
HAL Id: hal-01527521
https://hal.science/hal-01527521v1

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Selecting SPL Modeling Languages: a Practical Guide
Asmaa Achtaich, Ounsa Roudies, Nissrine Souissi, Camille Salinesi

To cite this version:
Asmaa Achtaich, Ounsa Roudies, Nissrine Souissi, Camille Salinesi. Selecting SPL Modeling Lan-
guages: a Practical Guide. Conference, Nov 2015, Marrakech, Morocco. �hal-01527521�

https://hal.science/hal-01527521v1
https://hal.archives-ouvertes.fr

978-1-4673-9669-1/15/$31.00 ©2015 IEEE

Selecting SPL Modeling Languages: a Practical Guide

Achtaich Asmaa (*)(1), Roudies Ounsa (1)

(1) Univ. Mohammed V - Rabat,

EMI , SIWEB Team

Rabat, Morocco.
asmaaachtaich@research.emi.ac.ma,

roudies@emi.ac.ma

 Souissi Nissrine (1) (2)
(2) Ecole Nationale Supérieure des Mines de Rabat

Computer Science Department

Rabat, Morocco
souissi@enim.ac.ma

Salinesi Camille

Université Paris 1 Panthéon – Sorbonne

Centre de Recherche en Informatique

Paris, France
camille.salinesi@univ-paris1.fr

Abstract—Software product lines engineering decreased the

complexity of the development of products that share common

features, and variability modeling helped define and manage the

commonalities and differences between family products. That’s

why, through the years, many SPL languages have been proposed,

tested, extended, experimented in case studies, and then developed

even more. The proliferation of the modeling languages has made

it difficult for engineers to select the appropriate one, depending

on the domain context and on the user requirements. This paper

first presents a panorama of the Software product line (SPL)

modeling languages that have been proposed in the last two

decades. A survey of few selected modeling languages is given in

order to clarify their processes and the difference between the

notations they use to specify requirements and to express

commonality and variability. The article then provides software

product line engineer with a guide that helps selecting the

appropriate SPL modeling language, depending on the projects’

constraints and requirements. The proposed practical guide is

composed of a list of criteria that represent a basis for a

comparative survey.

Keywords— Software product lines; complexity; variability;

features; language; domain; requirement; reusability

I. INTRODUCTION

Software product Line (SPL) engineering consists of
designing and creating an assembly of elements sharing features,
functionalities or common architectures, while meeting the
needs of a specific category of stakeholders [1]. Both researchers
and engineers are interested in this paradigm for it solves the
complexity of the design and the development of software
families. Reusability is a key concept in the SPL engineering: it
captures the information available in the environment of the
application and uses it in the development of related products
while managing variability. Consistently with [2] [3] [4] [5]
variability is defined in the rest of this paper, as the variation
between systems belonging to a Product Line (PL) in terms of
properties and qualities.

Since their introduction by Kang et al. [6], there has been a
continuously growing number of SPL modeling languages.
Through the years, several research papers and articles have
reviewed and analyzed them from different aspects, and for
different purposes. For instance, [34] proposes an evaluation
framework for comparing Product Line Architecture design
methods; [35] synthesizes and assesses the evidence regarding
the effectiveness of proposed solutions, which resulted into a 12
categories comparative study; [13] presents a comparative
framework for evaluating notations for requirements variability
modeling. An evaluation of SPL modeling languages was held
in [37], where Moreno-Rivera and Navarro report a systematic
review (SR) of SPL approaches. Sinnema and Deelestra [38]
introduce a classification framework of six variability-modeling

techniques [39] provides an overview on the topics and trends of
software variability management. Czanecki et al [41] compare
feature models to decision models in a 10 dimension
comparative study. Chen & Babar [42] propose a structured
systematic literature review of variability management
approaches [40] summarizes major research achievements in the
field of SPL engineering and variability modeling using a
standardized software product line framework.

This paper relies on these research papers to elucidate a wide
range of selection criteria for SPL languages. The goal is to
provide a guide for product families’ engineers and developers
that helps them choose a SPL modeling language according to a
list of significant requirements defined along those criteria. We
discuss and analyze how does each method scores, in terms of
maturity, variability modeling, ease of use and update.

