (G(r′1|r0), · · · , G(r′M |r0))
T is the Green’s function vector209

describing sound propagation from the source r0 to the M microphones and210
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being computed from the Helmholtz equation (2), A0 is the amplitude of the211

sound source, and et = (e1t, · · · , eMt)
T is the vector of measurement noises212

which follows an M -dimensional complex Gaussian distribution N(0, σ2IM)213

and IM is the M -dimensional identity matrix. Note that pt is the sound pres-214

sure in the frequency domain, which is obtained from a linear combination of215

measurements in the time domain (discrete Fourier transform). Therefore,216

the measurements noise vector can be reasonably assumed as Gaussian dis-217

tributed regardless of the distribution of the time domain noise according to218

the central limit theorem.219

The CB approach localizes the sound source by “steering” the microphone220

array. The steering locations, which result in a maximum power, yield the221

beamforming estimate. “Steering the array” is performed by forming a linear222

combination of a measurement pt:223

Bt = wHpt =
M
∑

m=1

wmpmt, (8)

in which (·)H is the operation of conjugate transpose, w = (w1, · · · , wM)T is224

called the steering vector. The CB method is to estimate the source location225

by maximizing |Bt|
2 with respect to w, which finally reduces to maximizing226

the classical spatial spectrum227

S(r0) =
GH(r0)ptp

H
t G(r0)

GH(r0)G(r0)
. (9)

Note that the CB estimate (maximizing Eq. (9)) is a MLE of the source228

location r0.229

In the case of multiple sources, CB solves the problem in the same way230

as the single source case. An r0-S(r0) color map for all r0 in the considered231

region may be employed: each local maximum in this color map corresponds232

to a source. However, this is not a parametric approach and thus has a spatial233

resolution limit, i.e., the sources cannot be separated when they are close to234

each other. The side lobes of beamformer may also be wrongly identified235

as a source. In Section 3.2, a generalized beamforming method addressing236

the case of multiple sources is introduced, which considers the parametric237

multiple-source model and is a MLE of the multiple sources.238

3.2. Iterative beamforming239

Multiple sound source identification using the iterative beamforming (IB)240

approach is introduced in Ref. [10] for deterministic amplitude sources and241
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in Ref. [31] for random amplitude sources. IB is based on a ML approach to242

deal with latent variables, known as EM algorithm [32, 33]. In this paper, the243

shallow water source and its images are viewed as multiple sources, which can244

thus be estimated using the IB method. Here the principle of this method is245

briefly reviewed; for an extensive presentation, the readers are invited to refer246

to Ref. [10]. The detailed algorithm for shallow water source localization is247

introduced in Section 3.3.248

In the case of S + 1 sources, each snapshot of measurement pt has the249

expression250

pt = G(r)A+ et. (10)

In this equation r = (r0, · · · , rS) represents the locations of the sources,251

G(r) = (G(r′m|rs))
M,S
m=1,s=0 is the M × (S + 1) Green’s function matrix, in252

which G(r′m|rs) describes the sound propagation from s-th source to m-th253

microphone, A = (A0, · · · , AS)
T is the vector of source amplitudes, and254

et = (e1t, · · · , eMt)
T, t = 1, · · · , T , are i.i.d. random vectors of measure-255

ment noises and follows a complex-valued Gaussian distribution N(0, σ2IM).256

The purpose of source identification is to estimate the source positions r and257

amplitudes A. The log-likelihood function of the measurements p (after re-258

moving unnecessary terms which are independent of the unknown parameters259

and have no effect of the MLE) is260

logL(r,A|p) = −

T
∑

t=1

‖pt −G(r)A‖2. (11)

The MLE of r and A is obtained by maximizing Eq. (11). In the case of261

single source, i.e., r = r0 and A = A0, this ML estimate is identical to the262

CB estimate (maximization of Eq. (9)).263

Note that maximizing Eq. (11) is a (4S+4)-parameter optimization prob-264

lem, which is difficult to solve when S is large. However, this maximization265

problem can be largely simplified by introducing the latent variable, which is266

defined as an unknown information that could let the parameter estimation267

straightforward, should it be available. In this multiple-source identification268

problem, the contributions of the various sources to the measured pressures269

could be introduced as the latent variables, denoted as ct = (c0t, · · · , cSt), in270

which271

cst = Gs(rs)As + est, s = 0, · · · , S. (12)

