N° -larie-ClaudG PICHERY : Les systèmes complets de fonctions de demande (avril 1977) N° 20 Gérard LASSIBILLE et Alain MINGAT : L'estiraation de,modèles à variabl dépendante dichotomique -La sélection universitaire et la réussite on première année d'économie (avril 1977) N° 21 Claude PONSARD : La région en analyse spatiale (mai 1977) In this paper we try to give some contributions, in order to solve the problem of system identification (or minimal realization), for various classes of systems. In order to give some more insight into this problem, we shall define some abstract versions of the minimal realization process. The models we discuss are used for the study of subsets (or . subcategories)in which theveexists the minimal realization and it is unique.

In section 1 we recall the minimal realization problem and some of its properties.

Section 2 develops the first model, which is based on equivalence relations. The sets which support minimal realization are in connection with the systems of ropresentants of an equivalence relation. This model coresponds to the external behaviour point of view.

In section 3 we give a model based on ordering relations. This version corresponds to the qualificative " minimal". 6oth models in sections 2 and 3 include systems identification. This is not however, the only example ; one can find other, as the "integer part" function and the '' c o n g r u e n c e modulo n".

The most powerful model seems to be the categorical one5 which is introduced in section 4. The admissible subcategories are those one for which the inclusion functor aumits an adjoint. Some conclusions and further developments of the subject are discus sed in the last section. The problem of system identification (or minimal realization) is of great importance in studying various classes of systems. Usually this problem states as follows ; given some behaviour, one looks for a system (in some class) which have this behaviour and whose characteristics are the best ones, in some sense to be specified. The term "minimal", for example, denotes some "optimality" of structure", of the system under consideration. This problem was put first for linear systems, and then generalized for deterministic dynamic systems (see f 2 ] ).

Later on, the categorical approach to systems theory permitted to include a broad class of systems, as probabilistic or fuzzy systems (see [1] ) Somenrinioal realization theorems were proved, such that in some special condi tions the minimal realization exists (sea £3 j, [6 ] ).

In recent years (see [ 9 ] ) there was proved that an equivalence exists between the category of reachable systems with a given behaviour, and some category of equivalence relations on the input space. In this way, the minimal realization corresponds to the Nerode equivalence (a wellknown result ).

The new fact is that this equivalence is the supremum of all otber relations in that category.

Thinking at the minimal realization at someprocess of "best approxima tion", we can restate this problem and generalize it. If the class of all dynamical systems is given, we shall look for the identification of a system in a given subclass which will be the "best one".

In the next sections we shall describe three models of general system identification. These models will include classical minimal realization, but 1 -Introduction also other situations, as rings of equivalence classes, for example.

We shall briefly skttch the minimal realization problem for dynamic deterministic systems.

Such a system will be a complex ^ X, U, Y, s s p , XqJ where X, U, Y are arbitrary sets called, respectively, the state-space, Input-space and output-space.

The dynamics 5 is a map f i : X x U -^ X , and the output function is 0 : X ---> Y.

The system is initialized, and xQ e X is its initial state.

We can build the category of dynamical systems, denoted by S . The objects ys of SyS will be systems $ as above. A morfism between two systems S^ and S2 will be a triple $ = (u, v, w). More explicitely, if Si * Uj, Yj, 5 i» Xq | , i = 1, 2, then u : Xj -----^ X2, v : U j -w : Y^ -^ Y2 are usual functions, such that the diagrams 1 ? aracomutative, and u (Xq ) = xB riefly, morphisms between systems, must comute with dynamics and output maps, and preserve the initial states.

Usualy the dynamics j of a system ¿P is extended to an action of the free monoid U on the state space X. This extension is making recursively, by 1) 6 (x,A) = x, (V) x e X 2) s (x, ee) = 8 ( 6(x, e) e ')» (V) x e x, e , e' e u* We can build the reachability map Ô : 0 6 : U * ----> X s 6X ( 6 ) *6(x0 , 6 ) xo x0 and the response map from initial state Xq :

f : U*----x Y , fxQ = § ofi xQ u xQ
Here Xq is a fixed in X ; thus generally, we have a family of responses (fx) x e X.