Section 2 describes the methodology and presents a
panorama of SPL modeling languages. Section 3 presents the
proposed practical guide for the selection of SPL modeling
language. The paper concludes with a structured discussion on
the strengths and weaknesses of each modeling language
analyzed in the paper according to a group of criteria selected
from the guide.

II. METHODOLOGY

The methodology we used to select SPL modelling

languages and analyzed them is a mix of literature review and

subjective qualitative analysis. As Figure 1 shows it, the

practical guide was produced in 5 steps, the first 3 for selecting

modeling languages, the last 2 to analyze them.

Conference and journal papers were selected from a wide
range of computer science databases. The first goal was to
identify primary studies of the software product lines modeling
languages. During this activity we explored the IEEE Digital
Library, ACM Digital Library, Science@Direct, MetaPress,
Wiley InterScience, and Google Scholar. The work was not

Ressources collection

SPL modeling languages collection

Selection of modeling langugages

Definition of the comparison criteria

Comparaison and analysis of the selected languages

A practical guide

1

2

3

4

5

Figure 1 : Paper methodology

conducted as a systematic literature review as exhaustivity was
not a major concern at this stage of the research project.

In order to get a meta view on SPL modeling languages, we
selected papers that report state of art, literature (systematic or
mapping) reviews, and surveys on SPLs as long as they were
relevant to our preliminary reading and study. These papers were
used as a reference (a) to detect a large collection SPL modeling
languages, and (b) to get a first understanding on how they can
be compared with each other.

The second step of our work aimed at describing
representative modeling languages. In addition to the papers
found in the earlier stage, PhD theses were used as input
references. Our approach for filtering these documents were:

 We selected methods from different paradigms (Feature
oriented, Object oriented and Family Oriented)

 We filtered the methods that had the most citations in
state of art papers, surveys and literature review papers

 We selected methods that address both domain
engineering and application engineering…

Last, we constructed a collection of comparison criteria for
SPL modeling languages. 4 categories of criteria were defined:
maturity, variability modeling, ease of use and update
possibilities, and applied to the SPL modeling languages
identified during the earlier stages of the work.

III. SURVEY OF SPL MODELING LANGUAGES

In the past 25 years, more than SPL 50 modeling languages
have been developed. Figure 2 presents a panorama of some of
these notations in a 2 dimensional framework structured around
time (vertical dimension) and conceptual proximity (horizontal
dimension). We chose to put forward 6 particular languages that
we found presentative either for their basic concepts, or for the
engineering processes or tools that go along with them.

Figure 2 : SPL modeling languages

A. FODA

Feature Oriented Domain Analysis (FODA) is a domain
analysis method [6] in which requirements are expressed under
the form of features, which are used as the basic building blocks
to specify similarities and differences between products of a
family. In FODA features are used both to describe domains and
to configure products. The extent of a domain is defined through
domain analysis where the target collection of products is
specified by intent in a structured diagram that combines features
with dependencies.

Domain models make an explicit representation of some
common features and all variable features of a family of
products. Domain entities are selected from the application and
domain knowledge, through a context analysis. They are then

described in feature models with constraints that are specified
either by dependencies described as feature-to-feature links, or
textually when the graphical representation is not powerful
enough to express them. In order to achieve this, variability and
commonality are modeled in a functional model. Then, the
structure of the software implementations is established in the
architecture modeling phase, where a set of architectural models
for building application are shown in the form of packages.

B. FORM

Feature Oriented Reuse Method (FORM) [7] is a method

that focuses on capturing commonalities and differences in

terms of features and uses the analysis results to develop

architectures and domain components. Domain objects are

collected in domain engineering phase and can be prepared for

reuse in the development of applications for a given domain in

the architecture modeling phase.

C. FeatuRSEB

FeatuRSEB [8] is a method that combines FODA and RSEB
(Reuse-Driven Software Engineering Business) by integrating
the features model of FODA and the use cases of RSEB [9].
RSEB is a process that guides systematic reuse based on UML,
which is used for modeling variability. The domain scoping and
the choice and definition of the requirements are determined
during the Domain Analysis phase. The process of FeatuRSEB
includes the construction of a use case diagram for the product
line simultaneously with feature model development. The use
case diagram includes the list of the domain actors and the
features model.

