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In this paper we try to give some contributions, in order to 

solve the problem of system identification (or minimal realization), for 

various classes of systems. In order to give some more insight into this 

problem, we shall define some abstract versions of the minimal realization 

process. The models we discuss are used for the study of subsets (or . 

subcategories)in which theveexists the minimal realization and it is unique.

In section 1 we recall the minimal realization problem and some 

of its properties.

Section 2 develops the first model, which is based on equivalence 

relations. The sets which support minimal realization are in connection with 

the systems of ropresentants of an equivalence relation. This model cores- 

ponds to the external behaviour point of view.

In section 3 we give a model based on ordering relations. This version 

corresponds to the qualificative “minimal". 6oth models in sections 2 and 3 

include systems identification. This is not however, the only example ; one 

can find other, as the "integer part" function and the '’congruence modulo n".

The most powerful model seems to be the categorical one5 which is 

introduced in section 4. The admissible subcategories are those one for which 

the inclusion functor aumits an adjoint.

Some conclusions and further developments of the subject are discus

sed in the last section.
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The problem of system identification (or minimal realization) is 

of great importance in studying various classes of systems. Usually this 

problem states as follows ; given some behaviour, one looks for a system 

(in some class) which have this behaviour and whose characteristics are the 

best ones, in some sense to be specified. The term "minimal", for example, 

denotes some "optimality" of structure", of the system under consideration.

This problem was put first for linear systems, and then generalized 

for deterministic dynamic systems (see f 2 ] ).

Later on, the categorical approach to systems theory permitted to 

include a broad class of systems, as probabilistic or fuzzy systems (see [1] ) 

Somenrinioal realization theorems were proved, such that in some special condi

tions the minimal realization exists (sea £3 j, [6 ] ).

In recent years (see [ 9 ] ) there was proved that an equivalence 

exists between the category of reachable systems with a given behaviour, and 

some category of equivalence relations on the input space. In this way, the 

minimal realization corresponds to the Nerode equivalence (a wellknown result ). 

The new fact is that this equivalence is the supremum of all otber relations 

in that category.

Thinking at the minimal realization at someprocess of "best approxima

tion", we can restate this problem and generalize it. If the class of all 

dynamical systems is given, we shall look for the identification of a system 

in a given subclass which will be the "best one".

In the next sections we shall describe three models of general system 

identification. These models will include classical minimal realization, but

1 - Introduction
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also other situations, as rings of equivalence classes, for example.

We shall briefly skttch the minimal realization problem for dynamic 

deterministic systems.

Such a system will be a complex

^ X, U, Y, s s p , XqJ 

where X, U, Y are arbitrary sets called, respectively, the state-space, 

Input-space and output-space.

The dynamics 5 is a map fi : X x U — ^ X, and the output function 

is 0 : X --- > Y.

The system is initialized, and xQ e X is its initial state.

We can build the category of dynamical systems, denoted by S . The objects
ys

of SyS will be systems $  as above. A morfism between two systems S^ and

S2 will be a triple $ = (u, v, w). More explicitely, if

Si * Uj, Yj, 5 i» Xq | , i = 1, 2, then u : Xj ----- ^ X2,

v : Uj— w : Y^ — ^ Y2 are usual functions, such that the diagrams

1 ?
aracomutative, and u (Xq ) = x^

Briefly, morphisms between systems, must comute with dynamics and output 

maps, and preserve the initial states.

Usualy the dynamics j of a system ¿P is extended to an action of the 

free monoid U on the state space X. This extension is making recursively, 

by 1) 6 (x,A) = x, (V) x eX

2) s (x, ee) = 8 ( 6(x, e) e ')» (V) x e x, e , e ' e u*
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We can build the reachability map Ô :
0

6 : U * ---- > Xs 6X ( 6 ) *6(x0, 6 )
xo x0

and the response map from initial state Xq :

f : U*---- x Y, fxQ = § ofi
xQ u xQ

Here Xq is a fixed in X ; thus generally, we have a family of responses 

(fx) x e X.

The reachability map gives all states tbe system can reach, after receiving 

inputs, starting from Xq .

The response map gives the output of the system, which starts in Xq . It is 

also called the external-behaviour map.

A system vP is reachable (from xA) if is surjective.
u Xq

A systemOPis observable if the map xi— >f is injective. Thus, observing
"TJ ~ 11 " A

the output, we can rediscover the initial state.

What we have sketched above, is called the- passage from the internal des

cription of a dynamical system, to the external description.