The reachability map gives all states tbe system can reach, after receiving inputs, starting from Xq .

The response map gives the output of the system, which starts in Xq . It is also called the external-behaviour map.

A system vP is reachable (from xA) if is surjective.

u Xq

A systemOPis observable if the map xi->f is injective. Thus, observing " T J ~ 1 1 " A the output, we can rediscover the initial state.

What we have sketched above, is called the-passage from the internal des cription of a dynamical system, to the external description. Thinking at a system as a model of some physical process, one may say that obtaining f" means a simulation of that process. 0 In practice however, we have merely given an external behaviour, and want to build a system. We shall refer to this problem as to modelling.

The system we are looking for «mist be, of course, connected with the given external behaviour. The first condition is that the unknown system must have the same behaviour as that given one, starting from some initial state. This condition is however discutable, since we may look for a system with a beha viour "very closed" to the given one. The next condition is that we look for a system which must have some "optimality of structure". In precise mathematical terms, this •'ptiraàlity is achieved by looking for reachability and observa-bility. This condition is also discutable because, at least for complex systems, it would be better to ask for some weak reachability (see [START_REF] Ralescu | Relational Morphisms and Systems Identifica tion" (to appear". 13-ZaDEH3L.A. -"From Circuit Thecry tc System Theory[END_REF] for details).

We shall, however, describe here the classical minimal realization, which gives a rechable and observable system (see [2] ). This problem is also reffered to as system identification (see [13] ).

Suppose given a function f : U* -^ Y which describes the external behaviour of some process (i.e. input-output relationship). We have then :

Theorem : There exists a dynamic system such that 1) fv = f(i.e. the behaviour of is f)

*0 i r
2)<ff is reachable from Xq and observaole Proof : The prouf can be found in [2] anu will be omitted here. We mention, however, that Xf is obtained via the Nerode equivalence in U* :

u ez < ^> f(0f) = f(6£)t (V) e € u*
and Xf = U*/ the quotient set.

We remember again that system CPf is "the best one" with the behaviour f.

The above result can be put into a categorical framework, considering the category of behaviours and the category of systems. In this way, a deepest result says that there is a pair of adjoint functors between these categories (see [7'J ).

In the next sections we shall generalize minimal realization, lie shall describe some abstract models for the process of obtaining special system.

These models are based on equivalence relations (section 2), on orderings (section 3), and on category theory (section 4). These are some points of view of identifying systems in a given class.

I -Relational models I-Je shall describe in this section, a relational model for system identification. This niudel, as its name says, is based upon equivalence relations. Our version starts with Zadeh's definition of a system identifica tion : " the determination on the basis of input and output, of a system within a specified class of systems, to which the system under test is equivalent 1 1 (see [13] ).

The formulation below is also connected with a paper by Gaines [5] .

Let us suppose a pair (X, R) where X is a set, and R an equivalence relation in X.

Definition : An admissible subset is A C X with the property :

( V ) x e X (3 ) a e A, a R x Je shall denote by t/|(X) the set of all admissible subsets of X.

In which follows, we shall try to characterise the admissible sets, i.e. elements of$$(X). First, some simple remarks :

1) X e <&(X)

2) A e ¿ft(X), 3 3 A 3 e $(X)

We shall prove now that each admissible set contains an admissible subset, which is the "best one", in some sense : But in A g we a'' "eady hav-' -Bn eUr.icnt a, say ag e A g . It results that

x, aQ e a, thus x R ag, and the proof ends. We shall give now two examples of this abstract identification model. The first one will be, of course, the minimal realization for deterministic systems.

