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On symmetric decompositions of positive operators

Inspired by some problems in Quantum Information Theory, we present some results concerning decompositions of positive operators acting on finite dimensional Hilbert spaces. We focus on decompositions by families having geometrical symmetry with respect to the Euclidean scalar product and we characterize all such decompositions, comparing our results with the case of SIC-POVMs from Quantum Information Theory. We also generalize some Welch-type inequalities from the literature. Contents 1. Preliminaries 1 2. Properties of general decompositions 2 3. Decomposition of a positive operator by a symmetric family 3 4. Dual symmetric decompositions 11 5. Decompositions and Welch-type inequalities 13 References

Preliminaries

We study different issues related to the decomposition of a positive operator (i.e. positive semidefinite matrix) on a d-dimensional complex Hilbert space H, in analogy to the properties of positive-operator valued measures (POVMs) [16,[START_REF] Wolf | Quantum channels & operations: Guided tour Lecture notes available online[END_REF] and frames [START_REF] Casazza | Finite Frames. Theory and Applications[END_REF][START_REF] Christensen | An Introduction to Frames and Riesz Bases Birkhäuser[END_REF][START_REF] Han | Frames for Undergraduates[END_REF]. We recall that, given a positive operator T on H and a family E = {E 1 , . . . , E N } of positive operators on H, we say that E is a decomposition of the operator T if we have T = N i=1 E i . The family E is called POVM in the case when T is the identity operator on H. POVMs are the most general notion of measurement in quantum theory, and have received a lot of attention in recent years, especially from the Quantum Information Theory community. One of our main goals in this paper is to generalize some of the known results for POVMs to decompositions of arbitrary (positive) self-adjoint operators T .

We focus on the question of decomposing a positive operator T by a symmetric family of positive operators E = {E 1 , . . . , E N }. The symmetry of the family E refers to the geometry of the elements in the Euclidean space of self-adjoint operators: we require the Hilbert-Schmidt scalar products of all pairs of the elements of the family E to be the same

E i , E j HS = Tr[E i E j ] = aδ ij + b(1 -δ ij ), ∀i, j.
For a symmetric family, we denote by a := Tr[E 2 i ] and b := Tr[E i E j ] (i = j) its symmetry parameters. This type of problem has been recently asked in the framework of Quantum Information Theory, for basic connections of this field with operator theory see [12]. A decomposition of the identity by a symmetric family of N = d 2 linearly independent operators is called a symmetricinformationally complete POVM (shortly SIC-POVM). Construction of all general SIC-POVMs has been recently achieved in the papers [START_REF] Appleby | Symmetric complete measurements of arbitary rank[END_REF] and [START_REF] Gour | Construction of all general symmetric informationally complete measurements[END_REF]. With regard to the applications, a particularly difficult problem is the existence of SIC-POVMs whose elements are proportional to rank 1 projections. It is still an open question if rank 1 SIC-POVMs exist in any dimension; examples have been found for d = 1, . . . , 16,19,24,35, 48 (ananlytical proofs) and d ≤ 67 (numerically evidence) [19]. The closeness of general SIC-POVM to a rank 1 SIC-POVM has been recently quantified [START_REF] Gour | Construction of all general symmetric informationally complete measurements[END_REF] using the parameter a that characterizes the symmetric family. We follow the same path of investigation for decompositions of arbitrary operators T and we give bounds for the symmetry parameter a. Our motivation is to achieve a better understanding of the more general situation, with the hope that this will shed some light on the more interesting case of unit rank SIC-POVMs.

The paper is organized as follows. In Section 2 we gather some relatively straightforward general properties of decompositions, proving that a local decomposition for an injective operator is essentially a global one, and characterizing decompositions of orthogonal projections. In Sections 3 and 4 we focus on symmetric decompositions of general, and then positive operators; these sections contain the main result of the paper, a characterization of all symmetric (positive) decompositions of a given (positive) operator. Finally, Section 5 contains some generalization of weighted Welch-type inequalities.
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Properties of general decompositions

In this paper, we study operators acting on a Hilbert space H, which will be finite dimensional (with the exception of Proposition 2.2) and complex (unless otherwise specified). Our focus will be on the existence of decompositions of operators as sums of families having some specific symmetry or positivity properties.

Definition 2.1. Let be E = {E i } N i=1 a family of self-adjoint operators acting on some Hilbert space H, and T another given operator acting on H. We say that E is a decomposition of T if N i=1 E i = T . If the operators E i are positive (i.e. E i are positive semidefinite matrices), the family E is called positive.

We say that E is a local decomposition of T if for any x ∈ H, x = 0, there is a complex number α(x) = 0 such that

N i=1 E i x = α(x)T x. (1) 
Proposition 2.2. Let H be any (possibly infinite dimensional) complex Hilbert space, and T an operator acting on H. If T is injective and E is a local decomposition of T , then there exists β ∈ C such that E is a decomposition of βT .