Thinking at a system as a model of some physical process, one may say that

obtaining f„ means a simulation of that process.
0

In practice however, we have merely given an external behaviour, and want to 

build a system. We shall refer to this problem as to modelling.

The system we are looking for «mist be, of course, connected with the given 

external behaviour. The first condition is that the unknown system must have 

the same behaviour as that given one, starting from some initial state. This 

condition is however discutable, since we may look for a system with a beha

viour "very closed“ to the given one. The next condition is that we look for 

a system which must have some "optimality of structure". In precise mathematical 

terms, this •'ptiraàlity is achieved by looking for reachability and observa-
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bility. This condition is also discutable because, at least for complex 

systems, it would be better to ask for some weak reachability (see (12 ] 

for details).

We shall, however, describe here the classical minimal realization, 

which gives a rechable and observable system (see[2] ). This problem is 

also reffered to as system identification (see [13] ).

Suppose given a function f : U* — ^ Y which describes the external 

behaviour of some process (i.e. input-output relationship). We have then : 

Theorem : There exists a dynamic system

such that

1) fv = f(i.e. the behaviour of is f)
*0 i r

2)<ff is reachable from Xq and observaole

Proof : The prouf can be found in [2] anu will be omitted here. We mention, 

however, that Xf is obtained via the Nerode equivalence in U* :

u ez < ^ >  f(0f) = f(6£)t (V) e € u*  

and Xf = U*/ the quotient set.

We remember again that system CPf is "the best one" with the behaviour f.

The above result can be put into a categorical framework, considering the 

category of behaviours and the category of systems. In this way, a deepest 

result says that there is a pair of adjoint functors between these categories 

(see [7'J ).

In the next sections we shall generalize minimal realization, lie shall 

describe some abstract models for the process of obtaining special system. 

These models are based on equivalence relations (section 2), on orderings 

(section 3), and on category theory (section 4). These are some points of



view of identifying systems in a given class.

I - Relational models

I-Je shall describe in this section, a relational model for system 

identification. This niudel, as its name says, is based upon equivalence 

relations. Our version starts with Zadeh's definition of a system identifica 

tion : " the determination on the basis of input and output, of a system 

within a specified class of systems, to which the system under test is 

equivalent 11 (see [13] ).

The formulation below is also connected with a paper by Gaines [5] . 

Let us suppose a pair (X, R) where X is a set, and R an equivalence 

relation in X.

Definition : An admissible subset is A C X with the property :

(V  ) x e X (3 ) a e A, a R x

Je shall denote by t/|(X) the set of all admissible subsets of X.

In which follows, we shall try to characterise the admissible sets,

i.e. elements of$$(X). First, some simple remarks :

1) X e <&(X)

2) A e ¿ft(X), 3 3  A 3 e $(X)

We shall prove now that each admissible set contains an admissible subset, 

which is the "best one", in some sense :

Theorem : For each A e £%(X) there exists AQe t%(X)> Ag c. A with the pro

perty a, b e Aq z i )  a ft b



- 7 -

Proof : Let us consider A / R, the quotient set (in fact, R  is replaced by 

the equivalence induced by R on A), k'e shall select one and only one element 

from each equivalence class ae A / R .  The collection of the obtained elements 

will be denoted by Ag3 and, of course, Ag C  A. It is also obvious that ( V  ) 

a» b e Aq .p a ^ b, since a and b belong to different classes. Je must 

prove that A g  e (X). If x e X, thc’e is a e A, x R  a, thus x e §, 3 e A / R .  

But in A g  we a'’"eady hav-' - Bn eUr.icnt a, say ag e A g .  It results that 

x, aQ e a, thus x R ag, and the proof ends. We shall give now two examples 

of this abstract identification model. The first one will be, of course, the 

minimal realization for deterministic systems.

Example 1. Let us suppose that Sys is t;te class of all deterministic systems, 

as in section 1. For^f eSys, we shall denote by fp its external behaviour, 

from initial state of Of • Let us note that we do not start from a behaviour, 

and look for a system. Our identification problem will be : starting from a 

system, to find an "optimal system" with the same bahaviour. Let us consider 

the pair (Syst, R )  where R  is the equivalence relation defined by :

$  .¿f' « Sys, ¿ P R # '  £ = $  f y = f*,,

Let us denote now, by Sys (r, c) the subclass of reachable and observable

systems, Sys (r, 0) c  Sys. We think that e Sys (r, 0) is reachable

from its initial state. The classical minimal realization theory says now,

that Sys (r, 0) is an admissible subclass of Sys. In otiier words-

(V)^p eSys — \ (3 ) ¿p e Sys(r, 0) f v = f and is the ruini
n' ¿fa m

mal realization of ¿P.