In this equation, Gs(rs) is the (s + 1)-th column of the matrix G(r) and272

Gs(rs)As stands for the contribution from s-th source, est (s = 0, · · · , S,273
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t = 1, · · · , T ) are independent Gaussian random variables with mean 0 and274

covariance matrix Σs = σ2

S+1
IM . Therefore, the latent variables cst and the275

original measurements pt are related via pt =
S
∑

s=0

cst and the log-likelihood276

function of the latent variables (after removing unnecessary terms which are277

independent of the unknown parameters and have no effect of the MLE) is278

logL(r,A|c) = −

T
∑

t=1

S
∑

s=0

‖cst −Gs(rs)As‖
2. (13)

Since the contributions cst cannot be measured, it is impossible to directly279

maximize Eq. (13) with respect to each rs and As to separately estimate280

each source from the others using the corresponding source contribution.281

However, the EM algorithm [32] makes it possible to proceed with Eq. (13)282

by treating the missing data as random variables. The IB approach starts283

from an initial parameter Φ0 = (r0,A0); given l-th parameter estimates, the284

(l + 1)-th iteration consists in the following steps [10]:285

• compute the expected source contribution286

ĉlst = E(cst|pt, r
l,Al) = Gl

sA
l
s +

1

S + 1

(

pt −
S
∑

s=0

Gl
sA

l
s

)

; (14)

• decide the source location by performing a beamforming projection287

using the estimated source contribution:288

rl+1
s = argmax

rs

GH
s (rs)ĉ

l
s(ĉ

l
s)

HGs(rs)

GH
s (rs)Gs(rs)

, (15)

in which ĉls =
1
T

T
∑

t=1

ĉlst;289

• estimate the source contribution via290

Al+1
s =

GH
s (r

l+1
s )ĉls

GH
s (r

l+1
s )Gs(rl+1

s )
. (16)

It is important to remark that the IB estimate is a MLE of the multiple-291

source parameters. The principle of EM algorithm guarantees the increase of292
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likelihood function after each iteration [32] and its convergence to a stationary293

point [33]. In order to obtain the estimate at the global maximum, a multiple294

initialization strategy could be employed: the above algorithm is performed295

with different initial parameters, and finally retain the estimate with highest296

likelihood.297

3.3. Shallow water source localization using iterative beamforming298

In this section, the sound source localization in a shallow water envi-299

ronment is considered. As introduced in Section 2.2, the problem of single300

source with multiple reflections is considered in a model of multiple sources301

in a free-field. In this case, the locations of the sound sources are denoted by302

r = (r0, · · · , rS), in which r0 = (x0, y0, z0) is the coordinate of the physical303

source. The image source coordinates are rs = (xs, ys, zs), s ≥ 1, in which304

xs = x0, ys = y0, and zs is obtained from Eq. (4). The amplitudes of the305

sources are represented by A = (A0, · · · , AS)
T, in which A0 is the amplitude306

of the physical source, and the amplitudes As (s ≥ 1) of the image sources307

are obtained via Eq. (5).308

Given an initial parameter of the physical source parameters, denoted
as r00 = (x0

0, y
0
0, z

0
0) and A0

0, the corresponding initial location of each image
sources is r0s = (x0

s, y
0
s , z

0
s), in which x0

s = x0
0, y

0
s = y00, and z0s is obtained by

inserting z00 back into Eq. (4). The initial amplitudes of the image sources
are obtained by replacing A0 in Eq. (5) by A0

0 and giving an initial value
of bottom reflectivity α0. Then, the source localization algorithm presented
in Section 3.2 is proceeded with the initial parameters r0 = (r00, · · · , r

0
S)

and A0 = (A0
0, · · · , A

0
S)

T. The returned source estimates are represented by
r∗ = (r∗0, · · · , r

∗
S) andA∗ = (A∗

0, · · · , A
∗
S). Then, each estimated image source

r∗s = (x∗
s, y

∗
s , z

∗
s), s ≥ 1, is reflected back to the region z = [d, 0] to obtain

the corresponding physical source estimate, denoted by r∗∗s = (x∗
s, y

∗
s , z

∗∗
s ), in

which

z∗∗s = z∗s + 2
[s

4

]

d, if
{s

4

}

= 0 (17a)

z∗∗s = −z∗s − 2
[s

4

]

d, if
{s

4

}

=
1

4
(17b)

z∗∗s = −z∗s + 2
([s

4

]

+ 1
)

d, if
{s

4

}

=
1

2
(17c)

z∗∗s = z∗s − 2
([s

4

]

+ 1
)

d, if
{s

4

}

=
3

4
. (17d)
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Here, {x} = x − [x] is the sawtooth function. Then, the estimate of the309

physical source location can be obtained by310

r̂0 =
1

S + 1

(

r∗0 +
S
∑

s=1

r∗∗s

)