Example 1. Let us suppose that Sys is t;te class of all deterministic systems, as in section 1. For^f eSys, we shall denote by fp its external behaviour, from initial state of Of • Let us note that we do not start from a behaviour, and look for a system. Our identification problem will be : starting from a system, to find an "optimal system" with the same bahaviour. Let us consider the pair (Syst, R ) where R is the equivalence relation defined by :

$ .¿f' « Sys, ¿ P R # ' £ = $ f y = f*,,
Let us denote now, by Sys (r, c) the subclass of reachable and observable systems, Sys (r, 0) c Sys. We think that e Sys (r, 0) is reachable from its initial state. The classical minimal realization theory says now, that Sys (r, 0) is an admissible subclass of Sys. In otiier words-(V)^p eSys -\ ( 3 ) ¿p e Sys(r, 0) f v = f and is the ruini n' ¿fa m mal realization of ¿P.

We mention that each class of systems <? , Sys(r, 0 )c C. Sys, will be also admissible ; we can think, for example, at some weak concepts of reachability and observability. Example 2 : This example will be different in nature, and it will tell us in a way, about the limits of this identification model, we shall consider^ the set of integers, and R the congruence modulo n, n ^ 2 : p, q e 1L, p 5 q (mod n) n | p-q An aamissible subset is])f = |o, 1, 2,...j the set of natural mumbers. The set JW = 11, 2 .....I is not admissible.

We can apply the above theorem, in order to obtain 'minimal" admissi ble subsets. For example, JNq = | 0 9 1» 2, n-lj Cj> f is admissible, and p, q e JDN'g -N p $ q(mod n). Another admissible islf^ n+l,...2n+lj

It is well known that the elements ofllfg ara a system of représentants for the equivalence * (mod n), anu H I -(mod n) =2&n = ^Q 1»...> n-l| Corollary : For A e (X) and AQ as in the above theorem, we have ( V )

x e X z=^. ( 3) a e Aq , unique, x R a Proof : obvious de may call this unique a, the minimal realization of x.

We shall prove now a theorem which characterizes admissible subsets.

It will relate A e c^(X) and the sections of the canonical ¡nap X -^X/R. ■ f ^ de say that a function i'l---> N is sectionable, if there is a func tion N ---such that f 0 g = 1^; we shall call g a section of f. It is clear that a section is a right inverse for f. tie shall denote by <7^0 (X)C cft(X) the "minimal" admissible sets i.e.

<$yx) = | à C X / (V) X e X = ± } { 3 ) a e A,

unique, x » a j

Theorem : There is a bijection between 3^Q (X) and the set of allisections We prove first thatir (s) ec^(X) ; for each x e X, as x e X/R, s(x) -a x e (s).

Since s is a section of <f 3 we have (s(x) ) = x m ^v ? (ax) = X r ) a x= x z ^a ^.

This a is also unique , for example, if a R x, a' R x with a , a 1 € iSr(s); As X 0 Irns = js(x) ] , it is clear that Sjms = s, and thus & o^f -id.

.low f ( <J> (A) ) = ijr (s^) = Im SA = A, and thus ^ 0 f = 1c*> an-i the proof ends. VJe shall see in the next sections that almost all models for system identification are related to such "right inverses".

Our relational mouel here is good to encompass with minimal realiza tion anu also with other situations in mathematics. However, its structure is too poor, in order to obtain Jeep results.

-Ordering models

We shall develop here a model for system identification, which is based upon order relations. We shall not obtain, as a particular case, classi cal minimal realization.

The motivation of introducing an ordering to replace the equivalence relation in section 2, is that we may look now for systems which " approximate" a given system, for example. This model will be well suited for identification of r.ondeterministic systems, where the concept of an equivalence is too powerful.

Such an ordering can also be thought as complexity , with preference for the less complex system ( see [ 5 } )• Hoping that no confusion can arise, our terminology here will be the same as in the previous section.

Let (X, be a pair, with X a set, and ^a n ordering on X.

Definition : An admissible subset of X is A C X such that Remark : For each x e X, the a" is unique, after the definition above.

r A

We shall see later that such admissible subsets can exist, even if X is not complete lattice.

Let us denote by <fb (X) the collection of admissible subsets of X.

We may, of course, call aw « a (for each x e X), the minimal realization of x.

