
HAL Id: hal-01527525
https://hal.science/hal-01527525

Submitted on 1 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spatio-Temporal Functional Dependencies for Sensor
Data Streams

Manel Charfi, Yann Gripay, Jean-Marc Petit

To cite this version:
Manel Charfi, Yann Gripay, Jean-Marc Petit. Spatio-Temporal Functional Dependencies for Sensor
Data Streams. SSTD’17, Aug 2017, Arlington, Virginia, United States. pp.182-199, �10.1007/978-3-
319-64367-0_10�. �hal-01527525�

https://hal.science/hal-01527525
https://hal.archives-ouvertes.fr

Spatio-Temporal Functional Dependencies for

Sensor Data Streams

September 1, 2017

Authors: Manel Charfi, Yann Gripay and Jean-Marc Petit
Institute: Université de Lyon, CNRS
INSA-LYON, LIRIS, UMR5205
F-69621, Villeurbanne, France
firstname.surname@insa-lyon.fr

Abstract

Nowadays, sensors are cheap, easy to deploy and immediate to inte-

grate into applications. Since huge amounts of sensor data can be gen-

erated, selecting only relevant data to be saved for further usage, e.g.

long-term query facilities, is still an issue. In this paper, we adapt the

declarative approach developed in the seventies for database design and we

apply it to sensor data streams. Given sensor data streams, the key idea is

to consider both spatio-temporal dimensions and Spatio-Temporal Func-

tional Dependencies as first class-citizens for designing sensor databases

on top of any relational database management system. We propose an

axiomatisation of these dependencies and the associated attribute closure

algorithm, leading to a new normalization algorithm.

1 Introduction

Thousands and even millions of sensors can be deployed easily, generating data
streams that produce cumulatively huge volumes of data. Whenever a sensor
produces a data (temperature, humidity. . .), two dimensions are of particular
interest: the temporal dimension to stamp the value produced at a particular
time and the spatial dimension to identify the location of the sensor. Both
dimensions have different granularities organized into hierarchies that may vary
according to special needs of applications (see an example in Figure 1).

Example 1 We consider a running example of sensor data streams from in-
telligent buildings. In each building different sensors (temperature, luminosity,
humidity. . .) are deployed. At the scale of several buildings, a huge number of

1

Figure 1: Temporal and spatial dimensions

temperature location time

21 oxygen:f1:h1:livingRoom:s11 2016/03/02 11:59:00
20 oxygen:f1:h1:kitchen:s21 2016/03/02 11:59:30
20 oxygen:f1:h1:livingRoom:s12 2016/03/02 12:01:00
23 oxygen:f1:h1:kitchen:s22 2016/03/02 12:01:00
20 oxygen:f1:h1:livingRoom:s11 2016/03/02 12:01:30
24 oxygen:f1:h1:bathroom:s31 2016/03/02 12:02:00
20 oxygen:f1:h1:livingRoom:s12 2016/03/02 12:02:30
23 oxygen:f1:h1:kitchen:s21 2016/03/02 12:15:00

Table 1: An instance of temperatureSensors

sensors exist, each one sending values at its own rate. Let us consider a tem-
perature sensor data stream as given in Table 1, where location and time follow
the granularity hierarchies presented in Figure 1. Without loss of generality, we
shall assume throughout the paper that the location attribute contains a string
value containing the concatenation of all its “granules”.

The stream given in Table 1 is representative of a wide variety of sensor data
streams. We consider static sensors in this paper, i.e. sensors set to a particular
place to sense the environment. We focus on applications requiring long term
storage of data streams, in opposition to monitoring applications which have to
react in quasi real-time using for example continuous query [1, 2]. Many types
of systems can be used for long term storage, from classical file systems (in json,
flat text. . .) to Relational Database Management Systems (RDBMS). In the
former, a file is created for a given period of time (e.g. week, month). In the
latter, data streams are stored as classical tables with specific attributes to cope
with spatio-temporal aspects of the stream. In both cases, the burden is let to
application designers who have to pose complex queries (e.g. full-text search
or SQL-like queries) to deal with temporal and spatial dimensions. Whenever
the data volume is high, the query processing time can be also prohibitive.
Selecting only relevant data from sensor data streams to be saved for further
usage, e.g. long-term query facilities, is still an issue since huge amounts of
sensors can be deployed for a specific application.The challenges of applying

2

traditional database management systems to extract business value from such
data are still there. In this setting, the problem we are interested in is the
following: Given a set of sensor data streams, how to build a relevant sensor
database for long-term reporting applications?

In our work, we focus on the implementation of a declarative approach that
aims to guarantee the storage of the “relevant” sensor data at application-
specific granularities. Instead of relaying on query workload or data storage
budget to define an optimized database [20], we borrow the declarative ap-
proach developed in the seventies for database design using functional depen-
dencies as constraints. Our aim is to apply this approach in order to transform
real-time sensor data streams into a sensor database. We argue that such con-
straints augmented with the spatial and the temporal dimensions are required
to keep only the “relevant data” from incoming sensor streams. The sensor
database satisfies the specified constraints while approximating data stream
values. Thus, the data approximation and data reduction are “controlled” by
the set of constraints. As the required results concern data over long peri-
ods of times (e.g. couple of months to several years), approximating sensor
data streams should decrease storage space while allowing to express “relevant
queries” more easily.We introduce Spatio-Temporal Functional Dependencies
(STFDs) which extend Functional Dependencies (FDs) with the temporal and
the spatial dimensions.