Proof. We first consider x, y linearly independent and we show that α(x) = α(y). By linearity, we have α(x + y)T (x + y) = α(x)T x + α(y)T y and since T is injective, we get α(x + y)(x + y) = α(x)x + α(y)y. Using the linear independence of x and y, together with [α(x + y) -α(x)]x + [α(x + y) -α(y)]y = 0, we conclude that α(x) = α(y) = α(x + y).

Let now x, y = 0, y = λx, λ = 0. We have

E i x = α(x)T x, E i y = α(y)T y ⇔ E i (λx) = α(λx)T (λx), hence E i x = α(λx)T x, so α(x)T x = α(λx)T x ⇒ α(λx) = α(x)
, as T is injective. This shows that the function α is constant, finishing the proof.

Remark 2.3. If the operator T and the decomposition E are positive, then the scalar β is nonnegative, β ≥ 0.

Remark 2.4. In the particular case when the Hilbert space H is finite dimensional, we can prove the above result in the following way. The operator T was assumed injective, hence it is invertible, and we have

∀x = 0, T -1 N i=1 E i x = α(x)x.
Hence, every non-zero vector x ∈ H is an eigenvector of T -1 i E i ; this cannot happen unless T -1 i E i has just one eigenvalue (eigenspace), i.e. it is a multiple of the identity. Let T be a self-adjoint operator. For any given scalar weights (t 1 , . . . , t N ) such that N i=1 t i = 1, it is clear that {t i T } is a decomposition of T (if T is positive and one assumes t i ≥ 0 for all i, the decomposition is positive). Such a decomposition is called degenerate. We prove that if rk[T ] = 1, then T has only this type of decomposition.

Proposition 2.5. Let T be a positive operator acting on a finite dimensional complex Hilbert space H, and

E = {E i } N i=1 a decomposition of T . If rk[T ] = 1, then E i = t i T , 0 ≤ t i ≤ 1 for i ∈ {1, 2, . . . , N } and N i=1 t i = 1.
Proof. This is an easy consequence of the fact that the extremal rays of the positive semidefinite cone are unit rank projections. More precisely, from T = N i=1 E i , it follows that T ≥ E i , ∀i. We apply Proposition (1.63), from [16]. It follows that

E i = t i T , for 0 ≤ t i ≤ 1, i = 1, 2 . . . N , hence T = ( N i=1 t i )T .
Since rk[T ] = 1, it follows that there is x ∈ H such that T x = 0. Hence,

N i=1 t i = 1.
We characterize next decompositions of self-adjoint projections.

Proposition 2.6. Let E be a positive decomposition of a positive operator T . Then, the following are equivalent:

i) T is projection ii) T E i = E i T = E i , for all i.
Proof. i) ⇒ ii). We know that T ≥ E i ≥ 0. From [16,Proposition 1.46], it follows that

T E i = E i T = E i . ii) ⇒ i). We have T 2 = T N i=1 E i = N i=1 T E i = N i=1 E i = T .

Decomposition of a positive operator by a symmetric family

In this section we are going to study decompositions of operators by families having the following form of symmetry.

Definition 3.1. A family E = {E i } N
i=1 of self-adjoint operators acting on a finite dimensional Hilbert space H is called symmetric if, for all i, j ∈ {1, 2, . . . , N },

Tr[E i E j ] = aδ ij + b(1 -δ ij ).
(2)

The scalars a, b are called the parameters of E.

Most of the results below hold for general decompositions of self-adjoint operators. However, when the operator T is positive and we require that the decomposition should also be positive, some additional structure emerges, and we emphasize this case in the respective results. 

= t 2 -N a N (N -1) (3) 
and

Tr[E i T ] = t 2 N , i = 1, 2, . . . N (4) 
Proof. We assume first that E is a symmetric decomposition of T . We have that T 2 = N i,j=1 E i E j , hence

t 2 = Tr[T 2 ] = N i,j=1
Tr

[E i E j ] = N a + N (N -1)b. It follows that b = t 2 -N a N (N -1)
.

For i ∈ {1, 2, . . . N }, we have

Tr[E i T ] = Tr[E i N j=1 E j ] = Tr[E 2 i ] + N j=1 j =i Tr[E i E j ] = a + (N -1)b.
Using (3) we get that

Tr[E i T ] = a + t 2 -N a N = t 2 N .
Conversely, if (3) and ( 4) hold, then we have

N i=1 E i -T 2 HS = Tr[( N i=1 E i -T )( N j=1 E j -T )] = Tr[ N i,j=1 E i E j ] - N i=1 Tr[E i T ] - N j=1 Tr[T E j ] + Tr[T 2 ] = N a + N (N -1)b -N t 2 N -N t 2 N + t 2 = 0.
Proposition 3.3. Let E be a symmetric decomposition of a self-adjoint operator T . Then, the parameter a of the family E satisfies a ≥ t 2 /N 2 . If a > t 2 /N 2 and T = 0, then the set {E 1 , . . . E N } is linear independent. If a = t 2 /N 2 , then the decomposition E is degenerate: E i = t i T, for all i and N i=1 t i = 1. Proof. To establish the bound, we use the Cauchy-Schwarz inequality