. (18)

The reflectivity could be also estimated by311

α̂ =
1

S − 1

S
∑

s=2

(

|A∗
s|

|A∗
0|

)1/[ s+2

4 ]
. (19)

Finally, the amplitude of the physical source can be estimated by an average312

of the image sources considering the power losses of bottom reflections:313

Â0 =
1

S + 1

S
∑

s=0

(−1)[
S+1

2 ]α̂−[S+2

4 ]A∗
s. (20)

The IB strategy for localizing the shallow water source is summarized in314

Algorithm 1.315

Algorithm 1 Sound source localization in shallow water using IB

1. For l = 0, pick starting values for the source parameters (r00 and A0
0)

and generate the initial parameters of image sources (r0s and A0
s, s =

0, · · · , S) via Eqs. (4) and (5).

2. For l ≥ 1:

repeat

estimate the source contributions ĉlst via Eq. (14) for s = 0, · · · , S;
estimate the source locations rl+1

s via Eq. (15) for s = 0, · · · , S;
estimate the source amplitudes Al+1

s via Eq. (16) for s = 0, · · · , S.
until the relative increase of the measured data log-likelihood
Eq. (11) is less than a given threshold κ.
return location and amplitude estimates of the physical and image
sources (r∗s and A∗

s, s = 0, · · · , S).

3. The location and amplitude of the physical source and the reflectivity of
water bottom are estimated via Eqs. (18), (20) and (19), respectively.
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3.4. Matched-field processing and computational costs316

In the underwater source localization problem, MFP [28] is probably the317

most widely used method, which generalizes the beamforming approach to318

estimate both source location and other unknown environmental parame-319

ters. In this section, conventional and Capon’s MFP methods are briefly320

introduced, their computational costs are quantified and compared with the321

IB method.322

In this work, the MFP methods are based on the image source model.323

The Green’s function at m-th microphone r′m is324

G(r′m|r0, α) =
S
∑

s=0

(−1)n(s)α(f)n
−(s) ejk‖r

′

m−rs‖

4π‖r′m − rs‖
. (21)

The conventional and Capon’s MFP estimates for the source location r0 and325

the reflectivity α are respectively:326

{r̂0, α̂} = argmax
r0,α

pH
t G(r0, α)G

H(r0, α)pt

|G(r0, α)|2
(22)

and327

{r̂0, α̂} = argmax
r0,α

1

GH(r0, α)K̂
−1
G(r0, α)

, (23)

in which G(r0, α) = (G(r′1|r0, α), · · · , G(r′M |r0, α)).328

Then, the computational costs of the MFP approaches are estimated.329

The 3D space and α ∈ [0, 1] are discretized; Nx, Ny, Nz and Nα denote330

the number of discrete points in x-, y-, z-axis and α ∈ [0, 1], respectively. In331

order to obtain the MFP estimate, the sound propagation has to be calculated332

SNxNyNzNα times, such that the computational cost is very high when the333

possible region of source is large and high estimation precision is requested.334

By contrast, the computational cost of IB is relatively low, which mainly335

comes from the optimization step. For this approach, the sound propagation336

process needs to be calculated
L
∑

l=1

S
∑

s=1

Nsl times, in which Nsl is the number of337

calculation of Green’s function in the optimization step for s-th source and338

l-th iteration, depending on the optimization method. Therefore, the compu-339

tational cost ratio between IB and MFP is approximatelyNxNyNzNα/(LN̄sl),340

where N̄sl is the average of Nsl and in general is less than 100. In most cases,341

IB requires much less computational cost than the MFP approaches. Besides,342

IB is not limited to the estimation precision while high estimation accuracy343

of MFP results in a high computation cost.344
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4. Numerical experiments345