Example 2 Let us take back our running example. The building manager con-
siders that the “temperature of each room remains the same over each hour”,
leading to the following STFD: locationroom, timehour −→ temperature
whose syntax captures the intended meaning, i.e. it does not exist two different
temperature values on the same room during a given hour.

Such constraints are straightforward to understand and convey the semantics
allowing to decide what are the relevant data to keep in the database. Classi-
cal database normalization techniques can be revisited in this setting to obtain
so-called granularity-aware sensor databases.

At given spatio-temporal granules (e.g. for a given hour and a given house),
we have different alternatives to choose data, each one could be seen as an ag-
gregation of values, from simple ones like first, minimum, average within each
spatio-temporal granule to more elaborated ones. Thus, depending on the appli-
cation context, we can imagine more complex aggregations that allow to define
complex functions (e.g. average of the 3 first values corresponding to a given
valid domain) and even to avoid noisy and incomplete data issues. We call these
annotations Semantic Value Assumptions (SVA) which are based on semantic
assumptions of temporal databases [3]. So, if we consider temperature values
of each room at the scale of an hour, we have to precise which value will be
associated to each couple (room,hour): it may be the average of all values from
all sensors in this room at all the minutes of this hour. Once a sensor database
has been built, we have a data exchange problem [7]: how to load data from

3

the stream to the database? To do that, the main problem is to decide which
values to pick up from the stream. This decision is easily made thanks to SVAs.

Contribution
We aim to establish a sensor data storage system that eases the storage of
spatio-temporal data streams. To the best of our knowledge, this is the first con-
tribution talking advantage of spatio-temporal constraints defined at database
design time to automatically produce an approximated database saving “rele-
vant” data with respect to users’ constraints. Our main objective is at the end
to have a reduced database that contains a summary of sensor data streams in
accordance to application-predefined requirements. Thus, given a set of sensor
data streams, we propose a declarative approach to build a representative sensor
database on top of any RDBMS with the following key features:

• Both spatio-temporal granularity hierarchies and STFD are considered as
first class-citizens.

• A specific axiomatisation of STFD and an associated attribute closure
algorithm, leading to an efficient normalization algorithm are introduced.

• A middleware to load on-the-fly relevant data from sensor streams into
the granularity-aware sensor database is proposed.

We have implemented a prototype to deal with both database design and data
loading. We have conducted experiments with synthetic and real-life sensor
data streams coming from Intelligent Building.

Paper organization
Section 2 gathers preliminaries. In section 3, we define the formalism of STFDs
leading to the design of the granularity-aware sensor database . In section 4, we
sketch the architecture of our declarative system and the experiments conducted
on intelligent building data streams. The related work is presented in section 5.
Finally, in section 6 we conclude and expose some perspectives.

2 Preleminaries

To define spatio-temporal granularity hierarchies, we first define a general notion
of granularity, borrowed from time granularity definition [3], then a partial order
on a set of granularities for which we require a lattice structure.

Let T be a countably infinite set and ≤ a total order on T . A granularity is
a mapping G from N to P(T) where P(T) is the powerset of T . A non-empty
subset G(i), i ∈ N, of a granularity G is called granule. The granules in a
granularity do not overlap. A granularity G is finer than a granularity H (H is
coarser than G), denoted G � H , if for each integer i, there exists an integer j
such that G(i) ⊆ H(j). Intuitively this means that each granule of H holds a
set of granules of G. Let G be a set of granularities and � a partial order on
G. We assume the set (G,�) is a lattice, meaning that each two-element subset

4

{G1, G2} ⊆ G has a join (i.e. least upper bound) and a meet (i.e. greatest lower
bound). For X ⊆ G, glb(X) denotes the greatest lower bound of X in G. The
greatest and least elements of G, or the top and bottom elements, are denoted
by Top and Bottom, respectively. G is collectively finer than {G1, . . . , Gm},
denoted by G �c {G1, . . . , Gm}, if for each positive integer i, there exist k, j
such that G(i) ⊆ Gk(j), 1 ≤ k ≤ m and j a positive integer. Intuitively this
means that there exists in the set of granularities {G1, . . . , Gm} at least one
granularity that, for each granule G(i) taken independently, is coarser than G.
As a particular case, G � G′ implies G �c {G′}.

Application to spatio-temporal dimensions
For each considered dimension, a lattice of granularities is defined accordingly.
For the sake of clearness, we assume without loss of generality that a total
order exists for time instants and sensors, meaning that two time instants (resp.
two sensors) can always be compared. In this setting, we define two lattices,
(T ,�t) and (S,�s) leading to two granularity hierarchies. T is a set of temporal
granularities and S a set of sensor location granularities. An example is given
in Figure 1 where the arrows connect the coarser to the finer granularities.

3 Database modeling for sensor data

3.1 Granularity aware sensor database

We assume the reader is familiar with database notations, see for example [11]
for details. Hereinafter we use G as a spatial granularity and H as a tempo-
ral granularity. We extend the temporal database definitions given in [3] to
take into account the spatial dimension. Let U be a universe (set of attributes)
and D be a countably infinite set of constant values. A spatio-temporal module
schema over U is a triplet M = (R,G, H), where R ⊆ U is a relation schema,
G ∈ (S,�s) is a spatial granularity and H ∈ (T ,�t) is a temporal granularity.
For a relation schema R, Tup(R) is the set of all possible tuples defined over D.
A spatio-temporal module is a quadruple M = (R,G,H, ϕ), where (R,G,H) is
a spatio-temporal module schema and ϕ is a mapping from N×N to P(Tup(R)).
Actually, the mapping function ϕ(i, j) gives the tuples over attributes of R that
hold at each couple of granules (G(i), H(j)). When clear from context, we shall
use the time instants and sensor locations instead of integers to describe a par-
ticular mapping function, e.g. ϕ(buildingx:housey:roomz :sensori, 2016/03/02
11:59:00) instead of ϕ(i, j) for some integer values i and j.