1) ( V ) x e X ( 3 
) ax e A, x ^ ax 2) ( V ) a e A, x ^ a = £ ax N a. e A .
At this level it is difficult to give conditions under which there exist admissible subsets. It is also difficult to determinate whether "minimal realizations" exist or not.

We shall however, give a theorem which relates d&(X) to the existence of retracts for the inclusion map A ---^ X.

A function M --> N is rectractible, if there is a function --> M, suv ch that g o f = ljj ; we call g a rectract of f. It is clear that a retract is a left inverse for f.

Theorem : The following statements are equivalent :

1) A e <ft(X) i 2) there exists an isotone retract A ¿ i t * X , with i o Proof : 1) 2). From definition of A e cfc (X), let us set <p ; x ----^ A, v?(x) = ax* It is clear that ^ o i = 1^, and (i o y?) (x) = ax ^ x, thus i o ^ ^ lx> How v? is also isotone, since x ^ y -v ax C x ^ y * 8ut ax 4 anci ax e A ax ^ a , 1. e. (x) £ <p (y).

2) -) 1). Let us suppose 2) true. If x e X, we set ax = ^ (x) e A From i o <p ^ lx it results that ax ^ x.

Let us prove that a e A, a ^ x ~zr=^ a ^ ax-

As is isotone, a ^ x <*>(a) ^ <p (x), but >p (a) = v>(i(a)) = a
thus a ( a , and the proof ends.

This theorem, as it will be seen later, reflects an adjoint property between a pair of functors. The importance of such results resides in the fact that we can give global conditions in order to characterize admissible sets. These admissible sets are important, since they are subclasses in which "optimal models" exist.

Example 1 : This example is theoretical, and will reflect the problem of finding admissible subsets. Let X =fR, the set of real numbers, and ^ the usual ordering. Then TL> C IR, the set of integers, is an admissible su .set According to the above theorem, the retract <p is the "integer part function" :

<p : IR---^ (x) = [x]
we have denoted by [x]the greatest integer which is ^t o the given x « fR.

It easy to see that, if X is sup-complete, then each subset, which is supcomplete, is an admissible subset. This is obvious, since for such A c z X,

x e X, we have ax = sup |a e A / a ^ x j e a.

Example 2 : Let X = (M) = |f / f : H ___> [o, l"|J, the set of all fuzzy subsets of H. The ordering is ^ , defined by f. y e ? (¡0, ^ 9(m)» ( V ) m e i

We choose A = = [f / f : fi -£ ^ 0, 1^» the set of all subsets of ii (identified with their characteristic functions).

As $•(•>) a complete lattice, and ^(¡¡) a complete sublattice, it results that^(ii) is admissible.

If we denote for each f £^(¡1), by A^ = £m c >1/ f(m) = 1^, then the "best approximation" for each f e^^i ) , is f ^ e fp (¡1) (the characteristic function of A^).

This is aasy to be proved, according to : f e ^(ii), sup £ g / y e cP(ii), g ^ f J -fpf. This example can be related to the problem of approximating fuzzy sets (see [ 1 0 " |, [ 1 1 1 ). We shall now give an example, in order to apply this abstract identification model to sys tems theory. Usually is quite difficult to define an ordering in the class of systems. The relations of " complexity" or "approximation" as given in [5] ,

are preordrings. Of course, the theory above can be restated in terms of preorderings we loose in that cas the uni city. 

%• V u ---^ V 5 o ^ (x »u) Q0; Xq ---) Y , 0 O (x) = 0(x)
and it is clear that these definitions are correct.

We also see that eSys(r), 3nd

Now, if ¿P' eSys(r), and ¿ P ' d & » it is easy to prove t h a t ^' c Thus ifj) is the "best approximation" of the system ¿f* by a reachable system.

It is clear that this example does not contain very much information ; it simply proves that our model of system identification works in some cases.

This example also proves that among admissible classes of systems, we can find those with important structural properties, such as reachability. This is in some sense* coherent with the model in section 2, even if we cannot call the above ^ the minimal realization of iP .