In this section, numerical experiments are introduced to illustrate the346

proposed model and source estimation method. The experimental setup is347

displayed in Figure 1. The Pekeris shallow water waveguide is assumed with348

a sound speed v = 1500 m/s. The water depth is 100 m, i.e., d = −100 m.349

The sound source is located at r0 = (0, 0,−32) m and its amplitude is350

A0 = 1 at the frequency f = 1500 Hz. Note that in order to apply the351

image model, the wavelength must be much smaller than the water depth.352

Here, the wavelength is λ = 1 m, which is sufficiently small to guaran-353

tee the model accuracy. Besides, the source localization accuracy depends354

on the frequency. Refs. [10, 31] have discussed the influence of frequency355

on IB and MFP, therefore it is not the main concern of the present pa-356

per. In this experiment, five towed hydrophone arrays are used, each array357

has 7 sensors. More specifically, M = 35 sensors are placed on an x-plane358

x′
m = 5000 m; their y- and z-coordinates are y′m ∈ {−100,−50, 0, 50, 100} m359

and z′m ∈ {−95,−80, · · · ,−5} m, respectively. The water surface is totally360

mirror reflective; the water bottom is smooth and has a reflectivity α = 0.1.361

Generally speaking, an interference having an incident angle smaller than 75◦362

can be ignored due to more bottom reflections (depending also on the ma-363

terial of water bottom and the microphone-source distance) [1]; in the data364

generation of this experiment, 34 modes (i.e., S = 33) are considered such365

that minimum incident angle is around 75◦. Thus, the sound waves propa-366

gating from the source are within a cone whose apex angle is 30◦. The sound367

propagation and measurement process are simulated via Eq. (3). The num-368

ber of snapshots is T = 30. The signal-to-noise ratio (SNR) is assumed to be369

104, the standard deviation of measurement noise is thus σ = 10−4 1
M
‖GA‖.370

First, CB is employed to estimate the sound source. By inserting the371

mean of T measured pressures in the frequency domain into Eq. (9) and372

plotting the r0-S(r0) color map for each r0 on the source plane x = 0, the CB373

sound field (sound pressure level whose reference pressure is the maximum374

value in the plane) of source plane can be constructed, as is shown in Figure 3375

(a). It is clear that CB has a problem of spatial resolution, i.e., the physical376

and the first image source cannot be separated. Actually, the resolution of377

CB can be theoretically estimated [27] by:378

Res =
|x′

m − x0|λ

D
, (24)
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Figure 3: Sound source localization using (a) classical beamforming, (b) iterative beam-
forling, (c) conventional MFP, and (d) Capon’s MFP. The distance between the source
and the sensor plane is 5 km . The frequency of the sound source is 1500 Hz. In subfigures
(a) and (b), the crosses stand for the physical and image source locations, and the two
lines represent the water surface and bottom. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this paper.)

in which D is the size of the hydrophone array and λ is the wavelength. In379

this experiment, the size of the microphone array is 200 m in the y-direction380

and 90 m in the z-direction, thus the theoretical spatial resolution is 25 m ×381
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Figure 4: Actual (solid lines) and estimated (dash lines) paths of sound propagation from
the source to each microphone. The cross and the circles stand for the actual source and
the estimates of the image sources reflected back to the physical region.

56 m, which is consistent with the numerical result.382

However, the above limitation can be overcome by IB [31]. Since the383

IB approach is parametric (the estimates of point sources are explicitly ob-384

tained), the reconstructed sound field is not limited by the minimum resolv-385

able source separation of CB. Here, in order to reduce the computational386

cost, the number of modes assumed in the IB estimation process is 10, i.e.,387

only the sources with powers larger than |α3A0|
2 are considered. Ten initial388

source location of r0 is randomly obtained, following a 3D uniform distribu-389

tion with support {(x, y, z) : x ∈ [−50, 50], y ∈ [−50, 50], z ∈ [−60, 0]}. The390

corresponding initial source amplitudes are randomly generated from a uni-391

form random variable in [0.8, 1.2]. Then, the IB estimates are obtained using392

the method introduced in Section 3.3: the estimate with highest likelihood393

is retained as the final source estimate. Figure 3 (b) shows the reconstructed394

sound pressure level on the source plane: for each discrete point r on the395

source plane z = 0 (r 6= r∗s), the reconstructed sound pressure is computed396

by397

p∗(r) =
S
∑

s=0

A∗
s|G(r|r∗s)|. (25)
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This figure shows that IB avoids the limitation of spatial resolution of CB398

and can clearly separate all the sources. Besides, the source amplitude and399

the bottom reflectivity are estimated via Eqs. (20) and (19), being Â0 = 0.99400

(the actual value is 1) and α̂ = 0.107 (the actual value is 0.1). Figure 4401

displays the source estimates projected back to the physical region z ∈ [d, 0]402