Example 3 Consider the “raw” data stream given in Table 1. It can be rep-
resented at different granularities: e.g. with the module M1=(R,G1, H1, ϕ1)
where R={temperature}, G1=room,H1=hour and the windowing function ϕ1

is:

ϕ1(oxygen:f1:h1:livingRoom,2016/03/02 11) = {< 21 >}
ϕ1(oxygen:f1:h1:kitchen,2016/03/02 11) = {< 20 >}
ϕ1(oxygen:f1:h1:livingRoom,2016/03/02 12) = {< 20 >}

5

ϕ1(oxygen:f1:h1:kitchen,2016/03/02 12) = {< 23 >}
ϕ1(oxygen:f1:h1:bathroom,2016/03/02 12) = {< 24 >}

A granularity-aware sensor database schema R over U is a fixed set of spatio-
temporal module schemas over U . A granularity-aware sensor database d is a
finite set of spatio-temporal modules defined over R.

3.2 Spatio-Temporal Functional Dependency (STFD)

Dedicated FDs for sensor data streams have to take into account the temporal
and spatial dimensions. Many extensions of FDs to temporal DB have been
proposed but none of them extends FDs to both temporal and spatial dimen-
sions. In the sequel, we extend temporal functional dependencies introduced in
[3]. Intuitively, a STFD means that the X-values determine the Y -values within
each granule of the spatio-temporal granularities.

Let X , Y ⊆ U and (T ,�t), (S,�s) two granularity hierarchies. To express
STFDs, we need to consider two special attributes, disjoint from U , to take into
consideration granularities. Let location and time be the special spatial and
temporal attributes respectively. When clear from context, location and time
will be abbreviated by L and T respectively.

Definition 1 A spatio-temporal FD over U is an expression of the form:
X, locationG, timeH → Y where G ∈ (S,�s) is a spatial granularity and H ∈
(T ,�t) is a temporal granularity.

We shall see that the case X = ∅ is meaningful for STFDs whereas the
classical FD counterpart is almost useless (i.e. ∅ → A means that in every
possible relation, only one value for A is allowed).

Example 4 Regarding the temperature approximations, one may consider that
the temperature of the same room does not change all along the same hour. This
approximation can be represented as: ∅, locationroom, timehour → temperature
(or simply: locationroom, timehour → temperature).

The satisfaction of a STFD with respect to a module is defined as follows:

Definition 2 Let M = (R,G,H, ϕ) be a spatio-temporal module, X,Y ⊆ R and
f X, locationG′

, timeH
′

→ Y an STFD. f is satisfied by M, denoted by M |= f ,
if for all tuples t1 and t2 and positive integers i1, i2, j1 and j2, the following
three conditions imply t1[Y] = t2[Y]: (1) t1[X] = t2[X], (2) t1 ∈ ϕ(i1, j1) and
t2 ∈ ϕ(i2, j2), and (3) ∃ i′ such that G(i1) ∪G(i2) ⊆ G′(i′) and ∃ j′ such that
H(j1) ∪H(j2) ⊆ H ′(j′).

This definition extends classical FDs (r |= X → Y) as follows:
(1) is the classical condition for FDs, i.e. the left-hand sides have to be equal
on X for the two considered tuples.
(2) bounds tuples t1, t2 to be part of two spatio-temporal granules ofM (equiv-
alent to t1, t2 ∈ r).

6

(3) restricts eligible tuples t1 and t2 in such a way that the union of their spatial
(resp. temporal) granules with respect to G (resp. H) has to be included in
some granule of G′ (resp. H ′).

Example 5 Let us consider the module M2=(R,G2, H2, ϕ2) where R={tempe-
rature}, G2=sensor,H2=second. We have: M2 |= locationroom, timehour →
temperature and M2 6|= locationhouse, timehour → temperature. As for FDs,
the non-satisfaction is easier to explain since we just need to exhibit a counter
example. The two first tuples given in Table 1 form a counter-example since both
sensors belong to the house h1 and have been produced at the hour 11 whereas
20 6= 21.

From these examples, we argue that STFDs are quite natural to express
declarative constraints over sensor data streams and provide a powerful ab-
straction mechanism towards granularity-aware sensor database design.

3.3 Reasoning on STFDs

3.3.1 Inference axioms for STFDs

In order to derive all the possible STFDs logically implied by a set of STFDs,
we need to define the inference axioms corresponding to STFDs. We propose
the three following finite axioms:

(A1) Restricted reflexivity:
if Y ⊆ X then F ⊢ X,LTop, T Top → Y

(A2) Augmentation:
if F ⊢ X,LG, TH → Y then F ⊢ X,Z,LG, TH → Y, Z

(A3) Extended transitivity:

if

{

F ⊢ X,LG1, TH1 → Y

F ⊢ Y, LG2 , TH2 → Z
then F ⊢ X,LG3, TH3 → Z

where G3 = glb({G1, G2}) and H3 = glb({H1, H2}).

