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ABSTRACT 

The Taylor-Couette problem is a fundamental model in bifurcation theory and hydrodynamic stability. The 
inner cylinder rotation generates a flow pattern known by a transition to turbulence through a sequence of 
successive hydrodynamic instabilities. The effect of an imposed axial flow on the instabilities evolution is 
studied. An experimental device was designed to study this effect. It consists of two concentric cylinders with 
the inner one rotating and the outer one fixed, and a pressure driven axial flow can be superimposed in the 
annulus. In addition, various motion of the inner cylinder can also be imposed (oscillation, gradual or abrupt 
disturbance).The objectives are to investigate the effect of the superposition of an axial flow on the stability 
of the flow and its influence on the vortex behavior and hence on the wall shear stress. The resulting structure 
of the flow then depends on the initial flow regime, due to the rotation of the inner cylinder and the velocity 
of the axial flow. Consequently, two dimensionless parameters are defined to characterize the flows: the 
Taylor number and the Reynolds number of the axial flow. Experimental PIV measurements are devoted to 
characterize the Taylor-Couette flow dynamics with imposed axial flow and then synchronized with 
electrochemical measurements to study the vortex-wall interaction. 
 
Keywords: Taylor-couette flow; Axial flow; Instabilities; PIV, Electrochimical method. 

NOMENCLATURE 

C concentration 
e annular space width 
h cylinder height  
m wave number 
Q volume flow rate 
Re Reynolds number 
Ri inner cylinder radius 
Ro       outer cylinder radius  

S pvelocity gradient 
T     Taylor number 
 aspect ratio 

I  2 vortex detection criterion 
Ωi annular velocity of inner cylinder 
      radius ratio 
 λ wave length 

 
 

1. INTRODUCTION 

The Taylor-Couette problem consists in an 
axisymmetric flow between two concentric 
cylinders with the inner one rotating and the outer 
one stationary. It held an important place in the 
history of fluid dynamics due to its high 
characteristics instabilities. A first experimental 
works of Couette (1890) devoted to viscosity 

measurement noted a constant value at low speeds 
and a rapidly changes from a critical threshold. 
Later, Taylor (1923)has repeated the investigations 
of Couette, combining both theoretical and 
experimental approach. He designed its own device 
closely according with the hypothesis of infinitely 
long cylinders. Under this idealization, the effects 
of end wall are ignored and the exact solution of the 
laminar velocity field which consists of: 
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Where r, and z represent respectively the radial, 
azimuthal, and axial directions of the cylindrical 
coordinate system. Ri and Ro the inner and outer 
radii and Ωi, the angular velocity of the inner 
cylinder. 

If Ωi exceeds a critical value, the curved streamlines 
of the main flow generates instabilities in rows of 
cellular vortices producing the axisymmetric Taylor 
vortices. 

This transition was first noticed by Taylor (1923) in 
hisanalytical study of the related flow instability. 

Increasing the rotation of the inner cylinder Ωi, a 
successive other flow regimes appear leading to 
turbulence. Dimensionless parameter named Taylor 
number (Ta) based on Ωi is defined to characterize 
this critical condition and expressed as the ratio 
between viscous dissipation and the centrifugal 
force:  

i i o i o i
a

i

R ( R R ) ( R R )
T  

R




 
                 (2) 

Where ν represent the kinematic viscosity of the 
fluid. 

Since Taylor's researches, the instability causing 
Taylor vortices continued to be the subject of many 
theoretical, experimental and numerical works: 
Coles (1965), Burkhalter and Koschmiede (1973) 
Boubnoy (1995), Marcus (1984), Fazel et al. 
(1984), Hua et al. (1997) 

Recently, the attention of researchers in their 
studies on Taylor vortices was primarily focused on 
identifying, by experimental or analytical methods 
the threshold values of Taylor (Tac) corresponding 
at each regime flow and the different factor 
influencing these transitions. Several works can be 
cited in this issue. (DiPrima 1967; Davey et al. 
1968; Eagles 1971; Brandstater 1987; Wereley and 
Lueptow 1994). 