We mention that each class of systems <? , Sys(r, 0)c C. Sys, will be also 

admissible ; we can think, for example, at some weak concepts of reachability 

and observability.



Example 2 : This example will be different in nature, and it will tell us 

in a way, about the limits of this identification model, 

we shall consider^ the set of integers, and R the congruence modulo n, 

n ^  2 : p, q e 1L, p 5 q (mod n) n | p-q

An aamissible subset is])f = |o, 1, 2,...j the set of natural mumbers. The

set JW = 11, 2.....I is not admissible.

We can apply the above theorem, in order to obtain 'minimal" admissi

ble subsets. For example, JNq = |09 1» 2, n-lj Cj>f is admissible, 

and p, q e JDN'g — N p $ q(mod n). Another admissible islf^ n+l,...2n+lj

It is well known that the elements ofllfg ara a system of représentants for 

the equivalence * (mod n), anu H I -  (mod n) =2&n = ̂ Q 1»...> n- l| 

Corollary : For A e (X) and AQ as in the above theorem, we have

( V  ) x e X z=^. ( 3 ) a e Aq, unique, x R a 

Proof : obvious

de may call this unique a, the minimal realization of x.

We shall prove now a theorem which characterizes admissible subsets.

It will relate A e c^(X) and the sections of the canonical ¡nap X — ^X/R.
■f  ̂

de say that a function i'l--- > N is sectionable, if there is a func

tion N ---such that f 0 g = 1̂ ; we shall call g a section of f.

It is clear that a section is a right inverse for f.

tie shall denote by <7̂0(X)C cft(X) the "minimal" admissible sets i.e.

<$yx) = | à C  X / (V) X e X  = ± }{ 3 ) a e A, unique, x » a j 

Theorem : There is a bijection between 3^Q(X) and the set of allisections 

of X ^  ) X/R.

Proof : Let us denote by Sec =-̂ s/ s: } Xj 0 s = *x/R^ ’



vie shall build two maps :

(x) .'> Sec

i

such that o f  = id, 'f0 o = id

If A e c%0 (X), it is clear that x fl A contains a single element, for each

x e X/R. Let xO. A =  ̂a^. J'e define (A) = s^, s^ : X/R----^ X,

SA(x) = ax.

hs ip (s.^X) ) = v» ( O  = S¥ = x, it results that $  is well defined.
r i a A <■

Let now s e Sec , we set -(Jr (s) = Im s = s(X/R).

We prove first thatir (s) ec^(X) ; for each x e X, as x e X/R, 

s(x) - a x e (s).

Since s is a section of <f 3 we have (s(x) ) = x m ^ v ?  (ax) = X r ) a x= x z ^ a ^ .  

This a is also unique , for example, if a R x, a' R x with a , a1 € iSr(s);
A X A a A JL

we have ax = s ^ ) ,  a'x = s(£2)-

But 5x = S'x : = } ) = ^(s(x2̂  ) ^  *1 = *2 = : 7> Gx = a'x*

We must prove now that (j> o Tjf = id, ̂  o = id. We have :

$ (f (s) ) . * 0  (Im s) = sIffl s.

As X 0 Irns = js(x) ] , it is clear that Sjms = s, and thus &  o^f - id.

.low f  ( <J> (A) ) = ijr (ŝ ) = Im SA = A, and thus ^  0 f = 1c*> an-i the proof 

ends. VJe shall see in the next sections that almost all models for system 

identification are related to such "right inverses".

Our relational mouel here is good to encompass with minimal realiza

tion anu also with other situations in mathematics. However, its structure is 

too poor, in order to obtain Jeep results.

.. 9 -
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3 - Ordering models

We shall develop here a model for system identification, which is 

based upon order relations. We shall not obtain, as a particular case, classi

cal minimal realization.

The motivation of introducing an ordering to replace the equivalence 

relation in section 2, is that we may look now for systems which “approximate" 

a given system, for example. This model will be well suited for identification 

of r.ondeterministic systems, where the concept of an equivalence is too 

powerful.

Such an ordering can also be thought as complexity , with preference 

for the less complex system ( see [5} )•

Hoping that no confusion can arise, our terminology here will be the 

same as in the previous section.