These three inference axioms for STFDs are a generalization of axioms of
temporal FDs, shown to be sound and complete in [3]. The proof for STFDs is
similar and is omitted in this paper.

3.3.2 Closure of attributes

The closure of attributes plays a crucial role for reasoning on classical FDs and
are generalized to STFDs as follows. Let R be a sensor database schema over
U , F a set of STFDs over U and X ⊆ U . The closure of X with respect to F is
denoted by X+

F . X+
F contains elements of the form (B,G,H) over U × S × T .

X+
F is defined as follows:

X+
F = {(B,G,H) | F ⊢ X,LG, TH → B such that there is no F ⊢ X,LG′

, TH′

→
B with G′ �s G′, H �t H

′ and (G 6= G′ or H 6= H ′)}. Algorithm 1 computes

7

Algorithm 1 ClosureAttribute
Require:

F : a set of STFDs over U
X ⊆ U

Ensure:

X
+

F
: the finite closure of X with respect to F

1: X+

F
:= {(A, Top, Top) | a ∈ X} ∪ {(∅, Top, Top)}

2: repeat

3: Xprev := X
+

F

4: for each A1, ..,Ak, L
G, TH → B1, .., Bm ∈ F do

5: for each {(A1, G1, H1), .., (Ak, Gk, Hk)} ⊆ Xprev do

6: G′ := glb(G1, ..,Gk, G)
7: H′ := glb(H1, .., Hk, H)
8: for each B ∈ {B1, .., Bm} do

9: X
+

F
:= X

+

F
∪ {(B,G′, H′)}

10: end for

11: end for

12: end for

13: until X
+

F
= Xprev

14: Minimize X
+

F
such that there is no two elements (A,G,H) and (A,G′, H′) with G �s G′, H �t

H′ and (G 6= G′ or H 6= H′)

the finite closure of a set of attributes X with respect to F . This algorithm
is a generalization of the classical closure algorithm for FDs [11] taking into
account the granularities. Its basic idea is to compute progressively the set
X+

F . Line 1 encodes the first axiom (A1). The following procedure is repeated
over all STFDs until a fix point is reached (line 13). For each STFD of line 4,
if A1, .., Ak appears in the current closure Xprev, then B1, .., Bm are added to
X+

F with the corresponding spatial and temporal granularities. Line 14 ensures
that the closure is composed of elements with incomparable granularities for the
same attribute.

Example 6 Let us consider U = {temperature, humidity, luminosity, CO2},
four sensor types sending the temperature, humidity, luminosity and CO2 val-
ues, the granularity hierarchies given in Figure 1 and the set F of STFDs:
F = {locationroom, timehour → temperature; locationhouse, timeday → humidity;
locationroom, timeday → luminosity; locationroom, timeminute → CO2;
locationroom, timehour → humidity; locationroom, timeminute → temperature;
locationhouse, timehour → humidity; locationsensor, timehour → luminosity;
locationroom, timehour → CO2 }
The closure of temperature w.r.t. F is: temperature+F = {(temperature, T op,
T op), (humidity, house, day), (luminosity, room, day), (CO2, room, hour)}.

The closure of attributes with respect to a set F of STFDs is polynomial
and allows to decide whether or not a given STFD is implied by F , as shown in
the following property.

Property 1 F ⊢ X,LG, TH → B iff ∃ Y ⊆ X+
F such that Y = {(B,Gik , Hjl) |

ik ∈ i1..in, jl ∈ j1..jm}, G �c {Gi1 , . . . , Gin} and H �c {Hj1 , . . . , Hjm}.

Example 7 Let us consider the set F of STFDs given in Example 6. We
consider the following STFDs:

8

f1 : temperature, locationroom, timehour → luminosity; and
f2 : temperature, locationopenspace, timeday → humidity;
As (luminosity, room, day) ∈ temperature+F and hour �t day we have F ⊢
f1. But F 6⊢ f2 since temperature+F only contains (humidity, house, day) and
openspace 6�s house.

Attribute closure is one of the technical contributions of the paper and is,
to the best of our knowledge, a new result never addressed in related works.

3.4 Normalization

Our aim is to extend the well known synthesis algorithm for database design
[11] from a set of classical FDs in our setting. With STFDs, we propose a
normalization technique based on two main steps: first, computing a minimal
cover of a set of STFDs and then producing spatio-temporal modules. Let F+ be
the closure of F . F+ is defined by: F+ = {X,LG, TH → Y | F ⊢ X,LG, TH →
Y }.

Definition 3 A set F ′ of STFDs is a cover of a set of STFDs F if F+ = F ′+.
A cover F ′ of F is minimal if 6 ∃ a cover G of F such that |G| < |F ′|.

Algorithm 2 MinimalCover
Require:

F : a set of STFDs over U
Ensure:

F ′: a minimal cover of F

1: F ′ := ∅
2: for each X,LG, TH → Y ∈ F do

3: for each (A,G′, H′) ∈ X
+

F
do

4: F ′ := F ′ ∪ {X,LG′

, TH′

→ A}
5: end for

6: end for

7: for each X,LG′

, TH′

→ A ∈ F ′ do

8: F ′′ := F ′ \ {X,LG′

, TH′

→ A}

9: if F ′′ ⊢ {X,LG′

, TH′

→ A} then

10: F ′ := F ′ \ {X,LG′

, TH′

→ A}
11: end if

12: end for

13: while there exists f, f ′ ∈ F ′ with the same left-hand-side do

14: Merge f and f ′

15: end while

Algorithm 2 generalizes the classical procedure to get a minimal cover of FD.
We sketch the main steps to compute a minimal cover. First, we saturate the
initial set of STFDs with STFDs induced by the closure of each set of attributes
(line 2-6). Then, we apply classical minimization procedure (line 7-12) and
finally, we merge STFDs whose left-hand sides are the same by taking the union
of their right-hand sides (line 13-15) (not detailed in the Algorithm).