D. PLUSS

Product Line Use case modeling for System and Software
Engineering (PLUSS) [10] is also an approach that combines the
use of features models with use case diagrams to illustrate the
point of view of a high-level product family. In PLUSS, all
changes are managed using a common feature model that
provides a complete overview of all the variability is the use case
model. After collecting information through questionnaires or
documentation, the requirements analysis comes, to describe the
interactions between the system and actors. The product family
requirements are captured in a use case diagram, and variability
within this family is injected in the features model. Information
concerning the types of features are then added, for example in
use case scenarios.

E. ODM

Organization Domain Modeling (ODM) [11] focuses
primarily on domain engineering for existing systems. However,
it can be applied to the specification of requirements for new
systems too. The engineering process of ODM starts with
scoping and planning the domain. The possible combinations of
features are specified in the domain modeling phase. First by
capturing the semantics, then by modeling features that indicate
commonalities and differences within a family of products, and
finally by generating a list of profiles.

F. FAST

The purpose of Family-Oriented, Abstraction, Specification,
and Translation (FAST) [12] is to make the software engineering
process more effective by reducing the work redundancies and
decreasing production costs and access times. Domain Engineer
develops and acquires the basic assets of the product line, then
the application engineer generates application systems that adapt
to the customer needs.

The next chapter presents the propose guide. We first present
our original list of criteria, then show how they can be used by
comparing the 6 languages selected and presented above.

IV. THE PROPOSED GUIDE

The guide was constructed around a list of criteria similar to
[13]. This list is the basis of our analysis and comparison; it
discusses the maturity of the SPL modeling languages, the
guidance of the modeling activity, the ease of use and the
possibilities of evolution.

A. Criteria
The performance of a SPL modeling languages can be

evaluated according to different perspectives. In the following,
we elaborate a list of criteria that provides a common ground for
comparing and analyzing these languages.

1) Category:Maturity

This category aims to indicate the maturity of a particular

modeling language according to:
- Fields of application: to distinguish the ones designed for a
specific area from more generic ones.
- Extensions: to determine if the modeling language aroused the
interest of other researchers.
- Roots of the method: The maturity also depends on the research
organization from which it originated. Some modeling
languages are more developed than others because they are
carried out by SPL specialists.

2) Category: Variability modeling

Variability is the keys concepts of SPLs, that is why the ways

this variability is modeled by the different languages is

something to take into consideration. In this category, we will

shed some light on the following:
- Dependencies: The features of a product line are linked and
each influences the behavior related features. Adding or
changing these features must be managed so as not to affect the
simplicity and relevance of the full model.
- Identification of variability points: The method uses diagrams
or models in which the modeling of the variability is supported
- Conflict Resolution: The method must be able to manage
conflicts between the requirements. And must be able to prove,
at any time, the choice of a particular feature among others.

3) Category: Using the approach

The availability of information about a SPL is crucial for its

comprehension, tool support is also needed for implementation.

This category exposes:
- Readability: The feature model is a reference. It is consulted
by the various stakeholders, thus, it should be easy to read,
understand and apply.
- Simplicity: The user needs should be represented and
comprehensible with the minimum of objects
- Technical Support: The modeling language must manage
requirements and model the variability through mature tools.
- Documentation: The documentation is paramount in choosing
the appropriate language. This manual should be consistent and
clear in describing the language.

4) Category: Update

Due to its constant evolution, a SPL language has to take into

consideration these parameters:
- Evolution: An SPL has a very dynamic nature, the
requirements are constantly redefined. The template update
method should be possible via the addition of new requirements
if necessary.
- Adaptability: The model must be able to meet the specific
needs of each context.
- Scalability: The model must allow for large scale systems
modeling

B. Analysis and discussion

In the following chapter, we will compare FODA, FORM,

FeatuRSEB, ODM, PLUSS and FAST. This comparison will be

based on maturity, variability modeling, ease of use and update.

Figures 3, 4, 5 and 6 recapitulate the results.
The notations +++, ++, +, / and – carry the values 3, 2, 1, 0

and -1. The most advanced modeling language following a
certain sub-criteria is rewarded with a +++, and so on until the
least one represented with a -. The / is a neutral judgment, It is
the equivalent of 0. The argumentation behind this notation is
undertaken in the discussion.