(Tr[E i T ]) 2 ≤ Tr[E 2 i ] • Tr[T 2 ] and Proposition 3.2 to get (t 2 /N ) 2 ≤ at 2 , so t 2 /N 2 ≤ a.
We suppose now that a > t 2 /N 2 . From Proposition 3.2 it follows that this inequality is equivalent to the inequality a > b. Consider scalars

λ i such that N i=1 λ i E i = 0. We have 0 = N i=1 λ i E i 2 HS = Tr   N i=1 λi E i   N j=1 λ j E j     = N i,j=1 λi λ j Tr(E i E j ) = a N i=1 |λ i | 2 + b N i,j=1 i =j λi λ j = (a -b) N i=1 |λ i | 2 + b N i=1 λ i 2 .
If b is non-negative, all the terms in the sum above are zero, so

λ 1 = • • • = λ N = 0,
showing that the family of operators operators E = {E i } N i=1 is linearly independent. On the other hand, if b < 0, we have, using again Cauchy-Schwarz,

a -b -b = N i=1 λ i 2 N i=1 |λ i | 2 ≤ N,
and thus b ≤ -a/(N -1). However, this contradicts (3): T = 0 and thus

b = t 2 -N a N (N -1) > - a N -1 .
Finally, if a = t 2 /N 2 , using the equality case in the Cauchy-Schwarz inequality, we get E i = t i T for some scalars t i . We have thus T = ( N i=1 t i )T , and we can choose the t i such that N i=1 t i = 1, finishing the proof.

As a corollary of this result, we obtain a generalisation of [4, Proposition 4.2].

Corollary 3.4. Let E = {E i } N
i=1 be a symmetric family of self-adjoint operators acting on a Hilbert space H, and let

d = dim H. If the operators in E are pairwise distinct, then N ≤ d 2 . Moreover, if H is a real Hilbert space, then N ≤ d(d + 1)/2.
Proof. Since the operators in E are pairwise distinct, from the Cauchy-Schwarz inequality it follows that b < a, where a, b are the parameters of the symmetric family E. In Proposition 3.3, it has been shown that in this case, the operators {E 1 , . . . , E N } are linearly independent. Thus, N must be at most the dimension of the space of self-adjoint operators on H, proving the claim.

One can also upper bound the parameter a of a symmetric decomposition in the case where the elements of the decomposition are positive operators (i.e. positive semidefinite matrices).

Proposition 3.5. Let E be a positive symmetric decomposition of a positive operator T . Then, the parameter a of the family E satisfies a ≤ t 2 /N . Proof. For any i, we have

T ≥ E i so Tr[E i (T -E i )] ≥ 0, hence, using Proposition 3.2, a ≤ Tr[E i T ] = t 2 /N . Proposition 3.6. If T is a projection, then t 2 N 2 ≤ a ≤ t 2 2 N 2 (5)
The upper bound is saturated if and only if E i is of rank one, for i = 1, 2, . . . N .

Proof. We have

a = Tr[E 2 i ] ≤ (TrE i ) 2 = t 2 2 /N 2 , since if T is projection, then by Proposition 2.6 E i T = T E i = E i . We have equality iff rk[E i ] = 1, for all 1 ≤ i ≤ N .
Assuming that the operators E i are positive and invertible, one can derive a different upper bound for the parameter a of the decomposition than the one obtained in Proposition 3.5. Recall that the condition number of an invertible operator A is defined as

κ(A) := A • A -1 .
In the case A is a strictly positive operator, we have

κ(A) = λ max (A) λ min (A) .
Proposition 3.7. If T is positive operator which has the decomposition T = N i=1 E i , where E i , i = 1, . . . N are strictly positive operators, then we have

t 2 N 2 ≤ a ≤ M t 2 N 2 (6)
where

M = min 1≤i≤N 1 4 κ(T )κ(E i ) + 1 κ(T )κ(E i ) 2 . ( 7 
)
Proof. We use Proposition 3.3 and the converse Cauchy-Schwarz inequality [START_REF] Niculescu | Converses of the Chauchy-Schwartz inequality in the C*-framework[END_REF]Corollary 1.4].

We describe next all the possible symmetric decompositions of a given self-adjoint operator T acting on a finite dimensional Hilbert space. The result is a generalization of [START_REF] Gour | Construction of all general symmetric informationally complete measurements[END_REF]Theorem 3] to general operators T . Moreover, we give necessary conditions for the existence of a positive decomposition of T , in the case where T is a positive operator (one can assume actually T to be invertible in this case, since any positive decomposition of T is supported on the orthogonal of the kernel of T ).