9

Example 8 We consider the set F of STFDs in example 6. Using Algorithm
2 we get the following minimal cover F ′ (details are omitted):
F ′ = {locationroom, timehour → temperature, CO2;

locationhouse, timeday → humidity; locationroom, timeday → luminosity}

The sensor database schema can be deduced from the obtained minimal cover:
for each STFD, a module is generated. Algorithm 3 presents the main steps
allowing to get a granularity-aware sensor database schema from a set of STFDs.
Studying the properties of this decomposition is left for future work.

Algorithm 3 Normalization
Require:

F : a set of STFDs over U
Ensure:

R: a granularity-aware sensor database schema

1: R := ∅
2: F ′ := MinimalCover(F)

3: for each A1, .., Ak, L
G, TH → B1, .., Bm ∈ F ′ do

4: R := {A1, .., Ak, B1, ..,Bm}
5: M := (R,G,H)
6: R := R ∪ M
7: end for

Example 9 Continuing the previous example, we obtain a granularity-aware
sensor database schema R = {M1,M2,M3} with:
M1 = (< temperature, CO2 >, room, hour), M2 = (< humidity >, house, day),
and M3 = (< luminosity >, room, day).

It is worth noting that every module of such a database schema is easily
implementable on top of any RDBMS. In the sequel, we denote the database
schema obtained through the normalization process by the abstract schema be-
cause in our context we need to add more semantic information to this schema.

3.5 Semantic Value Assumption

Given a set of sensor data streams, constraints for long-term storage can be de-
fined as a set of STFDs. We have seen that a granularity-aware sensor database
schema can be obtained from them thanks to the proposed normalization algo-
rithms which allow producing a database schema, i.e. abstract schema, from
the user-defined inputs (dimensions, sensor stream schemas and STFDs). After
that, the user annotates the abstract schema with the semantic information al-
lowing to specify the “relevant” data at the right granularities. In fact, at given
spatio-temporal granules, we have different alternatives to choose data, each one
could be seen as an aggregation of values with some aggregate functions. These
functions can be simple aggregations (e.g. first, max . . .) or more elaborated
ones (e.g. average of the 3 first values corresponding to a given valid domain)
depending on the application context. To do so, we introduce the so-called

10

“Semantic Value Assumptions” (SVA) allowing to declaratively define the val-
ues to be selected. Annotating an abstract schema, obtained by normalization
techniques based on STFDs, with user-defined SVAs leads to a concrete schema,
which can be implemented on top of classical RDBMS. The definition of SVA
is:

Definition 4 Let M = (R,G,H) be a spatio-temporal module schema and A ∈
R. A SVA is a triplet (A, agg fct,M) where agg fct is an aggregation function
(first,avg. . .) over the spatio-temporal granularities G and H.

Example 10 Let us consider M2 in Example 9. The SVA (humidity, first,
M2) means that the first humidity value per house per day has to be kept in M2

and the SVA (humidity, avg,M2) means that the average of the humidity values
per house per day has to be kept in M2.

Whenever multiple SVAs exist for a given couple (attribute,module schema),
new attributes could be created in the target schema of the underlying RDBMS.
These specific annotations allow, in a declarative manner, to annotate the data-
base schema with the semantic information required to indicate which value is
representative in each granule. SVAs can be very complex aggregations that
allow to define complex functions and even to avoid noisy and incomplete data
issues. This semantic information is important in database design level as well
as in the data stream loading procedure. In fact, as the relevant tuples definition
is ensured thanks to SVAs, for each SVA the system instantiates a specific data
wrapper. It is possible to implement SVA in different manners namely using
triggers or a dedicated middleware. As triggers do not scale to important data
stream loads [1, 8], we chose to implement SVA data wrappers in a middleware.

4 Prototype for sensor database

Figure 2: An overview of our architec-
ture

Figure 3: STFD definition in our pro-
totype

We propose a declarative system for both database design and data stream
loading containing the following two levels:

11

1. Sensor database design: Given a spatial and a temporal dimensions,
the aim of this module is to determine a granularity-aware sensor database
schema from a set of data streams, a set of STFDs and a set of SVAs.
Once the granularity-aware sensor database schema is defined, this mod-
ule allows to create the corresponding database relations in SQL, data
description language implemented on top of any RDBMS.

2. On-the-fly data loading: Once the database is created, this level en-
sures the selection of the relevant data from the received sensor data
streams. Thanks to STFDs and SVAs this middleware observes sensor
data, chooses data to be stored and prunes the rest.

4.1 Implementation

We implemented in Java and Prolog a prototype containing the two levels pre-
sented previously. An overview of the proposed architecture is presented in
Figure 2 where we found the following main modules:

1. Normalization module: This module takes the user inputs (i.e. spatio-
temporal dimensions, stream schemas and STFDs) and generates database
schema using the algorithms presented in section 3. This process leads to
the database abstract schema. The reasoning about the spatio-temporal
dimensions is proceeded through a Prolog environment. A .pl file, con-
taining the finer than relationships between the different granularities, is
generated from the input spatio-temporal dimensions. This file is checked
whenever an algorithm needs to compare two granularities.