on the X-Z plane via Eq. (17), denoted by the circles. These estimated403

physical sources are almost overlapped with the actual one, which illustrates404

the precision of the IB estimates. The sound propagation paths from the405

real source (solid lines) and the estimated sources (dashed lines, each of406

which is emitted from the corresponding projected image source) to each407

hydrophone are also shown in Figure 4. It is clear that the sound propagation408

paths can also be accurately identified by IB. Furthermore, the IB algorithm409

converges fast such than the computational cost is low. Actually, the number410

L of iteration steps is always less than 100 (and maximum 1000) while the411

threshold κ of relative likelihood function increment is 10−4.412

Finally, the conventional and Capon’s MFP methods are used. The 3D413

coordinate of source and the reflectivity of water bottom are discretized by414

{(x, y, z) : x = −50 : 0.1 : 50, y = −50 : 0.1 : 50, z = −5 : −0.1 : −95} m415

and α = 0 : 0.01 : 0.5, respectively. The source estimates are obtained416

from Eqs. (22) and (23) and the reconstructed sound fields in the source417

plane x = 0 are shown in Figure 3 (c) and (d). Besides, the estimated418

reflectivity obtained from the both approaches are respectively α̂ = 0.1 and419

α̂ = 0.09. It is clear that the both MFP methods are also accurate in terms420

of source localization, although conventional MFP has a relatively large focal421

spot size. However, it is remarkable that the MFP methods require a much422

higher computational cost: in this example, the sound propagation process423

has to be computed 4.6× 1011 times. By contrast, the IB approach needs to424

calculate the sound propagation maximum 106 times (with 10 initial values).425

Therefore, the computation speed of IB is approximately 4.6 × 105 times426

faster than the MFP approaches.427

5. Sensitivity to environmental parameter uncertainties428

In the above experiments, the sound speed and water depth are assumed429

to be precisely known in the source estimation process. In real applications,430

however, these environmental parameters often cannot be accurately mea-431

sured. For example, Ref. [3] proposes that the error ranges of shallow water432

sound speed and water depth are ±2.5 m/s and ±2.5 m. In this section, an433
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UQ analysis is presented. The source estimation method is proceeded with434

inaccurate information regarding the sound speed and water depth. Kriging435

is used to build a response surface (i.e., a meta-model of the true simulation436

output) of the predicted acoustic source localization. A quasi-Monte Carlo437

sampling of the response surface is then used to obtain the PDF of the source438

estimate, the sensitivities of the environmental parameters are also discussed.439

5.1. Building a Kriging response surface440

The Kriging method proposes a weighted linear estimator, i.e., given n441

values of the generic quantity of interest (QoI) X(ω) sampled over the un-442

certain space Ω, the estimate of the QoI X̂(ω) at an unmeasured location ω443

is:444

X̂(ω) =
n
∑

s=1

λs(ω)X(ωs), (26)

where λs(ω) is the Kriging weight assigned to sample X(ωs) and ωs is the445

sample location. It is important to notice that the Kriging weights are func-446

tions of location at which an estimation is needed, since the s-th weight447

depends on the distance between the unmeasured sample and the s-th sam-448

ple location. The QoI X(ω) is arbitrarily decomposed into a residual R(ω)449

and a trend component β(ω):450

X(ω) = R(ω) + β(ω). (27)

The residual component can be treated as a stationary random field with 0-451

mean and covariance Cov(R(ω), R(ω + h)) = C(h), where C(h) is called the452

covariance function. The fundamental step of Kriging is to correctly select453

the covariance function defining the underlying Gaussian process. Here, the454

spline covariance function is used to build the response surface, i.e.,455

C(h) =







1− 6(hθ)2 + 6(hθ)3, h < 1
2θ

2(1− hθ)3, 1
2θ

≤ h < 1
θ

0, h ≥ 1
θ

, (28)

in which θ can be obtained via MLE or empirical tuning.456

The Kriging weights λs(ω) are determined by minimizing the variance of457

the estimator Var(X̂(ω)−X(ω)) under the unbiasedness constraint E[X̂(ω)−458

X(ω)] = 0. As a matter of fact, Kriging estimator is a best linear unbi-459

ased predictor (BLUP). A number of variants of Kriging exists in literature,460
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among which the Ordinary Kriging approach is preferred, given that there461

is no a-priori assumption on trend and given the simplicity and robustness462

of Ordinary Kriging compared to other variants. In this approach, the trend463

part of the random field X(ω) is assumed to be constant but with unknown464

β(ω) = µ0. Unbiasedness condition requires that the sum of Kriging weights465

is equal to 1. Then, by minimizing the error variance and adding a Lagrange466

parameter to respect the unbiasedness constraint, the well known Ordinary467

Kriging system is obtained:468

{∑n
j=1 λj(ω)C(ωi − ωj) + µ0 = C(ωi − ω) i = 1, · · · , n

∑n
j=1 λj(ω) = 1

(29)