Proposition 3.8. Let T be a self-adjoint operator acting on H C d , and consider an operator subspace F orthogonal to CT , of dimension N -1. Then, the set of symmetric decompositions

E = {E i } N i=1 of T with support in CT ⊕ F is in bijection with N -tuples (x, F 1 , F 2 , . . . , F N -1 )
, where x is a non-negative number and F 1 , . . . , F N -1 is an orthonormal basis of F. The bijection can be described as follows: put F := N -1 i=1 F i , and define

R i = F √ N -1( √ N + 1) - √ N √ N -1 F i , i = 1, . . . , N -1 (8) 
R N = F √ N -1 . (9) 
Then, for any non-negative real x, the operators

E i := 1 N T + xR i , i = 1, . . . , N (10) 
define a symmetric decomposition T = N i=1 E i of T , with parameters

a = t 2 N 2 + x 2 (11) b = t 2 N 2 - x 2 N -1 , ( 12 
)
where

t 2 = Tr[T 2 ] = T 2 HS .
Reciprocally, all symmetric decompositions of T can be obtained as described above.

Assume now that T is positive definite matrix and let -µ i denote the smallest eigenvalue of R i ; since Tr[R i T ] = 0 for all i, we have µ i > 0. If, moreover,

x ≤ τ N max N i=1 µ i , (13) 
where τ = λ min (T ), the operators {E i } N i=1 are positive semidefinite. Proof. The proof follows closely [11, Theorem 3], with a different normalization of the operators R i . Let us show first the relation between the angles among the F i 's and the angles among the E j 's. Starting from an orthonormal family F 1 , . . . , F N -1 , by direct computation, and using facts such as

F i , F = 1, F, F = N -1, R i , T = 0, the symmetry of the family {E i } N i=1 follows, namely E i , E j = aδ ij + b(1 -δ ij ). ( 14 
)
The decomposition property i E i = T follows from the fact that i R i = 0, which can be shown directly from ( 8) and ( 9). Reciprocally, one has x = E i -T /N 2 and we can write the operators F i in terms of the E j working back the equations ( 8),( 9), [START_REF] Fillmore | On sums of projections[END_REF]. The orthonormality of the F i 's and the fact that F i ⊥ T , for all 1 ≤ i ≤ N -1 follow now from the symmetry relation [START_REF] Horn | Matrix analysis[END_REF].

Let us now discuss the positivity of the operators E i . We have, by standard inequalities,

λ min (E i ) ≥ τ N + xλ min (R i ) = τ N -xµ i .
Hence, if x ≥ 0 is as in [START_REF] Han | Frames for Undergraduates[END_REF], then necessarily E i ≥ 0.

Remark 3.9. The equations (8),( 9), [START_REF] Fillmore | On sums of projections[END_REF] relating the operators E i to the orthonormal basis F j can be summarized as follows:

∀1 ≤ i ≤ N, E i = 1 N T + x N -1 j=1 V ij F j ,
where Remark 3.11. Note that the geometric parameters a and b of the decomposition E depend only on the square x 2 of the free parameter x; this is related to the fact that if one allows negative values of x, the N -tuples (x, F 1 , . . . , F N -1 ) and (-x, -F 1 , . . . , -F N -1 ) give the same decomposition of T .

V ∈ M N ×(N -1) (R) is the following matrix V = 1 √ N -1( √ N + 1)        1 - √ N -N 1 • • • 1 1 1 - √ N -N • • • 1 . . . . . . N -N √ N + 1 √ N + 1 • • • √ N + 1        . Note that V is a multiple of an isometry which maps R N -1 to the orthogonal of R(1, 1, . . . , 1) in R N : we have V V = N/(N -1)I N -1 and V V = N/(N -1)(I N -N -1 J N ) = N/(N - 
In order to obtain an upper bound for the parameter a of a symmetric decomposition of a positive operator T , we need the following lemma.

Lemma 3.12. Let B be a positive definite operator acting on H

C d , having eigenvalues b 1 ≥ b 2 ≥ • • • ≥ b d > 0.
The following two optimization problems are equivalent:

(P 1 ) : min λ max (A) subject to A = A * A HS = 1 A ⊥ B (P 2 ) : min a 1 subject to a 1 ≥ a 2 ≥ • • • ≥ a d ∈ R d i=1 a 2 i = 1 d i=1 a i b i ≥ 0 d i=1 a i b d+1-i ≤ 0, and have common value ϕ(B) = ϕ(b) = (β/b d -1) 2 + d -1 -1/2 , ( 15 
)
where β = Tr[B] = d i=1 b i .
Proof. Let us first show that the programs (P 1,2 ) are equivalent, and then solve the easier, scalar version (P 2 ). To show equivalence, note that the objective function and the Hilbert-Schmidt normalization condition in (P 1 ) are spectral, i.e. they depend only on the eigenvalues

a 1 ≥ a 2 ≥ • • • ≥ a d of A.
The equivalence of (P 1,2 ) follows from the following fact: given to spectra a

↓ = (a 1 ≥ • • • ≥ a d ) and b ↓ = (b 1 ≥ • • • ≥ b d ) with b d > 0, there exist a unitary operator U acting on C d such that U diag(a 1 , . . . , a d )U * ⊥ diag(b 1 , . . . , b d ) iff a ↓ , b ↓ ≥ 0 and a ↓ , b ↑ ≤ 0, ( 16 
)
where b ↑ = (b d ≤ • • • b 1 ); note that the conditions above are precisely those appearing in (P 2 ). The property above is implied by the following fact (see [START_REF] Horn | Matrix analysis[END_REF]Theorem 4.3.53]):

{Tr[U diag(a 1 , . . . , a d )U * diag(b 1 , . . . , b d )] : U unitary} = [ a ↓ , b ↑ , a ↓ , b ↓ ].
Let us now solve (P 2 ). The proof will consist of two steps: we shall show first that an optimal vector a is necessarily of the following form:

a = ( s, . . . , s d-1 times , -r), (17) 
for some r, s > 0. We shall then optimize over vectors of this form.