2. Data management module: At this stage, the user defines the SVAs
corresponding to the proposed abstract database schema. This module up-
dates the abstract schema with the corresponding semantic annotations
which leads to the concrete schema. This module also ensures the selec-
tion of the “relevant” data (i.e. corresponding to the specification of the
set of SVAs) from sensor data streams. Thus, for each SVA the system
instantiates a specific SVA data wrapper which observes the sensor data
stream concerning its attribute and identifies the accurate values. Once
the user validates the obtained sensor database schema, the database re-
lations are created. We used Oracle 11G for the implementation and the
experiments.

3. Sensor module: This module is the interface between the sensors and the
system. It gathers sensor data and links it to the user-defined dimensions.

4. Web GUI: This module allows the application manager to: (a) design
the temporal and spatial dimensions, (b) from data streams at hand,
define the stream schemas, (c) declare relevant STFDs from (a) and (b),
(d) once an abstract schema exists, define a set of SVAs.

12

Database table number of tuples ratio: | d′ | / | d |

d0 27379 =| d | 100%
d1 456 1, 67%
d2 162 0, 59%
d3 7 0, 03%

Table 2: Data reduction w.r.t. STFDs

We believe that STFDs are natural and easy to express. Indeed, Figure 3,
contains a screen-shot from our prototype containing the user interface for STFD
definition. As we can see the user just has to check the concerned attributes
and select each granularity without caring about any syntax.

4.2 Ongoing Experiments

Data accuracy w.r.t. data reduction
In this section, we are mainly interested in studying the trade-off between data
reduction and data accuracy with respect to some STFDs. To do so, we consider
real-life sensor data. We have conducted real-life experiments in two buildings
in our university. A total of around 400 heterogeneous physical sensors are
deployed to measure temperature, humidity, CO2/VOC, presence, contact (for
doors/windows), electricity consumption, weather conditions. . .

In these experiments, we consider 19 temperature sensors belonging to 7
different rooms. Each sensor sends a new value per minute. We are interested
on data coming from these sensors all along one day (June, 1 2016). The idea
is to compare the data reduction with respect to the considered set of STFDs.
Then, to compare the considered data (“relevant data”), we observe the impact
of this reduction upon the accuracy of the results. In our case, the initial sensor
data stream spatio-temporal granularities are sensor and minute. All received
sensor data is stored in a table called d0 (i.e. raw data). We consider the
following three sensor database tables and their corresponding STFDs:

1. sensor DB table d1: contains the first temperature value per sensor per
hour with respect to the STFD locationsensor, timehour → temperature,

2. sensor DB table d2: contains the first temperature value per room per
hour with respect to the STFD locationroom, timehour → temperature,
and

3. sensor DB table d3: contains the first temperature value per room per day
with respect to the STFD locationroom, timeday → temperature.

Table 2 shows the important data reduction that may be done thanks to STFDs.
As we can see, considering coarser granularities increases the data reduction.
Next we are interested in data accuracy. Thus we aim to check how STFDs data
approximation impacts data. To do so, we ask the different obtained database
tables for the average of temperature per each room during the day. These

13

�C
�)
�,
�5

��
�
	
�

��
�

�
1�
�
�

��
��
1a
��
u

),go

)o

)6go

,C

,,go

,o

,6go

���C
���)
���,
���5
���7
���o
���4

Figure 4: Data accuracy w.r.t. data
reduction

�(0 �M
����	
�� ���
� ��
�

��
�

�
��

�

�y−(

�y−y3

y

y−y3

y−(

��� d��� My(�r

3 (y (3 My M3 6y

Figure 5: Difference between the results
of Q1 and Q2

averages are given in Figure 4. According to this figure, approximating data
with coarser granularities increases the error rate and decreases data accuracy.
In order to evaluate the error rate and to check if the approximation deterio-
rates the evaluation of the temperature averages we are now interested in the
difference between the results over raw data and a sensor database. Therefore,
we executed the following queries:

1. query Q1: computes on a raw database table the average of the tempera-
ture during each day of a given month for a given sensor, and

2. query Q2: computes on a sensor database table (i.e. this table contains
only one value per sensor per hour) the same average value.

The obtained difference values are given in Figure 5. We can see that the
difference is maintained under an error rate of 5% (most values being randomly
disseminated on the ±2% rate stripe) which could be considered acceptable in a
real life settings. It also evidences the fact that even though query Q2 considers
only one value per hour for the assessment of the average temperature per day,
the output of the calculation sticks to the value obtained with a finer granularity.
Actually, considering coarser granularities may not have a major effect on the
final results, due to the fact that sensor values may be unchangeable over some
spatio-temporal granules.
Data storage
We simulate now the sensors of an intelligent building containing 10 houses,
each house contains 5 rooms. In each room we consider at least 2 sensors of
each type (e.g. temperature, humidity. . .). Thus we simulate the operation
of several hundreds of sensors, each sending data at a frequency of one value
per minute. We took a sensor data stream, e.g. temperature, and we stored
it in different relations with different temporal and spatial granularities. For
instance, if we consider the temporal granularity hour the concerned relation

14

�������a�	�
���	�����
��

�

	

	