Examples of adjoint functors (or adjoint pairs) arise in many problems ; one may argue that each "natural construction" gives an adjoint pair of functors. We shall describe laters in an examples such a pair. For much more on category theory than we describe*., here» the reader may successfully consult [83 •

Our categorical model for system identification will be built by distinguishing some subcategories of a given category .

Definition : A realization subcategory of ^ will be such that the inclusion functor > $ has a Teft adjoint ^.

In the pair 3 we shall call G the realization functor for each X e \ ^\ , GX e | cfej will be called the minimal realization of X.

rie shall later see that classical minimal realization of systems can be recaptured in this way.

Example : Let us restrict our attention to reachable systems. t\fter section 3

we have seen that a system, even if not reachable, contains a reachable subsystem (its reachable part).

We shall consider Sys(r), the category of reachable systems. A mor phism cP ---^ ¿P will be a triple (u, v, w), with second component v (which operates on input spaces) being surjective. More exactly, if U, U ' are *1 respectively, the input spaces of ¿P and , then v : U ---> U' is an epimprphism.

Let Sys(r,o) be the subcategory of Sys(r), which contains reachable and observable systems. We shall prove that Sys (r, o) is a realization subcategory of Sys(r).

We must build the functor G : Sys(r) ----^ Sys(r,o) which will be a left adjoint to the inclusion functor F : Sys(r,o) -----} Sys(r).

To see that f is well-¿¿fined, let us prove that x ^ x' -\ f(x) = f(x').

As the equivalence in X means the equality of behaviours, we shall prove that fx = fx -= > f'f(X) * f 'f(X ') (here fx , fx> are behaviours of & , while f'f(x) are behaviours

). According to the definition of morph isms in the category Sys(r) (see also section 1), we can easily obtain the following commutative diagram.

* f * x g* U'*_________ ^ Y' f ' f(x)
8y g* we have denoted the extension of g : U ------^ U' at the free monoids : It results that fx = fx , -----\ f 'f(x) 0 3* a f 'f(x') 0 9* Since g is epimorphism, it results that g* is also epimorphism and, from wellknown property we have :

f ' f(x)° g*= f,f(x') 0 9* ------> f'f(x) = f,f(x')
Now, to end the proof, we remember that the system is observable, thus

f ' f(x) ■ f V ) = p f(x> ■ f(x,)
From the above universality property, it is simple to prove that functors P Sys (r,o) ^--■ ■ > Sys(r) form an adjoint pair. ■ J Remark : We may say, after this example, that minimal realization is left adjoint to inclusion, restricting our attention to reachable systems, and morphisms whose input component is surjective.

There can be given, of course, a lot of examples of realization subca tegories ; we shall not insist here on this aspect.

The inclusion functor in the above example can also be thought as one which "forgets" the observability property.

Me have sketched in this paper three models for systems identifica tion. The most significant one is the categorical model. This model applies to system theory in such a way that if we can prove..that an inclusion functor has a left adjoint, we prove the existence., of minimal realization. Such minimal realization theorems can be redescovered, for example, for fuzzy systems (see [START_REF]Applications of Fuzzy Sets to Systems Ra LlSCU D.A. Analysis[END_REF] ), by defining reachability and observability in an apropriate way.

All the presented models were deeply connected with system theory, either in which realization of behaviours is concerned, or in the problem of approximating a system by a simpler one. inie shall underline here a property which is neither new in mathematics, nor in system theory ; in order to obtain the " optimality of structure", we must builci an adjoint pair of functors. This idea works also for the model in section 3, since we are faced there with an adjointness property, too.

It is to be expected that these results can be genera.lized.in many ways. A first step will be to give sufficient conditions for a subcategory to be a realization one. This will imply sufficient conditions for existence of minimal realization.. The second idea, which may be more fruitful, is to think that feed back is in some sense adjoint, or dual (see [4j ) to dynamics or behaviour., we shall speak about these problems in a next paper. 