The values of Tac, limiting the different regimes 
change with an imposed axial flow in the annulus of 
the Taylor –Couettesystem.In this case, the 
resulting flow is named Taylor–Couette–Poisueille. 

Several stable states may occur in this case 
(Lueptow 1992). 

A linear stability theory is developed by Chung and 
Astill (1977) for the resulting spiral flow. Gravas 
and Martin (1978) investigated the Taylor-Couette-
Poiseuille for a various annulus gap size and they 
noted that the axial flow stabilizes the flow field 
and the first critic Taylor (Tac) is increased.  

Taylor-Couette-Poiseuille has been widely used in a 
variety of engineering applications, such as, cooling 
of rotating machinery journal bearing lubrication 
and filtration/ultrafiltration systems. In these cases, 
controlling the interaction between vortex and 

cylinder wall are demanded. Hence, understanding 
the Taylor–Couette flow with an imposed axial flow 
allows the control of the related flow fields. 

The objective of this paper is to perform an 
experimental setup to further study detailed flow 
fields and bifurcations related to Taylor–Couette-
Poiseuille flow and highlighting the changes 
compared to Taylor-Couette flow without an 
imposed axial flow in terms of flow regime 
behavior and fluid-wall interaction. 

The experimental study consists firstly in a 
qualitative part by visualizing the vortices with a 
small amount of particles (Kalliroscope) added to 
the fluid in the aim to draw the topology of the 
developed instabilities. 

Particle Image Velocimetry measurements were 
carried out to obtain the detailed velocity fields in a 
plane of the annulus space. Vorticity and 2 criteria 
are then applied to identify the vortex location. 

The effect of the imposed axial flow, on the 
development and the behavior of Taylor vortex, is 
analyzed. The interaction between vortex and wall 
is performed using electrochemical method based 
on parietal mass exchange to obtain wall velocity 
gradient and wall shear. 

2. EXPERIMENTAL FACILITY 

2.1 Setup 

The Taylor-Couette experimental system consists of 
two coaxial cylinders which the inner is rotating 
and the outer is fixed. The system was mounted at 
GEPEA laboratory of the University of Nantes in 
the goal to study of the dynamics of a Taylor-
Couette flow with and without axial flow, and 
particularly, the interactions between vortices and 
walls. In this way, the facility was designed with 
Plexiglas walls, to enable PIV measurements. A 
vertical and a horizontal row of electrochemical 
sensor are implanted on the wall of the outer 
cylinder for the mass transfer measurement. The 
system dimensions are ݄ ൌ 0.45݉ for the height of 
the cylinder, with ܴ௢ ൌ 0.1݉and ܴ௜ ൌ
0.085݉respectively the outer and the inner radii. 

The annular space is fixed at ݁ ൌ 1.4 ൈ
10ିଷ݉allowing an aspect ratio Γ = h / e = 33.03. 
The inner cylinder is hedged by an upper and lower 
cover attached to the outer fixed cylinder. 

Several directives have been accomplished in the 
system designed to ensure a good accuracy of 
results and facilitate access to the measures:  

-The fixed part consists of a block with three plane 
surfaces in which a cylinder has been dug forming 
the outer cylinder of the system. The external faces 
permit, thereby, a uniform illumination of the flow 
in the annulus with the laser sheet (Fig.1).  

These walls providing direct contact with the fluid 
as it passes into the annular space, are transparent 
and  clean (no notches or scratches) to ensure good 
quality display in PIV measurements. 



W. Abassi et al. /JAFM, Vol. 9, Special Issue 1, pp. 59-68, 2016.  
 

61 

The installation was made of inert material avoiding 
any metallic contact with the electrochemical 
solution. 

Fig. 1.Experimental facility (TCS) overview and 
photograph. 

2.2 Experimental measurements techniques 

In this work, we first develop a qualitative 
description of the Taylor-Couette flow by the 
visualization of the flow through the “Kalliroscope” 
suspension. 