�

�

��
�

�
�
�
�	
a

�a
��
�
��
�a
ba
�

�
a�
��
��

1

1ccc

1cy

1c�

����
	��a�	�
���	�����
�
�

��
�

�

�	 ��

�

�
�
�
�	
a

�a
��
�
��
�a
ba
�

�
a�
��
��

1

1ccc

1cy

1c�

Figure 6: Number of tuples when varying temporal and spatial granularities

contains one temperature value per hour per sensor. And, if we consider the
spatial granularity room the concerned relation contains one temperature value
per minute per room. The experiments of this section count the number of
tuples in each relation. As expected, it is clear from Figure 6 that with finer
granularities we have more tuples. However, we can note that the temporal
granularities are more discriminating than the spatial granularities. So as we
have seen the use of STFDs with coarser granularities may reduce the number of
tuples. This leads to more efficient queries as they have less tuples to scan. We
also mention that, storing relevant data according to application requirements at
specific spatio-temporal granularities enables the use of simpler queries (simple
SELECT queries with simple WHERE clauses instead of queries with nested
SELECT and JOINS). The stored relevant data can be considered as prior-
computed query results.
Sensor data loading efficiency
In this section we are interested in the total execution time over predefined

�����
����
��	
�
�
���
���r�
�

��
��

�r
��
�

�r
g�

r�
��

�
�
�
wr
 r
��

�
r�
��

��

c

cµµµ

cµ1

cµ9

cµcn

�������

cµ cµµ cµµµ

Figure 7: Total execution time w.r.t.
the number of sensors

�����
����
��	
�
�
���
���r�
�

��
��

�r
��
�

�r
g�

r�
��

�
�
�
wr
 r
��

�
r�
��

��

c

cµµµ

cµ1

cµ9

��������

c

��

�

cn

�

��
�
c�

��

c-
��
��

c�
��

�

Figure 8: Total execution time w.r.t.
the duration

15

duration of our prototype while storing data in the appropriate database rela-
tions. Thus, we compare some implemented SVAs with the baseline solution,
i.e. storing all received sensor data. Each sensor sends one value per minute.
The stored data in the following sets of experiments is approximated upto the
spatio-temporal granularities room and hour. We compare the total execution
time of the baseline solution with four SVAs (first, last, maximum and average).
In this section we focus on the temperature stream. First, we focus on the vari-
ation of the total execution time with respect to the sensor number. We limit
the scope of these experiments on a duration of 1 hour. The obtained results
are given in Figure 7. Then, we vary the duration of our experiments for a fixed
number of sensors (100 sensors). Using SVAs in order to select on-the-fly the
relevant data is more efficient than the baseline solution: the total time in the
case of SVAs is lower by a 103 order of magnitude in Figure 7 and by a 102

order of magnitude in Figure 8 (in a log scale).

5 Related work

As far as we know there is no many contributions aiming at using the spatial
and the temporal dimension in order to retrieve the relevant data from sensor
data streams. Nowadays sensor data management can be seen from two points
of view: real-time, i.e. continuous queries [1, 2] versus historical [12, 6, 13] data
management. In this paper, we were interested in long-term storage of sensor
data. Our aim is to decrease the storage space and increase query efficiency of
long-term reporting applications. Some approaches were interested in resolving
storage problems that can result from the important amount of data generated
by sensors. As far as we know, there is no formal approach for dealing with
spatio-temporal stream querying considering different granularities.

TFDs have been mainly introduced in order to constraint the temporal data
in temporal databases. There have been an important number of articles aim-
ing at defining and characterizing TFDs namely [15, 17, 9, 16, 18]. The three
first approaches [15, 17, 9] handle TFD without time granularity. In [15], the
author defined a temporal relation as a temporal sequence of database states
and extended each tuple with its updated version. The data model in [17] was
extended with a valid time which represents a set of time points. The author
presented the suitable definition of FD in the presence of valid time and de-
fines two classes of temporal dependencies: Temporal Functional Dependencies
(TFDs) and Dynamic Functional Dependencies (DFDs). In [9], data contains
two time dimensions: valid time and transaction time. The authors handle
the problem of expressing the functional dependencies with such data. These
works do not consider granularity as a central notion as we do in this paper.
Both [16, 18] handled multiple time granularities. The authors in [16] and in
[3] defined the time granularities and the different relationships between them.
They defined the temporal module schema and the temporal schema as well as
TFD. In [18], the author extended the dependencies presented in [17] using time
granularity and object identity which is a time-invariant identity that relates

16

the different versions of the same object.
Roll-up Dependencies (RUDs) [19] define dependencies with a higher ab-

straction level for OLAP DB. They extend TFDs to non temporal dimensions
allowing each attribute to roll up through the different levels of its associated
hierarchy. Algorithmic aspects such as attribute closure is not studied for RUD,
as we do in this paper. We just need two dimensions, i.e. temporal and spatial.
In fact, we distinct two particular attributes, for spatial and temporal dimen-
sions, and we combine them with classical attributes (i.e. attributes without
associated hierarchies). Moreover, unlike [19] which deals with schemas, we deal
with attributes and we propose a normalization algorithm and a new closure
algorithm of a set of attributes from a set of STFDs. Our approach is not com-
parable to OLAP since our main goal is to retrieve and organize sensor data
and not to analyze multidimensional data from multiple perspectives.

We also defined a declarative structure, i.e. SVA, which annotates the gen-
erated database design in order to enrich it with semantic information about
relevant data selection. SVAs are also useful to select on-the-fly relevant data.
In fact, SVAs represent a sort of data exchange [7] mechanism inspired from
interval-based semantic assumptions designed for temporal databases [3]. The
point-based and interval-based semantic assumptions in [3] can be used to derive
or compress temporal data.