-Conclusions
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  Theorem : For each A e £%(X) there exists AQe t%(X)> Ag c. A with the pro perty a, b e A q z i ) a ft b Proof : Let us consider A / R, the quotient set (in fact, R is replaced by the equivalence induced by R on A), k'e shall select one and only one element from each equivalence class ae A / R . The collection of the obtained elements will be denoted by Ag3 and, of course, Ag C A. It is also obvious that ( V ) a» b e Aq .p a ^ b, since a and b belong to different classes. Je must prove that A g e (X). If x e X, t h c ' e is a e A, x R a, thus x e §, 3 e A / R .

  us denote by Sec =-^s/ s: } Xj 0 s = *x/R^ ' vie shall build two maps : c%0 (X), it is clear that x fl A contains a single element, for each x e X/R. Let xO. A = ^ a^. J'e define (A) = s^, s^ : X / R ----^ X, SA(x) = ax. h s ip (s.^X) ) = v» ( O = S¥ = x, it results that $ is well defined. now s e Sec , we set -(Jr (s) = Im s = s(X/R).

  Gx = a'x* We must prove now that (j> o Tjf = id, ^ o = id. We have : $ ( f (s) ) . * 0 (Im s) = sIffl s.

  9* : U * ------> U'* , g * (uju^.-uj = g(u1)g(u2) -9(up) Thus h o fx = 0 9*» an-*» i*1 ^e same way, we obtain : h o -fx , = -f * f • )0<f.

  Example 3 : Let us consider X = Sys, the class of systems. The ordering will be the "inclusion" of systems. More exactly, if ¿P =£xs U, Y, § , pj,

	& =jx', U', Y ', s ', ¡5' j, we shall say that if is a subsystem of	if :
			X C X'. U c U \ Y C Y'i 6 | XxU = 8,/f|x = 0.
	tie shall write	if «f is a subsystem of ¿P*. It is clear that C is an
	ordering in Sys.
		Let us prove that the class of reachable systems Sys(r) c. Sys is
	admissible.
		If ¿P eSys, ¿P=jx, U, Y s S,	let us consider the reachability
	map 8	x0	: U ---^ X. lie denote ty Xn = Im S = 5 ($, and consider the u x0 x0
	systero	U, Y, 5q, /JqJ . The definitions of the dynamics S q , and the
	output map		are as follows :

-Categorical models

We shall describe in this section the last model for s y stem iden tification. This model is based on some concepts of category theory.

Our point of view will bea^ainto consider minimal realization of a dynamical system. We shall not speak about external behaviour, but we shall think at the "optimal structure model" assigned to a given model. In this way we shall manipulate only internal descriptions.

Let us remember first, some facts of category theory, which will be needed later.

If iS ana Ig'are two categories, a (covariant) functor from ^ into Is F : ft__^ . This means an assignment l€|">|'e|(on objects), and, for each A, 3 * J<g|, an assignment 6(A,B) ____ ^ ^' (FA, F8) (on morphlsms).

The following axioms are supposed :

We suppose the reader already familiar with such concepts. Definition, mle say that G is a right adjoint to F (or F is a left a joint to G), if the functors £ (., G.) and^'(F-> •) are isomorphic.

We shall ^enote by G r.a F ^ (., G.) ^ ^( F . , .)

For this purpose, lat^P elSys (r) | : <9 =| X, U, Y s 5 , (3 , xQ

We shall define in X the equivalence relation :

It is simple to prove that the system with 5m : X/^ x U ---¿XA, , 8 m(xs u) = F ( x s u)

is reachable an^ observable.

Thus ^m "is the minimal realization o f ^ (all such minimal realizations of ¿P are isomorphic).

The functor G will be defined by G(^P ) = .

Let us remark that there is a morphism :

We may prove that the following universality property holds , for each system Toprove this, let cc = (f, g, h), P= (?, g, h), we set g = g, h = h and ?

results from the diagram :

where <p : X ----X/,-^ is the canonical map (see also section 1). Since ljj is surjective5 is indeed a morphism in Sys(r).

morphism« -& which makes the following diagram commutative ?(*) » f(x) , (V ) x e X/n, .