For the first step, let us consider a feasible vector a which is not as in (17

): a = (a 1 = • • • = a m > a m+1 ≥ • • • ≥ a d ; here, m + 1 < d.
Since a is at least three-valued, there exist m < i < j such that a i > a j . Moreover, let us assume that i is the smallest index where a takes the value a i and j is the largest index where a takes the value a j ; we have thus a i < a i-1 and, if j < d, a j > a j+1 . Let us define the vector a by

a k =      a i + ε if k = i a j -ε if k = j a k if k = i, j,
where ε > 0 is the largest such that a 1 ≥ • • • ≥ a d . In terms of the majorization relation (see [3, Chapter II]), we have a ≺ a , so the scalar product relations ( 16) still hold for a . Note however that a is not feasible, since a 2 2 -a 2 2 = 2ε(a i -a j ) + ε 2 > 0. We normalize a by a 2 > 1: a = a / a 2 . Obviously, a is feasible and moreover

a 1 = a 1 a 2 = a 1 a 2 < a 1 ,
and thus a cannot be optimal.

Let us now optimize over two-valued vectors a as in [START_REF] Kruglyak | Decomposition of a scalar matrix into a sum of orthogonal projections[END_REF]. The conditions in (P 2 ) read, respectively (we put β = i b i )

r 2 + (d -1)s 2 = 1 s(β -b d ) -rb d ≥ 0 s(β -b 1 ) -rb 1 ≤ 0.
Thus, (P 2 ) is equivalent to minimizing s under the constraints

b d (β -b d ) 2 + (d -1)b 2 d ≤ s ≤ b 1 (β -b 1 ) 2 + (d -1)b 2 1 ,
and the conclusion follows.

Remark 3.13. Note that in the optimization problem (P 1 ) over self-adjoint matrices A, one could have replaced the objective function by -λ min (A); this follows from the observation that the feasible set is invariant by sign change.

Remark 3.14. If T = I, then ϕ(I) = ϕ(1, . . . , 1) = 1/ d(d -1). Note also that, for arbitrary B, β/b d ≥ d, so ϕ(B) ≥ ϕ(I), for all B > 0.

Equation ( 13) from Proposition 3.8 gives a sufficient condition for the variable x in order for a decomposition of T to be positive. Note that value in [START_REF] Han | Frames for Undergraduates[END_REF] might not be tight: larger values of x might yield positive decompositions. We present next a necessary condition the parameter a (and thus x) must satisfy in order for a positive symmetric decomposition of T with those parameters to exist. Proposition 3.15. Let T be a positive operator acting on H C d . Any positive symmetric decomposition of T has parameter a such that

t 2 N 2 ≤ a ≤ t 2 + T 2 ∞ /ϕ 2 N 2 = t 2 N 2 + T ∞ τ 2 • (t 1 -τ ) 2 + (d -1)τ 2 N 2 , ( 18 
)
where t 1,2 = Tr[T 1,2 ], τ = λ min (T ), T ∞ = λ max (T ), and ϕ := ϕ(T ) was defined in Lemma 3.12.

Proof. The lower bound was shown in Proposition 3.3. For the upper bound, using [START_REF] Gour | Construction of all general symmetric informationally complete measurements[END_REF], we need to upper bound x. Since any positive value of x gives a symmetric decomposing family E, the only constraints on x come from the positivity of the operators E i . Using [START_REF] Fillmore | On sums of projections[END_REF], we have

0 ≤ λ min (E i ) ≤ λ max (T /N ) + λ min (xR i ) = T ∞ N + xλ min (R i ).
Writing ϕ for the value of the optimization problem in Lemma 3.12 with B = T (see also Remark 3.13), we have

-λ min (R i ) ≥ ϕ, so x ≤ T ∞ N ϕ , (19) 
which, together with ( 11) and (15) gives the announced bound.

Remark 3.16. In the case T = I and N = d 2 , the bound (18) reads d -3 ≤ a ≤ d -2 , which was also found in [11, Eq. ( 2)].

Let us discuss now the simplest case, d = 2. We have the following result, characterizing the equality cases in the upper bound [START_REF] Niculescu | Converses of the Chauchy-Schwartz inequality in the C*-framework[END_REF], when N = d 2 = 4. Proposition 3.17. In the case d = 2, N = 4, consider the general construction of a symmetric decomposition of a positive definite operator T ∈ M 2 (C) from Proposition 3.8. The following statements are equivalent:

(1) There exists an orthonormal basis {F 1 , F 2 , F 3 } of (CT ) ⊥ such that the decomposition T = 4 i=1 E i saturates the upper bound (18).