The use of SVAs in order to choose the relevant tuples reminds us load shed-
ding techniques. The load shedding process [14] intends to reduce the workload
of the data stream management system by dropping tuples from the system.
Several approaches proposed different tuples dropping strategies, e.g. random
[10], with a priority order [4] or a semantic strategy [5]. The load shedding
usually interferes in the physical plan of the query while our approach aims
to interfere from the database design and to take into account predefined ap-
proximations. Our contribution can be thought as a “declarative load shedding
process” since we allow to prune data stream from declarative constraints, in-
stead of sampling techniques.

6 Conclusion

In this paper, we have considered the long-term storage problem of sensor data
streams. We have presented a declarative approach to build a granularity-
aware sensor database from sensor data streams on top of any RDBMS. Our
core idea is to take into account the spatial and temporal aspects of sensor data
streams thanks to Spatio-Temporal Functional Dependencies (STFDs) and to
adapt the classical normalization techniques developed for relational databases
to sensor databases. We have defined a dedicated normalization algorithm based
on a novel closure algorithm for STFDs. The closure of attributes plays a
crucial role in the generation of a minimal cover of a set of STFDs and thus in
the production of normalized sensor database schemas. We have also defined
Semantic Value Assumption (SVA), a declarative database schema annotation,
allowing to specify the mechanism to load, on-the-fly and automatically, the

17

relevant data into the sensor database. A prototype has been implemented
in order to test both sensor database design from STFDs and data loading
techniques. We have conducted experiments on real and synthetic data streams
from intelligent buildings. We discussed the trade-off between the data accuracy
and the data reduction.

We have highlighted our proposition in the context of intelligent buildings
for domestic sensors. Nevertheless, our proposition relies upon clear theoreti-
cal foundations that enable to take both spatial and temporal dimensions into
account for sensor data streams. The approach is quite versatile and could be
adopted in a wide range of application contexts. Many extensions could be
done, for instance to consider mobile sensors or to study specific properties of
the decomposition algorithm for STFDs.

7 Acknowledgments

This work is supported by the ARC6 program of the Rhône-Alpes region,
France.

References

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and archi-
tecture for data stream management. The VLDB JournalThe International
Journal on Very Large Data Bases, 12(2):120–139, 2003.

[2] A. Arasu, S. Babu, and J. Widom. The cql continuous query language:
semantic foundations and query execution. The VLDB Journal - The In-
ternational Journal on Very Large Data Bases, 15(2):121–142, 2006.

[3] C. Bettini, S. Jajodia, and S. Wang. Time granularities in databases, data
mining, and temporal reasoning. Springer, 2000.

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams: A new class
of data management applications. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, pages 215–226. VLDB
Endowment, 2002.

[5] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over
data streams. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, pages 40–51, New York,
NY, USA, 2003. ACM.

[6] Y. Diao, D. Ganesan, G. Mathur, and P. J. Shenoy. Rethinking data man-
agement for storage-centric sensor networks. In CIDR, volume 7, pages
22–31, 2007.

18

[7] R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core.
ACM Transactions on Database Systems (TODS), 30(1):174–210, 2005.

[8] L. Golab and M. T. Özsu. Data stream management. Synthesis Lectures
on Data Management, 2(1):1–73, 2010.

[9] C. S. Jensen, R. T. Snodgrass, and M. D. Soo. Extending existing depen-
dency theory to temporal databases. Knowledge and Data Engineering,
IEEE Transactions on, 8(4):563–582, 1996.

[10] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over
unbounded streams. In Data Engineering, 2003. Proceedings. 19th Inter-
national Conference on, pages 341–352. IEEE, 2003.

[11] M. Levene and G. Loizou. A guided tour of relational databases and beyond.
Springer Science & Business Media, 2012.

[12] M. Lewis, D. Cameron, S. Xie, and B. Arpinar. Es3n: A semantic approach
to data management in sensor networks. In Semantic Sensor Networks
Workshop, 2006.

[13] L. Petit, A. Nafaa, and R. Jurdak. Historical data storage for large scale
sensor networks. In Proceedings of the 5th French-Speaking Conference on
Mobility and Ubiquity Computing, pages 45–52. ACM, 2009.

[14] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker.
Load shedding in a data stream manager. In Proceedings of the 29th in-
ternational conference on Very large data bases-Volume 29, pages 309–320.
VLDB Endowment, 2003.

[15] V. Vianu. Dynamic functional dependencies and database aging. Journal
of the ACM (JACM), 34(1):28–59, 1987.

[16] X. S. Wang, C. Bettini, A. Brodsky, and S. Jajodia. Logical design for
temporal databases with multiple granularities. ACM Transactions on
Database Systems (TODS), 22(2):115–170, 1997.

[17] J. Wijsen. Design of temporal relational databases based on dynamic
and temporal functional dependencies. In Recent Advances in Temporal
Databases, pages 61–76. Springer, 1995.

[18] J. Wijsen. Temporal fds on complex objects. ACM Transactions on
Database Systems (TODS), 24(1):127–176, 1999.

[19] J. Wijsen and R. T. Ng. Temporal dependencies generalized for spatial
and other dimensions. In Spatio-Temporal Database Management, pages
189–203. Springer, 1999.

19

[20] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-
Arellano, and S. Fadden. Db2 design advisor: integrated automatic physical
database design. In Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30, pages 1087–1097. VLDB Endowment,
2004.

20