Let (X, be a pair, with X a set, and ^an ordering on X. 

Definition : An admissible subset of X is A C  X such that

Remark : For each x e X, the a„ is unique, after the definition above.
r A

We shall see later that such admissible subsets can exist, even if X is not 

complete lattice.

Let us denote by <fb (X) the collection of admissible subsets of X.

We may, of course, call aw « a (for each x e X), the minimal realization 

of x.

1) ( V  ) x e X ( 3 ) ax e A, x ^  ax

2) ( V  ) a e A, x ^  a = £  ax N a.

e A .
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At this level it is difficult to give conditions under which there exist 

admissible subsets. It is also difficult to determinate whether "minimal 

realizations" exist or not.

We shall however, give a theorem which relates d&(X) to the

existence of retracts for the inclusion map A ---^ X.

A function M — — > N is rectractible, if there is a function 

— — > M, suvch that g o f = ljj ; we call g a rectract of f. It is clear 

that a retract is a left inverse for f.

Theorem : The following statements are equivalent :

1) A e <ft(X)
i

2) there exists an isotone retract A ¿it* X , with i o ̂

Proof : 1) 2). From definition of A e cfc (X), let us set

<p ; x ----^ A, v?(x) = ax* It is clear that ^ o i = 1^, and

(i o y?) (x) = ax ^  x, thus i o ^ ^  lx> How v? is also isotone,

since x ^  y — v ax C  x ^  y* 8ut ax 4  anci ax e A 

ax ^  a , 1. e. (x) £  <p (y).

2) — ) 1). Let us suppose 2) true. If x e X, we set ax = ̂  (x) e A. 

From i o <p ^  lx it results that ax ^  x.

Let us prove that a e A, a ^  x ~zr=̂  a ^  ax-

As is isotone, a ^  x <*>(a) ^  <p (x), but >p (a) = v>(i(a)) = a

thus a (  a , and the proof ends.

This theorem, as it will be seen later, reflects an adjoint property 

between a pair of functors. The importance of such results resides in the 

fact that we can give global conditions in order to characterize admissible 

sets. These admissible sets are important, since they are subclasses in 

which "optimal models" exist.
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Example 1 : This example is theoretical, and will reflect the problem of 

finding admissible subsets. Let X =fR, the set of real numbers, and ^  the 

usual ordering. Then TL> C  IR, the set of integers, is an admissible su .set 

According to the above theorem, the retract <p is the "integer part function" :

<p : IR---^ (x) = [x]

we have denoted by [x]the greatest integer which is ^ t o  the given x « fR.

It easy to see that, if X is sup-complete, then each subset, which is sup- 

complete, is an admissible subset. This is obvious, since for such A cz X, 

x e X, we have ax = sup |a e A / a ^  x j e a.

Example 2 : Let X = (M) = |f / f : H ___> [o, l"|J, the set of all
fuzzy subsets of H. The ordering is ^ , defined by

f.y e ?  (¡0, ^  9(m)» ( V  ) m e  i

We choose A = = [f / f : fi — £  ̂0, 1̂ » the set of all subsets of ii

(identified with their characteristic functions).

As $•(•>) a complete lattice, and ^(¡¡) a complete sublattice, it 

results that^(ii) is admissible.

If we denote for each f £^(¡1), by A^ = £m c >1/ f(m) = 1^, then 

the "best approximation" for each f e^^i), is f ^  e fp (¡1) (the characteristic 

function of A^).

This is aasy to be proved, according to : 

f e ^(ii), sup £ g / y e cP(ii), g ^  f J - fpf. This example can be related 

to the problem of approximating fuzzy sets (see [10“|, [111 ). We shall now 

give an example, in order to apply this abstract identification model to sys

tems theory. Usually is quite difficult to define an ordering in the class of 

systems. The relations of " complexity" or "approximation" as given in [5] , 

are preordrings. Of course, the theory above can be restated in terms of 

preorderings we loose in that cas the uni city.
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Example 3 : Let us consider X = Sys, the class of systems. The ordering will 

be the "inclusion" of systems. More exactly, if ¿P =£xs U, Y, §, pj,

&  =jx', U', Y', s ', ¡5' j, we shall say that if is a subsystem of if :

X C  X'. U c  U\ Y C  Y'i 6 | XxU = 8,/f|x = 0. 

tie shall write if «f is a subsystem of ¿P*. It is clear that C  is an

ordering in Sys.