This suspension is composed of reflective flakes of 
a typical size of 30 µm x6 µm x 0.07 µm with a 
relatively large reflective optical index n = 1.85 and 
a density of ρ = 1.62 g/cm-3(Gauthier et al. 1998; 
Abcha et al. 2008;Matisse et al. 1984). 

By illuminating the flow in the annular space, the 
particles aligned along the flow provided by their 
reflection of the light, information on the structure 
of the flow. This without introducing significant 
changes in the viscosity of the flow and non-
Newtonian effects as far as small concentrations are 
used. A proportion of 1% of Kalliro scope is thus 
used for seeding the flow. The sedimentation of 
these particles is then negligible if the experiment 
lasts less than 10 hours.   

A laser sheet directed towards the air gap of the 
Couette-Taylor system enables to obtain 
homogeneous illumination of a section in the plane 
(r, z) of the flow. 

The instantaneous flow structure is then recorded by 
a digital camera oriented along the cylinders axis. 

The obtained visualization, allows a quantitatively 
characterization of the topology of the annular flow 
in function of the cylinder rotation. 

Particle Image Velocimetry (PIV) measurements 
were then carried out as a quantitative investigation 
of Taylor-Couette-Poiseuille flow, in order to 
measure the axial and radial velocity components. 

For the PIV seeding, we opted for polyamide 
spherical particles with average diameter of 50 
microns, a density close to that of water (1.03 
g/cm3) and a refractive index of 1.5. 

The image captures are provided by a 
cameraCCD, positioned facing the cylinder, with2 
million pixels of resolution and an image size of 
1600 x 1200 pixels. The camera is also equipped 
with a fixed focal length of 60 mm. The camera is 
synchronized to the laser with a frequency f = 15 
Hz for image pairs acquisition. The adaptive 
correlation method is used to calculate the velocity 
fields from the snapshot on each interrogation 
window of 12x12 pixels. 

For the light source, aNd-YAG (Neodymium-doped 
Yttium Aluminium Garnet) pulsed laser is used. It 
is emitting in the infrared with a fundamental 
wavelength (1064 nm). A frequency doubling is 
performed to obtain a light in the visible spectrum 
(532 nm).Finally the electrochemical method is 
used to characterize the imprint of the vortex 
structures on the wall, through the implanted 
microelectrodes on the surface of the fixed cylinder. 
The principle of this method consists on placing a 
microelectrode (cathode) with a small size relative 
to a counter-electrode (anode) and separated by an 
electrolyte. The measurement of the current on the 
sensor is related to mass transfer, and it is used to 
determine the parietal velocity gradient. The 
electrochemical solution used is a mixture of 
potassium Ferri / Ferro cyanide (C=25 
mol/m3).Potassium sulfate (K2SO4) was chosen as 
inert electrolyte at a concentration of 200 mol/m3 
which was in excess in order to suppress the ion 
migration effect.   

The synchronization between PIV and 
electrochemical measurements enables to obtain the 
behavior of instabilities and their effects on the wall 
zone at the same time. 

In this aim, an external trigger (button) is mounted 
and related to a frequency generator (TTL signal) 
for simultaneously triggering the acquisition of 
instantaneous velocity fields (PIV),  and recording 
moments of start and end electrochemical 
measurements. The approach of the synchronization 
method is illustrated by the figure (Fig. 2). 

3. RESULTS AND DISCUSSIONS 

3.1 Qualitative study: flow visualization  

In order to achieve a qualitative description of the 
behavior of the flow produced by the movement of 
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By increasing Reax≈57, the helix finally breaks on 
the entire height of the cylinders before 
disappearing completely for a higher Reynolds 
number (Reax = 120), thus leaving the place for the 
axial flow. 

Fig5 shows an example of spatio-temporal 
evolution of instabilities developing in the gap for a 
Ta≈100 and Reax≈34. It shows clearly the 
moving in the axial direction of Taylor instabilities. 