To assess the reliability of the meta-model, a leave-one-out cross valida-469

tion strategy [42] is adopted. The cross-validation values are expressed here470

as a global relative L2-error:471

CVs =

√

∫

Ω
(X̂ − X̂−s)2dω
√

∫

Ω
X̂2dω

(30)

where X̂−s is the Kriging response surface built without the s-th sample. A472

threshold ε on the computed cross-validation value CVs for each sample is473

imposed to assess convergence.474

5.2. Sensitivity estimators from the Kriging meta-model475

The main statistics and the Sobol’ variance-based sensitivity indices [43]476

are obtained through quasi Monte Carlo (Sobol sequences) estimators [44].477

The mean estimate µ(X) is calculated as478

µ(X) =
1

qMC

qMC
∑

i=1

X̂i, (31)

where qMC is the number of quasi Monte Carlo samples X̂i of the Kriging479

meta-model of X(Ω). Similarly, the variance σ2(X) for large qMC can be480

obtained by481

σ2(X) =
1

qMC

qMC
∑

i=1

(X̂i − µ(X))2. (32)
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Finally, for the first order sensitivity indices, a common approach is to gen-482

erate two independent quasi Monte Carlo sample sets of Ω. The independent483

sets Ω1 and Ω2 are obtained from a qMC×2D matrix, which is a quasi Monte484

Carlo sample series in dimension 2D, D is the dimension of the original prob-485

lem. The Sobol’ indices Sj = σ2
j/σ

2 for j-th dimension is derived from the486

estimate of the variance and the partial variance σ2
j :487

σ2
j =

1

qMC

qMC
∑

i=1

X̂i(Ω2)(X̂i(Ω
j
1)− X̂i(Ω1)), (33)

where Ωj
1 is the first samples set Ω1 where the j-th column has been replaced488

by the corresponding column of the second sample set Ω2. The residual489

variance can be estimated by the difference between the total variance and490

the sum of first order partial variances.491

5.3. Uncertainty quantification of the source localization to the environmental492

parameters493

In this section, the UQ analysis of source localization with respect to un-494

certain environmental parameters is presented. As previously discussed, the495

shallow water sound speed and the water depth are assumed to be uncertain,496

the ranges of which are set to be v = 1500± 2.5 m/s and d = −100± 2.5 m,497

respectively. Here, both parameters are assumed as independent random498

variables. The UQ analysis of source localization using IB, conventional and499

Capon’s MFP is done. The sound source is located at (0, 0,−32) m and500

the frequency is 1500 Hz. The sensor locations are the same as in Sec-501

tion 4. In order to decrease the computational costs, the x-coordinate of502

sound source is assumed to be known for all the the three methods, thus503

only the y- and z-coordinates have to be estimated. Note that in this case504

the computational cost of MFP decrease (the region of possible source loca-505

tion becomes two-dimensional), but is still much heavier than IB: the com-506

putation speed of IB is approximately 460 times faster than the MFP ap-507

proaches. Besides, in order to eliminate the influence of random initialization508

of IB, the starting values for the source parameters are obtained from a grid509

{(y, z) : y = −100,−80, · · · , 100, z = 0,−10, · · · ,−70}.510

A regular grid with 25 samples of uncertain parameters (v = 1500, 1500±511

1.25, 1500± 2.5 m/s, d = 100, 100± 1.25, 1000± 2.5 m) is used to assess the512

reliability of the Kriging-based response surface. The number of samples of513

the UQ grid depends in general on the dimensionality of the UQ problem, on514
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the physical ranges of each UQ parameter and on the expected complexity of515

the response. In this case, a grid with 25 samples proved to be enough to get516

a reasonable convergence of the Kriging response surface. Further tests with517

additional samples are proved to be inefficient in terms of response surface518

reliability.519

Figure 5 shows the computation results of IB with four different assumed520

parameters: (a) v = 1500 m/s, d = −98.75 m; (b) v = 1500 m/s, d = −97.5521

m; (c) v = 1501.25 m/s, d = −100 m; (b) v = 1502.5 m/s, d = −100522

m. In the latter two cases, the image sources with low strengths cannot be523

accurately estimated. However, the first two sources (the physical source and524

its first image which have the highest amplitudes) can be identified in all the525

cases. Since the main purpose of this work is to localize the physical source,526

these results are sufficient: the estimated source between the two boundaries527

can be identified as the estimate of the physical source. Here, the source528

location estimate of IB is the first mode of the multiple-source estimate. In529

the following, the estimation accuracy of all the three methods is quantified.530