(2) The operator T is a multiple of the identity.

(3) For any orthonormal basis {F 1 , F 2 , F 3 } of (CT ) ⊥ , the decomposition T = 4 i=1 E i saturates the upper bound [START_REF] Niculescu | Converses of the Chauchy-Schwartz inequality in the C*-framework[END_REF].

Proof. Let us first show (2) =⇒ (3), assuming T = I 2 . Start from any orthonormal basis {F 1 , F 2 , F 3 } of (CT ) ⊥ . Since the matrices R j have unit Schatten 2-norm and are also traceless, they have eigenvalues ±1/ √ 2, so the optimal constants x and a from Proposition 3.8 read, respectively, x = √ 2/4 and a = 1/4, which is indeed the upper bound [START_REF] Niculescu | Converses of the Chauchy-Schwartz inequality in the C*-framework[END_REF]. We show now (1) =⇒ (2). Les us consider the inequality (19) which leads to the upper bound [START_REF] Niculescu | Converses of the Chauchy-Schwartz inequality in the C*-framework[END_REF]. Assuming the equality in (19) was achieved, i.e.

x = T ∞ N max i µ i , we get µ 1 = µ 2 = µ 3 = µ 4 = T ∞ /(N x * )
, where x * is the optimal value of x needed to achieve [START_REF] Niculescu | Converses of the Chauchy-Schwartz inequality in the C*-framework[END_REF]. In particular, since the matrices R j have the same Hilbert-Schmidt norm, they must be isospectral, so the respective positive eigenvalues ρ 1,2,3,4 of the R j matrices are also equal. Putting δ = Tr R j = ρ j -µ j , we get from ( 8) and ( 9) δ = 0, so the R j are traceless, which implies T = cI 2 , for some constant c > 0.

The result above excludes the existence of "SIC-POVM-like" decompositions for positive operators T = cI 2 which would saturate the upper bound for the norm of the operators. On the other hand, for d = 2 and T = I 2 , any starting orthonormal basis for the traceless operators produces a SIC-POVM, so starting from Pauli matrices as in [START_REF] Gour | Construction of all general symmetric informationally complete measurements[END_REF]Section 6] is not necessary in this case.

Example 3.18. We consider now an example for d = 2 and N = 4. Let T = 1 0 0 u with u ≥ 1

and

F 1 = 1 √ 2 0 1 1 0 , F 2 = 1 √ 2 0 i -i 0 , F 3 = 1 √ u 2 +1 u 0 0 -1 . It is straightforward to check that F i , F j = δ ij and Tr[F i T ] = 0, i = 1, 2, 3.
We have then

F := F 1 + F 2 + F 3 = u √ 1+u 2 1 √ 2 (1 + i) 1 √ 2 (1 -i) -1 √ 1+u 2 .
We compare next the values of the lower and upper bounds for the largest value of the parameter x giving a positive decomposition of T . These bounds have been obtained respectively in [START_REF] Han | Frames for Undergraduates[END_REF] and (19).

The operators R 1 and R 2 have the same eigenvalues:

λ 1,2 = u -1 ± (u -1) 2 + 4(13u 2 + u + 13) 6 √ 3 √ u 2 + 1 . (20) 
We denote by ρ 1 the largest one and by -µ 1 the smallest one. Similarly, for the matrix R 3 , the eigenvalues are

λ 3,4 = 5(1 -u) ± 25(u -1) 2 + 4(u 2 + 25u + 1) 6 √ 3 √ u 2 + 1 (21) 
and we define ρ 2 to be the largest one and -µ 2 to be the smallest one. Again, for R 4 , the eigenvalues are

λ 5,6 = 3(u -1) ± 3 (u -1) 2 + 4(u 2 + u + 1) 6 √ 3 √ u 2 + 1 ( 22 
)
with ρ 3 the largest one and -µ 3 the smallest one. We see that ρ 2 ≤ ρ 1 ≤ ρ 3 and µ 2 ≥ µ 1 ≥ µ 3 . So, the bound from (13) reads

x LB = 1 4µ 2 a LB = 1 16 u 2 + 1 + 27 u 2 + 1 4 5u + u(29u + 50) + 29 -5 2 ,
where we have used

t 1 = Tr[T ] = 1 + u, t 2 = Tr[T 2 ] = 1 + u 2 , and τ = λ min (T ) = 1. When u ≥ 1, the upper bound from (19) reads x U B = u √ 1 + u 2 4 a U B = (1 + u 2 ) 2 16 .
We can easily checked that the two bounds are equal a LB = a U B only when u = 1, i.e. when T = I 2 , see Figure 1. With the help of a computer 1 , we have found that the actual largest value of the parameter a for which there exist symmetric positive decompositions of T is

a opt = 1 16   1 + u 2 + 27 -5 √ u 2 + 1u 2 + 5 √ u 2 + 1 + u 2 + 1 u(25u + 4) + 25 2 4(u(u + 25) + 1) 2    .
Interestingly, it turns out that this value is very close to the lower bound in (13):

0 ≤ a opt -a LB ≤ 27 800 125 √ 29 -673 ≈ 0.00491403.