From t1 = 10 s, the Taylor vortices start to break 
and the flow then begins to stabilize. This effect 
arises, firstly, at the bottom of the test section and 
thereafter begins to propagate on the top. However, 
the effect of the axial flow at low Reax starts 
eventually to dissipate from a height h0≈20 cm (≈
13.8*e) and vortices resume their initial forms. 

 
Fig. 5. Temporal evolution of the structures 

in the (r, z) plan for Ta = 35 = 100 and Reax 

b. Reverse Protocol 

In this part, we reversed the operating mode by 
imposing an axial flow in the annulus before 
triggering the rotating.  For this, we have set Reax
≈34 then, we varied the rotation speed to sweep 
the different regimes of instabilities. This allowed 
us to demonstrate the rotation effect on the imposed 
axial flow. Visualizations of the flow in the gap 
section (r, z) are illustrated by images inFig6.The 
snapshots are activated at instantt2≈70 s from the 
start of the inner cylinder rotation. 

For the critical Taylor number Tac = 46, the 
characteristics instability have not been formed, the 
stabilizing effect of the axial flow remains 
preponderant compared to the centrifugal effect. 

By increasing the cylinder rotation (Ta = 77), the 
axial flow remains stable until t = 56 s from the 
start. From that moment, the Taylor cells begin to 
form at a height h0≈18 cm = 12.4xe and begins to 
rise in the axial flow direction. 

 
Fig. 6.Visualization in (r, z) plane at t2 = 70 s 

and Reax =34: a) Ta = 46; b) Ta = 77; c) Ta = 
120;d) Ta = 384; e) Ta = 680 

For a higher rotation speed (Ta = 120), Taylor cells 
arise more quickly at t = 16 s, at a height h 0≈8 cm 
= 5.5*e from the lower base of the device, and start 
to spread in the direction of flow while completing 
their development. Thereafter at t = 33 s, these cells 
are caught by other new cells generated directly 
above the train instabilities at a height h1≈23 cm = 
15.7*e. Finally, the centrifugal effect dominates, 
and Taylor cells are installed on the majority of the 
annular space and start to move in the direction of 
flow. 

For larger Taylor numbers, the effect of rotation 
clearly dominates the imposed axial flow and the 
Taylor cells are developed rapidly over the entire 
height of the annular space (t = 15 s for Ta = 384 
and t = 9 s for Ta = 680). 

In summary, a competition is maintained between 
the destabilizing effect created by rotation and the 
stabilizing effect of the axial flow which tends to 
eliminate these instabilities. These visualizations 
have provided a qualitative description of the 
Taylor-Couette-Poiseuille flow and the aspect of the 
instabilities for different rotation rate. These 
observations are consistent with the results of 
Wereley and Lueptow (1999) and Berrich (2011), 
which allows to experimentally describing the 
behavior of a Taylor-Couette-Poiseuille flow and 
providing a mapping of the flow. However, these 
results do not present complete analysis of the flow 
dynamics. In this perspective we have established a 
qualitative study of flow using PIV measurements. 

3.2 Quantitative study with PIV 
measurement  

We focus in this part the effect of an imposed axial 
flow on the dynamic behavior of Taylor Couette 
flow using PIV measurement of velocity fields. 

In this aim, we chose to operate in the Wavy vortex 
flow regime (Ta =120), characterized by a full 
development and vertical organization of Taylor 
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along the annulus space, marking a new dominance 
of the centrifugal effect. 

In addition, this new generated instabilities are 
entrained by the axial flow with wavelength 
(λ/e≈2.6) which is the same of Taylor Couette flow 
without superimposed axial flow for the same 
Taylor. 

The following section will be devoted to the study 
of instabilities in the near area of the fixed wall 
where electrochemical sensors are located.  

For this, we synchronize the PIV measurements 
with electrochemical measurements in the same 
time scale. 

3.3 PIV- Electrochemical technique 
synchronization measurements 

The synchronization technique between PIV and 
electrochemical method consist to start the PIV 
acquisition in the same time with collecting the 
response in current of electrochemical sensor. 