A response surface is built for the z-coordinate estimate of source through531

ordinary Kriging with spline covariance function and θ = 0.1 (tuned to well532

fit the meta-model). Actually, the experimental results of IB show that the533

estimation error of y-coordinate is always much smaller than z-coordinate and534

relatively negligible (smaller than 0.1 m), thus the z-coordinate estimation535

error |z0− z∗0 | can be seen as the source estimation error ‖r0− r∗0‖. Although536

the main interest of the UQ analysis is to quantify the error on the source537

localization, using it to build the response surface is not so efficient as it538

may appear, since the absolute value operator results in a response surface539

with sharp points, which can not be correctly fitted by a Kriging meta-model540

with a small sample size. Therefore, the response surface of the z-coordinate541

estimate is constructed and the error is then derived. The interested reader542

can see Ref. [40] for a discussion on the importance of the choice of the QoI in543

building the response surface and assessing its reliability. Furthermore, the544

leave-one-out cross validation is used to assess the reliability of the Kriging-545

based response surface, where the cross-validation value is CVs < 1% for all546

s.547

At first both uncertain parameters are assumed to be uniformly dis-548

tributed; then the results are compared to the truncated Gaussian distri-549

butions, which let the range of each parameter mentioned above be equal to550

six standard deviation centered at the mean value. The PDFs, along with551

the mean value µ(z) and the confidence interval µ(z) ± σ(z) (σ(z) is the552
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Figure 5: Reconstructed sound pressure levels using IB with imprecise information of
water depth and velocity: (a) d = −98.75 m, v = 1500 m/s; (b) d = −97.5 m, v = 1500
m/s; (c) d = −100 m, v = 1501.25 m/s; (d) d = −100 m, v = 1502.5 m/s. The black
crosses stand for the locations of (physical and image) sound sources. The white lines
indicate the water surface and bottom. The source-microphone range is 5000 m and the
frequency is f = 1500 Hz. (For interpretation of the references to color in this figure, the
reader is referred to the web version of this paper.)

standard deviation), of the estimated z-coordinate using the three source553

localization methods with uniform or Gaussian assumption of the uncertain554

environmental parameters are shown in Figure 6. For the IB estimation, in555

the case of uniform distribution, the mean value of the z-coordinate estimates556

is µ(z∗0) = −31.88 m; by contrast, in the Gaussian case, the mean value is557

µ(z∗0) = −31.91 m. In both cases the PDF is spread around the reference558

value z0 = −32 m and the confidence interval contains z0, meaning that the559

IB method is able to retrieve the exact solution in most of the combina-560

tions of the uncertain environmental parameters. Similarly, the conventional561

MFP estimate has mean value µ(z∗0) = −32.18 m for uniform distribution562

and µ(z∗0) = −32.11 m for Gaussian distribution, which imply that the exact563

estimate can also be retrieved by the mean value. The mean value error of564

conventional MFP is more or less same as IB but the variance is smaller,565

which can be observed from Figure 6. The Capon’s MFP estimate results in566

µ(z∗0) = −33.92 m for uniform distribution and µ(z∗0) = −33.61 m for Gaus-567

sian distribution, and the confidence interval is far away from z0, which leads568
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to a much larger localization error than the two methods. Table 1 displays569

α-th percentile (α = 5%, 10%, 25%, 50%, 75%, 90%, 95%) of the distribution570

of the z coordinate estimate obtained from the three methods under the uni-571

form or Gaussian assumption for the uncertain environmental parameters.572

It is interesting to notice that for IB the error is slightly larger far from the573

nominal value for the uniform assumption, so that in the case of Gaussian574

approximation for the environmental parameters the percentiles correspond-575

ing to a given error of 1 m increase by about 15%: the z-coordinate estimate576

at −33 m corresponds to the percentile being 10% for uniform assumption577

and 25% for the Gaussian assumption.578

To further investigate the error distribution against the uncertain en-579

vironmental parameter and to compare it with the MFP approaches, the580

response surface of |r∗0 − r0| is analysed for all the three source estimation581

methods. Maps of the source estimation error |r∗0 − r0| for IB, conventional582

and Capon’s MFP are shown in Figure 7. As can be noticed, the conven-583

tional MFP approach returns the most robust result while Capon’s MFP is584

most sensitive with respect to uncertain parameters. The IB estimates have585

an intermediate error in terms of dispersion of the results, but it is also reli-586