1) Maturity

Since its initial development, the FODA method has boosted
productivity and research in the field of product lines. The
relevance of this modeling language and its ability to model,
manage and make use of reusable elements has been shown
through several projects [14] [15] [16] [17] [18] [19] [20] [21]
[22]. Other methods have emanated from FODA. One of these
methods is FROM, which fundamental observation is that
FODA is very focused on domain engineering, but does not gie
much details on actual reuse. FORM was also applied to several
projects [23] [24] [25] [26].

FeatuRSEB is also a descendant of FODA. It was the first to
introduce UML concepts in the expression of variability. Since
its creation, in 1998, FeatuRSEB gave birth to several extensions
including HyperFeatuRSEB and FeatuRSEB/sys, and also
inspired researchers to complement features models and FODA
notations by the UML diagram [27]. PLUSS was one of the
many methods that came afterwards, and used UML notions to
complete the expression of variability. This method was also
applied to some projects [28] [29].

ODM was originally developed as a design phases of the Reuse
Library Framework (RLF) [30], it was then developed and
applied on a small project within Hewlett -Packard, as part of
the Air Force CARDS program. This method was further refined
at Unisys Corporation and was applied to the STARS program
[31]. Several stakeholders contributed to the development of this
method making it one of the most mature.ng

2) Variability identification and representation

FODA models variability through mandatory, optional and

alternatives features, and describes the importance of each of

these features via a “Rationale”, thus determining their

priorities and justifying their selection. The "Rationale" is an

information related to features under the form of an attribute,

which allows for the selection or not of the feature in a given

context. Conflict resolution through "Rationale" also takes

place in the ODM, in the interpretation model, but is not

considered in the remaining methods. The relations which

connect the features of a product line are described in the

features model. Vertical dependencies (Requires and exclude)

that connect features belonging to different levels of the tree of

the feature model are supported by FODA, FORM, FeatuRSEB

and PLUSS. The horizontal dependencies which describe the

relations between features that belong to the same level are

operated by FORM (Composed of and generalization) and by

FeatuRSEB (refinement). FODA is particularly suitable for the

construction of reusable elements and modeling variability

through the features and functional models. Features models are

effective in modeling variability points, that’s why all the

methods make use of is. It is often accompanied by additional

diagrams. It has even been proven in [32] that the FODA

original features diagrams called OFD, are the most complete

and that the proposed extensions, even though complete the

basic model, do not add much expressiveness.
The variability can also be expressed through UML diagram,

like in FeatuRSEB and PLUSS. In FeatuRSEB, the variability
points are expressed in the use case diagrams. A features model
is connected to the UML diagram thought, offering a panoramic
view of the SPL. In PLUSS, the features model provides a high-
level view of the variability in the product family. FAST
documents the variability in a written document.

3) Use of the approach
The FODA formalism is intuitive, precise and unambiguous,

as confirmed by Gliss [33]. The great popularity of the method
is in part due to its ease of use. All methods facilitate the
expression of user needs and the overall understanding of the
product line through diagrams with which the user is familiar,
such as the feature model, the use case diagram or the concept
model.

In terms of simplicity, the FODA features model is the
simplest and lightest. FORM is simple, if not the lack of clarity
in the mapping between the features model and the final
architecture of the SPL. FeatuRSEB and PLUSS combine the
use of features models with UML diagrams, something that
facilitates modeling on one side and the understanding of it by

Figure 4 : Variability Matrix

Global rates
Global rates

FODA

FORM

FeatuRSEB

ODM

PLUSS

FAST

Dependencies Variability
identification

Conflict

resolution

++

+++

+++

/

++

/

+++

+

++

++

++

+

+

-

-

+

-

/

6

3

4

3

3

1

FODA

FORM

FeatuRSEB

ODM

PLUSS

FAST

Domaines of

application
Extensions Roots of the

method

+++

++

+

+

++

++

+++

+

++

/

/

/

+++

++

+++

+++

++

+++

9

5

4

4

4

5

Figure 3 : Matrix of maturity

Figure 2 : Update Matrix

the final user on the other side. Finally, ODM is very
comprehensive but complex; several models are connected, one
complementing the other which makes the reading of the overall
a bit complicated. The use of the methods and their extensions
is simplified by numerous support tools. They manage the
features models, the features combinations and configurations.
The available documentation for each method is a considerable
asset. The better the process of a method is explained and
detailed, the easier it is for a user to build the SPL. In our
research, we found that FODA, FORM and ODM are clearly
described, handy and very complete. The diagrams used in the
modeling are defined and applied to some examples. Same goes
for the engineering process followed and the key concepts.