This experimental technique provides a statistical 
analysis and a comparison of the temporal evolution 
of the measured variables in the same operating 
conditions. An example of electrochemical probes 
responses, located on a vertical row of the outer 
cylinder, is illustrated by the series of graphics (Fig 
11) in the case of a Taylor-Couette flow with and 
without axial flow. 

The measurement results are obtained for a 
sampling frequency fech = 1500 Hz for a total 
acquisition time of 76 seconds. 

The obtained results are the sensor responses for 
three different flow regimes: Ta =300, Ta=900 and 
the turbulent regime Ta =1820. 

For each flow regime, axial flow Reax = 63 is 
imposed for the purpose of determining its effect on 
the parietal mass transfer. 

The plots of the measured current  on different 
probes shows a period signal for the first regime of 
flow (Ta≈300), characterized by a single 
fundamental frequency "fs" in the absence of axial 
flow. This fundamental frequency is obtained 
through the frequency spectrum of these signals. 
By imposing an axial flow characterized by a 
Reynolds number Reax= 63, the signal retains its 
wave nature. However, it slightly loses its 
periodicity. 

For a higher rotation rate Ta≈900, the signals 
presents a repetitive sinusoidal shapes characterized 
by two adjacent sinusoids with doubled amplitudes 
(aliasing signals). In addition, the periods are 
smaller compared to those obtained for the previous 
regime instabilities. The imposed axial flow (Reax = 
63) resulted in an increase of the signal period and a 
suppression of the phenomenon of the aliasing 
signal. This can be interpreted by the stabilizing 
effect exerted by this axial flow despite the 
predominance of the centrifugal effect which leads 
the regeneration of the instabilities in the annulus 
space. 

For greater rotation rate (Ta≈1820), the signals 
from the polarographic sensors lose their sinusoidal 
form. However, the superposition of the axial flow 
causes a new periodicity on signal and reappearance 
of sinusoids. 

Using these different responses of electrochemical 
probe, we can determine the wall shear stress. 

 
3.3.1 wall shear stress 

In order to calculate the velocity gradient parietal 
from the mass transfer rate obtained by 
polarogarphic measurement, we use   Sobolik et al. 
(1987) method. 

By using the response of tri-segmented 
electrochemical sensors placed at a height z = H / 2 
on the fixed cylinder, we can determine to the 
different components of the parietal velocity 
gradient. 

Sobolik (1999) showed that the different parietal 
velocity gradient components (azimuthal =S and 
axial z=Sz) and the direction of flow can be 
determined considering that in the axial velocity is 
independent of the radial direction (z or r) (Wein 
and Sobolik, 1989). 

The obtained directional component of the velocity 
gradient by the tri-segmented sensor are shown in 
Fig 12 for a Taylor number Ta = 300 with two 
different rates of the imposed axial flow: Reax= 
63andReax = 120. 

 
The evolution of the parietal gradients components 
retains a periodic form. Indeed, one period 
corresponds to the passage of the instability in the 
parietal area. 

The effect of the increase of the imposed flow rate 
is highlighted with a decrease of the period of 
oscillation of the parietal gradients. The evolution 
of the azimuthal component of the velocity gradient 
is superimposed on the averaged parietal velocity 
gradient. This confirms the experimental results 
obtained by Wahbi (2009). 

 
The two curves have the same characteristic shape 
of the instabilities evolution in the vicinity of the 
probe. 

The minimum and maximum values of the two 
results are almost the same, and both signals are in 
phase. However, a slight difference can be observed 
of 25.6% between the amplitudes of the two 
developments. 

This could be explained by the fact that 
measurement errors committed due, essentially, to 
the inability of the optical technique (PIV) to 
measure the velocity data at a very close area to the 
wall. 

3. CONCLUSION 
The dynamics of the Taylor-Couette flow with an 
imposed axial flow is experimentally analyzed 
using qualitatively and quantitatively techniques. 
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