able enough since the absolute error never exceeds 2 m in the given range of587

uncertain parameters. Here, we may conclude that IB is a good choice which588

returns an acceptable source localization error in presence of environmental589

parameter uncertainties with a relatively low computational cost.590

Finally, Sobol’ index calculation for IB shows a weak sensitivity of source591

estimation to the shallow water depth (Sd ≈ 3%), a strong sensitivity to592

the sound speed (Sv ≈ 92%) and a low effect of coupling between the two593

uncertain environmental parameters (Sd−v = σ2
d−v/σ

2 ≈ 5% where σ2
d−v is594

the residual variance). On the contrary, the MFP methods are more sensitive595

to the water depth and to the coupling of the two environmental parameters:596

the Sobol’ indices are Sd ≈ 67%, Sv ≈ 1% for conventional MFP and Sd ≈597

62%, Sv ≈ 2% for Capon’s MFP, respectively. The same conclusions can be598

observed in Figure 7. It is remarkable that this result is able to guide the599

choice of source localization method: when the uncertainty level of the water600

depth is higher than the sound speed IB can more accurately estimate the601

source, while in the opposite case the MFP methods are preferable in the602

sense of estimation robustness.603
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Figure 6: Probability density functions of the z-coordinate estimate using the IB (a,b), con-
ventional MFP (c,d) and Capon’s MFP (e,f) methods under the assumption of a uniform
distribution (a,c,e) and a Gaussian distribution (b,d,f) for the uncertain environmental
parameters.

6. Conclusions604

In this paper, sound source localization in a shallow water environment is605

addressed. The multiple reflections on the water surface and bottom during606
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α IB Conventional MFP Capon’s MFP
Uniform Gaussian Uniform Gaussian Uniform Gaussian

5% -33.14 -32.97 -32.33 -32.30 -34.65 -34.14
10% -33.00 -32.86 -32.31 -32.27 -34.50 -34.03
25% -32.72 -32.59 -32.26 -32.19 -34.25 -33.82
50% -32.03 -32.02 -32.20 -32.09 -33.93 -33.55
75% -31.14 -31.38 -32.10 -32.03 -33.59 -33.38
90% -30.72 -30.88 -32.02 -32.00 -33.42 -33.31
95% -30.54 -30.65 -31.99 -31.99 -33.34 -33.29

Table 1: α-th percentile (α = 5%, 10%, 25%, 50%, 75%, 90%, 95%) of the distribution of
the z-coordinate estimate obtained from the IB, conventional MFP and Capon’s MFP
methods under the uniform and Gaussian assumption for the uncertain environmental
parameters.

the sound propagation are considered. Instead of solving the wave equa-607

tion with boundary conditions of reflection, an image source model including608

multiple sound sources in a free-field is proposed. Therefore, the multiple-609

reflection problem is transferred to a multiple source problem which results610

in an analytical solution of sound propagation. Then, the multiple sources611

are estimated using the iterative beamforming approach, which is a gener-612

alization of classical beamforming to deal with the case of multiple sources.613

The proposed source localization technique is a parametric method based614

on the maximum likelihood, which avoids the limits of spatial aliasing and615

resolution of classical beamforming.616

The results obtained via numerical simulations show the interest of the617

proposed model and the source estimation method. The experiment justifies618

that classical beamforming is limited in the underwater source localization619

problem due to a long microphone-source distance and a relatively small620

size of microphones array. However, iterative beamforming is able to accu-621

rately estimate the sound source and return a super-resolution reconstruction622

of sound field. Furthermore, the proposed method has a much lower com-623

putational cost than the matched-field processing methods. In this paper,624

the uncertainty quantification study also justifies that the proposed iterative625

beamforming method is stable with respect to the model uncertainties: when626

the sound speed and water depth are imprecisely known (the error range is627

±2.5 m for water depth and ±2.5 m/s for sound speed), the sound source628

can still be accurately localized.629
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In this paper, only the case of homogeneous sound speed field is consid-630

ered. However, the proposed image model and the source localization method631

can be naturally generalized to the inhomogeneous case. Furthermore, this632

work analyzes the sensitivities of the proposed method with respect to un-633

certain sound speed and water depth. Other uncertainties, for example the634

roughness of water bottom, can also be considered. It would be also inter-635

esting to model the uncertain parameters as random variables, which may636

further improve the accuracy of source localization.637
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Figure 7: Estimation error of sound source localization using (a) IB, (b) conventional MFP,
and (c) Capon’s MFP with imprecise information of water depth (d ∈ [−102.5,−97.5])
and sound velocity (v ∈ [1497.5, 1502.5]). Corresponding percentiles with respect to the
uniform and Gaussian input distributions are given on the right side of the error map.
(For interpretation of the references to color in this figure, the reader is referred to the
web version of this paper.)
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