FeatuRSEB, PLUSS and FAST are described in specialized
articles, concise but short. The detail required for a proper
assimilation is hardly collected.

4) Update

As features may change, features models are also subject to
change by including new features or changing the nature of
existing ones. FODA and FeatuRSEB do not keep track of the
changes reported to the features model, evolution is thus not
supported by these methods. In FORM, ODM and PLUSS, new
features can be injected through additional models. In ODM for
example, after completion the domain modeling, further
measures of development can be injected to the integrated
domain model. In PLUSS, the product instantiation is done by
adding new requirements to the use case. In FAST, the evolution
plan is deduced from the analysis of similarities.

For its setting, FODA and FORM keep a generic model,
applicable to different contexts. The components are adapted by
instantiating the parameter values. To be able to keep the same
performance for all levels of magnitude, FODA and FORM
allow vertical scalability, the latter method also supports
horizontal scalability. In FeatuRSEB and PLUSS, scalability is
supported because the configuration is not made in the use cases
model, thereby avoiding congestion and allowing the modeling
of large systems.

V. CONCLUSION

The number of SPL modeling languages has multiplied
consequently, making the task of choosing a particular one very
complex. The purpose of this paper is to provide the SPL
engineer with a practical guide, which helps select the
appropriate modeling language depending on his interests and
final goals. Also, to help him in his search for existing work on
SPL, we presented a panorama of more than 50 SPL modeling
languages in their chronological appearance. 6 among them
were filtered for a brief review: FODA, FORM, FeatuRSEB,
ODM, PLUSS and FAST. For each method we described the
global goal, the engineering process and the variability modeling
diagrams.

Our practical guide composed of a 4 groups criteria:
maturity, variability modeling, ease of use and update. Each one
of these is once again composed of 3 to 4 criteria, subject to
discussion. We analyzed and compared the selected methods
cited above, and were able to point out the strengths and
weaknesses following a distinct criterion, hence attributing for
the SPL modeling language, a score according to a specific
criterion. The outcome of this analysis is collected and
represented in a Radar Chat, as presented in figure 7.

 ²
Figure 7 : Results of the analysis

Depending on the final user requirements and expectations, the

SPL engineer can inject weights into a certain axis. For example

if the user intends to evolve and expend the SPL over time, then

the update axis takes over with a representative coefficient. If he

wants to model variability using the lightest and most

straightforward approach, in this case, the ease of use will be

represented with the highest weight, and so on.

As a result of this work, the engineer can now easily choose

methods from the panorama we presented in the first chapter,

and compare them following our guide for better performances

for the end user.

-2
0
2
4
6
8

10
12
Maturity

Variability

Ease of Use

Update

FODA Form FeatuRSEB

ODM PLUSS FAST

Global

rates

FODA

FORM

FeatuRSEB

ODM

PLUSS

FAST

Evolution Adaptability Scalability

+

+

-

-

/

+

+

+

+

/

+

/

1

3

-1

0

2

2

-

+

-

+

+

+

Figure 5 : Ease of use Matrix

Lisibility Simplicit
y

Technical
support

+++

+

++

++

++

/

++

++

++

+

++

++

+

++

11

7

9

9

9

3

Documentation

+++

++

+

++
+

+

+

+++

++

++

+

++

++

+

/

FODA

FORM

FeatuRSEB

ODM

PLUSS

FAST

Global

rates

REFERENCES

[1] Donohoe, P. (2014). Introduction to Software Product Lines (Slides).

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

[2] Babar, M. A., Chen, L., & Shull, F. (2010). Managing variability in software

product lines. Software, IEEE, 27(3), 89-91.

[3] Stephen Creff .(2013) Une modélisation de la variabilité multidimensionnelle

pour une évolution incrémentale des lignes de produits. Software Engineering.