Let us prove that the class of reachable systems Sys(r) c. Sys is 

admissible.

If ¿P eSys, ¿P=jx, U, Ys S, let us consider the reachability

map 8 : U ---^ X. lie denote ty Xn = Im S = 5 ($, and consider the
x0 u x0 x0 

systero U, Y, 5q, /JqJ . The definitions of the dynamics Sq , and the

output map are as follows :

%• V u --- ^ V  5o  ̂ (x»u)

Q0; Xq --- ) Y , 0O (x) = 0(x)

and it is clear that these definitions are correct.

We also see that eSys(r), 3nd

Now, if ¿P' eSys(r), and ¿P'd &  » it is easy to prove that^'c

Thus ifj) is the "best approximation" of the system ¿f* by a reachable system.

It is clear that this example does not contain very much information ; it 

simply proves that our model of system identification works in some cases.

This example also proves that among admissible classes of systems, we 

can find those with important structural properties, such as reachability. This 

is in some sense* coherent with the model in section 2, even if we cannot 

call the above ^  the minimal realization of iP .
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4 - Categorical models

We shall describe in this section the last model for system iden

tification. This model is based on some concepts of category theory.

Our point of view will bea^ainto consider minimal realization of 

a dynamical system. We shall not speak about external behaviour, but we shall 

think at the "optimal structure model" assigned to a given model. In this 

way we shall manipulate only internal descriptions.

Let us remember first, some facts of category theory, which will be 

needed later.

If iS ana Ig'are two categories, a (covariant) functor from ^  into

Is F : ft__^ . This means an assignment l€|">|'e|(on objects), and, for

each A, 3 * J<g|, an assignment 6(A,B) ____ ^ ^ ’(FA, F8) (on morphlsms).

The following axioms are supposed :

1) F( 1A ) = lpA, for each A e

2) F( v o u ) = F (v) o F (u)

We suppose the reader already familiar with such concepts.

If £  - — A are two functors, a natural transformation from F to 6 

is <|) : F — ^6, a collection of morphisms ( ^A) ^ €|g|* ^

It is supposed that, for each A, B e j^and u e<g(A, B), the following 

diagram commuter :
FA ---- GA

Fu

FB ^  ^ GB

Such concepts as functors (transformations between categories), 

and natural transformations (transformations between functors), arise very 

naturally in many problems.

Gu
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We shall denote by Sets the category of sets.

Two functors &  — ^ (j’are isomorphic, denoted F ~  G, if there 
G -  — ■

exists a natural transformation : ^ ^  G3 e such that

is an isomorphism, for each A

rte shall speak now about adjoint functors, which will play an 

important role in the development of system identification models.

If ^  are categories, we can build the product category 

whose objects are pairs (A,B), A e 1191, 8 e |̂ S’|. The mprphisms are defined 

obviously.

If is a category, we shall denote its opposite (or dual) 

category by 'Q*?.

The objects of are the same as those of fc? , but the arrows 

(morphisms) are reversed.

Let now and two categories, ane. a pair of functors

^ —

We can buiK two functors :

^(•> G.) : <'G0f> x ^ ^  Sets 

^ ’(F.,.) : ^ of> x ^ Sets

such that, for example,(.,G.) (A,B) = ^  (a , GB). These functors are defined 

on morphisms in an obvious way.

Definition, mle say that G is a right adjoint to F (or F is a left a joint to G), 

if the functors £  (., G.) and^'(F-> •) are isomorphic.

We shall ^enote by

G r.a F ^  (., G.) ^  ^ ( F . ,  .)
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Examples of adjoint functors (or adjoint pairs) arise in many problems ; 

one may argue that each "natural construction" gives an adjoint pair of 

functors. We shall describe laters in an examples such a pair. For much more 

on category theory than we describe*., here» the reader may successfully 

consult [83 •

Our categorical model for system identification will be built by 

distinguishing some subcategories of a given category .

Definition : A realization subcategory of ^  will be such that the

inclusion functor > $  has a Teft adjoint ^ .

In the pair 3 we shall call G the realization functor

for each X e \^\ , GX e | cfej will be called the minimal realization of X.

rie shall later see that classical minimal realization of systems 

can be recaptured in this way.

Example : Let us restrict our attention to reachable systems. t\fter section 3 

we have seen that a system, even if not reachable, contains a reachable 

subsystem (its reachable part).