Dual symmetric decompositions

In the following we consider the dual family associated to a given non-degenerate symmetric family E = {E i } N i=1 and we show that, after rescaling, it also gives a symmetric decomposition of T = i E i . Recall that the dual family Ẽ = { Ẽi } N i=1 is another set of N self-adjoint operators, having the same span as E, and the additional property Tr[E i Ẽj ] = δ ij , ∀i, j = 1, . . . , N . It is easy to check that the operators of the dual family Ẽi are given by Ẽi = N j=1 (G -1 ) ij E j , where

G ∈ M sa N (R) is the Gram matrix of E, i.e. G ij = Tr[E i E j ].
Since we assume that the family E is symmetric with parameters a, b, we have G = (a -b)I N + bJ N , where J N is the matrix with all entries equal to 1. Moreover, we have assumed that E is non-degenerate, so a > |b|; it follows that

G -1 = 1 a -b I N - b a + b(N -1) J N .
Consequently, the dual family Ẽ = { Ẽi } N i=1 is given by Ẽi

= 1 a -b   E i - b a + b(N -1) N j=1 E j   , ∀1 ≤ i ≤ N, (23) 
1 see the supplementary material for the arXiv preprint.

and it is also a symmetric family of parameters

ã = a + b(N -2) (a -b)(a + b(N -1)) (24) b = - b (a -b)(a + b(N -1)) (25) 
It is of interest to study the properties of the dual family Ẽ in the case when the family E = {E i } N i=1 is a non-degenerate symmetric decomposition of an self-adjoint operator T . Proposition 4.1. Let T be a self-adjoint operator and E = {E i }, i = 1, . . . N a non-degenerate symmetric decomposition of T . Then, the dual family { Ẽi } is given by

Ẽi = N (N -1) aN 2 -t 2 E i - t 2 -aN (N -1)t 2 T . ( 26 
)
and has parameters

ã = N t 2 • (N -2)t 2 + aN aN 2 -t 2 b = - N t 2 • t 2 -aN aN 2 -t 2
Proof. The results follow from direct computation using Proposition 3.2 and equations ( 24 

â = t 2 N • (N -2)t 2 + aN aN 2 -t 2 b = - t 2 N • t 2 -aN aN 2 -t 2
Remark 4.3. Note that map which associates to a symmetric family E its (normalized) dual family Ê is an involution; in particular â = a.

Since both families E and Ê are symmetric decompositions of T , it is of interest to relate the decomposition of the operator T by the family Ê using a similar procedure as described for the family E = {E i } in Proposition 3.8. By straightforward computations, it is possible to show that in this case, starting from an orthonormal basis {F i }, i = 1, . . . , N -1, with the same operators R i , i = 1, . . . , N as given by ( 8) and ( 9), we get that Êi = 1 N T + xR i , where

x := (N -1)t 2 N 2 a -t 2 x,
for any positive real x (x = 0 is not allowed here, since we have assumed the primal family E to be non-degenerate). Using the expression of the symmetry parameter a as given by [START_REF] Gour | Construction of all general symmetric informationally complete measurements[END_REF], it follows that

x = (N -1)t 2 N 2 1 x .
As before, one may use Proposition 3.8 to obtain a sufficient condition for positivity of the decomposition, see [START_REF] Han | Frames for Undergraduates[END_REF].

Decompositions and Welch-type inequalities

The following result is known in the literature as the simplex bound. The idea, originating in [9, Corollary 5.2], is that among N subspaces of fixed dimension in C d , there must be at least a pair with "small" principal angles. This result has been generalized to subspaces with weights in [2, Theorem 3. 

max i =j E i , E j ≥ d -1 ( N j=1 Tr[E j ]) 2 -N j=1 E j , E j N (N -1) , (27) 
with equality iff E is equiangular and

N i=1 E i = d -1 N i=1 Tr[E i ] I d . Proof. We have N i,j=1 i =j E i , E j = N i=1 E i , N i=1 E i - N i=1 E i , E i (28) = Tr N i=1 E i 2 - N i=1 E i , E i ≥ 1 d N i=1 Tr[E i ] 2 - N i=1 E i , E i (29) 
Using the fact that the maximum of all the terms in the LHS of the equation above is larger than the average term, (27) follows. We have equality iff all the terms are equal, and thus the family E is equiangular. In this case, from the equality case in the Cauchy-Schwarz inequality, we have In the following we give some extensions and generalizations of a result from [START_REF] Wolf | Quantum channels & operations: Guided tour Lecture notes available online[END_REF]. We use an idea from [2], which requires to introduce scalar weights v i .