Universit´e Rennes 1. French.

[4] Bosch, J., Capilla, R., & Hilliard, R. (2015). Trends in Systems and Software

Variability. IEEE Software, (3), 44-51.

[5] Galster, M., Weyns, D., Tofan, D., Michalik, B., & Avgeriou, P. (2014).

Variability in Software Systems—A Systematic Literature Review. Software

Engineering, IEEE Transactions on, 40(3), 282-306.

[6] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S.

(1990).Feature-oriented domain analysis (FODA) feasibility study (No.

CMU/SEI-90-TR-21). Carnegie-Mellon Univ Pittsburgh Pa Software

Engineering Inst.

[7] Kyo C. Kang, Sajoong, K., Jaejoo, L., Kijoo, L., Euiseob, S. Moonhang, H.

(1998) "FORM: A feature-; oriented reuse method with domain-; specific

reference architectures." Annals of Software Engineering 5.1: 143-168.

[8] Griss, Martin L., John Favaro, and Massimo d'Alessandro. (1998) Integrating

feature modeling with the RSEB. Software Reuse, 1998. Proceedings. Fifth

International Conference on. IEEE.

[9] Jacobson, I., Griss, M., & Jonsson, P. (1997). Software reuse: architecture

process and organization for business success (Vol. 285, p. 286). New York:

acm Press..

[10] Eriksson, M., Börstler, J., & Borg, K. (2005). The PLUSS approach–domain

modeling with features, use cases and use case realizations. In Software

Product Lines (pp. 33-44). Springer Berlin Heidelberg.

[11] Simos, M., Creps, D., Klingler, C., Levine, L., & Allemang, D. (1996).

Organization domain modeling (ODM) guidebook version 2.0.

[12] Weiss, D. M., "Commonality Analysis: A Systematic Process for Defining

Families," Second International Workshop on Development and Evolution of

Software Architectures for Product Families, 1998.

[13] Djebbi, O., & Salinesi, C (2006, September). Criteria for comparing

requirements variability modeling notations for product lines. In Comparative

Evaluation in Requirements Engineering, 2006. CERE'06. Fourth International

Workshop on (pp. 20-35). IEEE.

[14] Zawoad, S., Mernik, M., & Hasan, R. (2014). Towards building a forensics

aware language for secure logging. Computer Science and Information

Systems, (00), 51-51.

[15] Georghiou, A. E., Davis, A., Eskandari, F., & Paulin, M. (2015, March).

Extending Conventional Pipe-Soil Interaction Models to Include Bundle

Effects for Arctic Subsea Pipeline Design. In OTC Arctic Technology

Conference. Offshore Technology Conference.

[16] Kaur, P. K. (2014). Mobile Media SPL creation by Feature IDE using

FODA.Global Journal of Computer Science and Technology, 14(3).

[17] Barreiro, P. S., García-Saiz, D., & Pantaleon, M. E. Z. (2014). Building

Families of Software Products for e-Learning Platforms: A Case

Study.Tecnologias del Aprendizaje, IEEE Revista Iberoamericana de, 9(2), 64-

71.

[18] Karol, S., Heinzerling, M., Heidenreich, F., & Aßmann, U. (2010, September).

Using feature models for creating families of documents. In Proceedings of the

10th ACM symposium on Document engineering (pp. 259-262). ACM.

[19] Ge, X., Paige, R. F., & McDermid, J. A. (2009, October). Domain analysis on

an electronic health records system. In Proceedings of the First International

Workshop on Feature-Oriented Software Development (pp. 49-54). ACM.

[20] Huron, M. A. (1997). The Army Tactical Command and Control System.

Naval Postgraduate School Monterey CA.

[21] Vici, A. D., Argentieri, N., Mansour, A., d'Alessandro, M., & Favaro, J. (1998,

June). FODAcom: an experience with domain analysis in the Italian telecom

industry. In Software Reuse, 1998. Proceedings. Fifth International

Conference on (pp. 166-175). IEEE.

[22] Mathias Filho, I., de Oliveira, T. C., & de Lucena, C. J. (2002). Domain

Oriented Framework Construction. Enterprise Information III, 3, 171.