We shall consider Sys(r), the category of reachable systems. A mor

phism cP--- ^ ¿P will be a triple (u, v, w), with second component v

(which operates on input spaces) being surjective. More exactly, if U, U‘ are
*1

respectively, the input spaces of ¿P and , then v : U --- > U' is an epi-

mprphism.

Let Sys(r,o) be the subcategory of Sys(r), which contains reachable 

and observable systems. We shall prove that Sys (r, o) is a realization subca- 

tegory of Sys(r).

We must build the functor G : Sys(r) ---- ^ Sys(r,o) which will be

a left adjoint to the inclusion functor F : Sys(r,o) -----} Sys(r).
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For this purpose, lat^P elSys (r) | : <9 =| X, U, Ys 5 , (3 , xQ 

We shall define in X the equivalence relation :

X s X ' G. X„ Xrv X' < • ) fx = fx,

It is simple to prove that the system

with 5m : X/^ x U ---¿XA, , 8 m(xs u) = F ( x s u)

^m : » 'V*) = & (x)

is reachable an^ observable.

Thus ^ m "is the minimal realization o f ^  (all such minimal realizations of ¿P 

are isomorphic).

The functor G will be defined by G(^P ) = .

Let us remark that there is a morphism :

We may prove that the following universality property holds , for each system

Toprove this, let cc = (f, g, h), P= (?, g, h), we set g = g, h = h and ? 

results from the diagram :

where <p : X ---- X/,-̂  is the canonical map (see also section 1). Since

ljj is surjective5 is indeed a morphism in Sys(r).

morphism«^— &  which makes the following diagram commutative

?(*) » f(x) , (V  ) x e X/n, .
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To see that f is well-¿¿fined, let us prove that x ^  x' — \ f(x) = f(x').

As the equivalence in X means the equality of behaviours, we shall prove that 

fx = fx- = >  f'f(X) * f'f(X')

(here fx, fx> are behaviours of &  , while f'f(x) are behaviours

). According to the definition of morph isms in the category Sys(r) (see 

also section 1), we can easily obtain the following commutative diagram.

* f * x

g*
U'*_________  ̂ Y'

f '
f(x)

8y g* we have denoted the extension of g : U ------^ U' at the free monoids :

9* : U * ------> U'* , g * (uju^.-uj = g(u1)g(u2) — 9(up)

Thus h o fx = 0 9*» an-*» i*1 ^ e  same way, we obtain : h o -fx , =-f*f • )0<f.

It results that fx = fx , ----- \ f'f(x) 0 3* a f'f(x') 0 9*

Since g is epimorphism, it results that g* is also epimorphism and, from well- 

known property we have :

f’f(x)° g*= f,f(x') 0 9*  ------> f'f(x) = f,f(x')

Now, to end the proof, we remember that the system is observable, thus

f’f(x) ■ fV )  = p  f(x> ■ f(x,)

From the above universality property, it is simple to prove that functors
P

Sys (r,o) ^— —■ ■> Sys(r) form an adjoint pair.
■J

Remark : We may say, after this example, that minimal realization is left adjoint 

to inclusion, restricting our attention to reachable systems, and morphisms 

whose input component is surjective.

There can be given, of course, a lot of examples of realization subca

tegories ; we shall not insist here on this aspect.

The inclusion functor in the above example can also be thought as one 

which "forgets" the observability property.
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Me have sketched in this paper three models for systems identifica

tion. The most significant one is the categorical model.

This model applies to system theory in such a way that if we can 

prove..that an inclusion functor has a left adjoint, we prove the existence., 

of minimal realization. Such minimal realization theorems can be redescovered, 

for example, for fuzzy systems (see [10] ), by defining reachability and 

observability in an apropriate way.

All the presented models were deeply connected with system theory, 

either in which realization of behaviours is concerned, or in the problem of 

approximating a system by a simpler one.

inie shall underline here a property which is neither new in mathematics, 

nor in system theory ; in order to obtain the “optimality of structure", we 

must builci an adjoint pair of functors.

This idea works also for the model in section 3, since we are faced 

there with an adjointness property, too.

It is to be expected that these results can be genera.lized.in many 

ways. A first step will be to give sufficient conditions for a subcategory to 

be a realization one. This will imply sufficient conditions for existence of 

minimal realization..

The second idea, which may be more fruitful, is to think that feed

back is in some sense adjoint, or dual (see [4j ) to dynamics or behaviour., 

we shall speak about these problems in a next paper.

5 - Conclusions
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