Proposition 5.3. Consider E = {E i } N i=1 a family of positive operators on H C d , so that Tr[E 2 i ] = 1, for all 1 ≤ i ≤ N . Then, for any positive weights v 1 , . . . , v N > 0, we have N i,j=1 i =j v i v j E i , E j ≥ d -1 N i=1 v i 2 - N i=1 v 2 i , (30) 
with equality iff the E i are rank-one projections and

N i=1 v i E i = d -1 N i=1 v i I d .
Proof. We apply Proposition 5.1 to the operators F j = v j E j ; using (28)-(29), we get

N i,j=1 i =j v i v j E i , E j ≥ d -1 N i=1 v i Tr E i 2 - N i=1 v 2 i ,
To conclude, we use 1 = Tr[E 2 i ] ≤ Tr E i , with equality iff each E i is a rank-one projector. 

v i v j E i , E j p ≥ d -1 ( i v i ) 2 -i v 2 i p i =j v i v j p-1 , (31) 
with equality iff the E i are equiangular rank-one projections and N i=1 v i E i = d -1 N i=1 v i I d . Proof. From Hölder's inequality it follows that

i =j v i v j E i , E j = i =j v 1 p i v 1 p j E i , E j • v 1 q i v 1 q j ≤   i =j v i v j E i , E j p   1 p •   i =j v i v j   1 q
, where p and q are conjugate exponents p -1 + q -1 = 1. Therefore, using Proposition 5.3, we have

i =j v i v j E i , E j p ≥ i =j v i v j E i , E j p i =j v i v j p-1 ≥ d -1 ( i v i ) 2 -i v 2 i p i =j v i v j p-1 .
Hölder's inequality is saturated iff v i v j E i , E j p = λv i v j for all i = j, i.e. iff the family E is equiangular. 

j =k E j , E k 2 ≥ N (N -d) 2 (N -1)d 2 .
Either from Proposition 5.3 or from Proposition 5.5, one obtains the following weight generalization of the simplex bound. 

E i , E j ≥ N -d d(N -1) ≥ d -1 ( i v i ) 2 -i v 2 i i =j v i v j , (32) 
with equality iff the E i are equiangular rank-one projections and N i=1 v i E i = d -1 N i=1 v i I d .

Proof. Note that the left hand side of (32) does not depend on the weights v, so we just need to show that the right hand side is maximal when all the weights are equal. Using the homogeneity of the expression, we can assume i v i = 1, i.e. v is a probability vector. Replacing two components v i > v j of v with v i -ε and respectively v j + ε, for ε > 0 small enough, we see that the bound increases, so the maximum must be achieved by "flat" weights v (see [3, Theorem II.1.10] for the related concept of majorization).
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 2 Given a self-adjoint operator T , let t 2 := Tr[T 2 ]. Consider E a symmetric family of self-adjoint operators as in (2), having parameters a and b. Then, E is symmetric decomposition of T if and only if the following relations hold b

  1)P =1 , where P =1 is the projection on the orthogonal of R(1, . . . , 1) in R N . Remark 3.10. When T = I and N = d 2 , we recover [11, Theorem 3].
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 1 Figure 1. Comparing the two bounds for the parameter a of a symmetric decomposition of T as a sum of 4 positive semidefinite operators.

  )-(25). Note that, when T = I d and N = d 2 , the dual family given by (26) corresponds to the dual basis associated to (general) SIC-POVMs [11, Section 2].

Remark 4 . 2 .

 42 The normalized dual family Ê = { Êi } N i=1 , given by Êi = t 2 N Ẽi , forms a new symmetric decomposition of T of parameters

  4], and then to arbitrary positive semidefinite operators with fixed trace in [4, Proposition 4.1]. In the result below, we slightly generalize this last result, by removing the fixed trace condition. The equality case has been recognized to play an important role, characterizing tight fusion frames, see [20], [15, Theorem 4.3]. Proposition 5.1. Consider E = {E i } N i=1 a family of self-adjoint operators on H C d . Then, we have

N

  j=1 E j = λI d . But N i=1 Tr[E i ] = λTr[I d ], and thus λ = d -1 N i=1 Tr[E i ]. Remark 5.2. If N i=1 Tr[E i ] = d and λ = 1, we recover the statement of [4, Proposition 4.1].

Remark 5 . 4 .N i=1 v i 2 N i=1 v 2 iProposition 5 . 5 .

 542255 In order for the inequality in the statement to be non trivial, the weight coefficient[v] := must satisfy [v] ≥ d. Note that in general, [v] lies in the interval [1, N ]. Let E = {E i } Ni=1 a family of positive semidefinite operators on H C d , so that Tr[E 2 i ] = 1, for all 1 ≤ i ≤ N . Then, for any 1 < p < ∞ and any positive weights v 1 , . . . , v N > 0 such that [v] ≥ d, we have 1≤i =j≤N

Remark 5 . 6 .

 56 With the choice v 1 = • • • v N = 1 and p = 2, Proposition 5.5 gives the result from [21, Proposition 2.7 (SIC-POVMs)]:

Corollary 5 . 7 .

 57 Let E = {E i } N i=1 a family of positive semidefinite operators on H C d , so that Tr[E 2 i ] = 1, for all 1 ≤ i ≤ N . Then, for any 1 < p < ∞ and any positive weights v 1 , . . . , v N > 0 such that [v] ≥ d, we have max 1≤i =j≤N