[23] Horváth, L., Rudas, I. J., & Tar, J. K. (2003, June). Robot assembly trajectory

generation using form feature driven robot process model. In Industrial

Electronics, 2003. ISIE'03. 2003 IEEE International Symposium on (Vol. 2,

pp. 707-711). IEEE.

[24] Sarfraz, M. (Ed.). (2004). Geometric modeling: techniques, applications,

systems and tools. Springer Science & Business Media.

[25] Choi, B. W., Jang, K. B., Kim, C. H., Wang, K. S., & Kang, K. C. (1999).

Development of software for the hard real-time controller using feature-

oriented reuse method and case tools. In Computer Aided Control System

Design, 1999. Proceedings of the 1999 IEEE International Symposium on(pp.

126-131). IEEE.

[26] Roško, Z. (2014) Case Study: Refactoring of Software Product Line

Architecture-Feature Smells Analysis. In Central European Conference on

Information and Intelligent Systems (pp. 326 of 344)

[27] Yu, W., Zhang, W., Zhao, H., & Jin, Z. (2014, September). TDL: a

transformation description language from feature model to use case for

automated use case derivation. In Proceedings of the 18th International

Software Product Line Conference-Volume 1 (pp. 187-196). ACM.

[28] Bosch, J. (2000). Design and use of software architectures: adopting and

evolving a product-line approach. Pearson Education.

[29] Kollu, K. R. (2005). Evaluating The PLUSS Domain Modeling Approach by

Modeling the Arcade Game Maker Product Line (Doctoral dissertation, Umeå

University).

[30] McDowell, R., & Solderitsch, J. (1990, January). The Reusability Library

Framework. In Proceedings of the Unisys Defense Systems Software

Engineering Symposium.

[31] Simos, M., Creps, R., Klingler, C., & Lavine, L. (1995). Software Technology

for Adaptable Reliable Systems (STARS). Organization Domain Modeling

(ODM) Guidebook, Version 1.0 (No. STARS-VC-A023/011/00). Unisys

Defense Systems Reston VA.

[32] Bontemps, Y., Heymans, P., Schobbens, P. Y., & Trigaux, J. C. (2004,

August). Semantics of FODA feature diagrams. In Proceedings SPLC 2004

Workshop on Software Variability Management for Product Derivation–

Towards Tool Support (pp. 48-58).

[33] Griss, M. , Favaro, J. d'Alessandro, M. (1997) Featuring the Reuse-Driven

Software Engineering Business. CASE Methodologist.

[34] Matinlassi, M. (2004, May). Comparison of software product line architecture

design methods: COPA, FAST, FORM, KobrA and QADA. In Proceedings of

the 26th International Conference on Software Engineering (pp. 127-136).

IEEE Computer Society.

[35] Babar, M. A., Chen, L., & Shull, F. (2010). Managing variability in software

product lines. Software, IEEE, 27(3), 89-91.

[36] Ferré, X., & Vegas, S. (1999, June). An evaluation of domain analysis

methods. In Proceedings 4th CAiSE Workshop on Exploring Modelling

Methods for Systems Analysis and Design

[37] Moreno-Rivera, J. M., & Navarro, E. (2011, January). Evaluation of SPL

approaches for WebGIS development: SIGTel, a case study. In System

Sciences (HICSS), 2011 44th Hawaii International Conference on (pp. 1-10).

IEEE.

[38] Sinnema, M., & Deelstra, S. (2007). Classifying variability modeling

techniques. Information and Software Technology, 49(7), 717-739.

[39] Bosch, J., Capilla, R., & Hilliard, R. (2015). Trends in Systems and Software

Variability. IEEE Software, (3), 44-51.

[40] Metzger, A., & Pohl, K. (2014, May). Software product line engineering and

variability management: achievements and challenges. In Proceedings of the

on Future of Software Engineering (pp. 70-84). ACM

[41] Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., & Wąsowski, A.

(2012, January). Cool features and tough decisions: a comparison of variability

modeling approaches. In Proceedings of the sixth international workshop on

variability modeling of software-intensive systems (pp. 173-182). ACM.

[42] Chen, L., & Babar, M. A. (2011). A systematic review of evaluation of

variability management approaches in software product lines. Information and

Software Technology, 53(4), 344-362.

