Object oriented Bayesian Network for complex system risk assessment
Quan Liu, François Pérès, Ayley Tchangani

To cite this version:
Quan Liu, François Pérès, Ayley Tchangani. Object oriented Bayesian Network for complex system risk assessment. IFAC-PapersOnLine, 2016, 49 (28), pp.31-36. 10.1016/j.ifacol.2016.11.006. hal-01527240

HAL Id: hal-01527240
https://hal.science/hal-01527240
Submitted on 24 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive Toulouse Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 17672

To link to this article: DOI:10.1016/j.ifacol.2016.11.006
http://dx.doi.org/10.1016/j.ifacol.2016.11.006

To cite this version:
Liu, Quan and Pérès, François and Tchangani, Ayley Object oriented Bayesian Network for complex system risk assessment. (2016) IFAC-PapersOnLine, vol. 49 (n° 28), pp. 31-36. ISSN 2405-8963

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
Object Oriented Bayesian Network for complex system risk assessment

Q.Liu * F.Pérès ** A.Tchangani ***

* Université Fédérale Toulouse Midi-Pyrénées - Laboratoire Génie de Production, INP-ENIT, 65016 France (e-mail: quan.liu@ enit.fr).
** Université Fédérale Toulouse Midi-Pyrénées - Laboratoire Génie de Production, INP-ENIT, 65016 France (e-mail: francois.peres@ enit.fr).
*** Université Fédérale Toulouse Midi-Pyrénées - Laboratoire Génie de Production, INP-ENIT, 65016 France (e-mail: ayeley.tchangani@ iut-tabes.fr).

Abstract: In this communication, we present a new way of modelling risk management process in a large scale, complex and dynamic system using an extended object oriented Bayesian network (EOOBN) as the underlying mathematical tool. The communication begins by presenting the proposed extension that permits to take into account the necessity of varying parameters in object oriented Bayesian network (OOBN) and dynamics for practical purposes. The second part is devoted to adoption of existing information propagation algorithms in classical Bayesian network (BN) and dynamic Bayesian network (DBN) to this extended model. A small practical case study is used along the communication to illustrate each modelling step.

Keywords: complex system, modelling, OOBN, DBN, risk management

1. INTRODUCTION

In large scale industrial processes, with complex interactions among the components and dynamic evolution, an abnormality or a component failure may result in a cascade phenomenon that can lead to unacceptable risks or the collapse of such networked systems. Therefore one must have at its disposal efficient and sound tools, methods or framework to assist managers of such complex systems in their analysis, the prediction of their behaviour, or in their control or management of the effect of possible undesirable events that may affect them. Supplying such a decision support system becomes a challenge for researchers. Modelling risks requires indeed considering the nature of the relationships (influence, causality, etc.), the related uncertainties (about the existence of a relationship, of its intensity or even about the delimitation of the system under consideration), the dynamics (evolution of the model structure and/or parameters over the time) see Bousariour-Anokrane et al. (2012). The relationships, uncertainty and dynamics characterize the whole system. Considering these characteristics, in modelling process, leads to a complex and large scale system. Within this framework, using classical physical laws to describe it is often unsuitable and the need for new more tractable approaches becomes necessary. In this communication, we attempt to model an industrial process through an extended object oriented Bayesian networks (EOOBN) based on components sharing a same structure. The main idea is first to consider inside these elementary components, uncertainties of interactions among different variables through Bayesian network properties. Then the whole system will be described by associating these components through object oriented mechanisms. This modelling approach will help monitoring and measuring the evolution of the system for a better understanding and controlling of its behaviour. The main purpose of this communication is thus to model a system in order to facilitate risk management and decision making. The communication is structured as follows. Section 2 provides a brief overview of complex systems and the Bayesian network techniques. Section 3 presents a new extended object oriented Bayesian network and shows in particular how the dynamic evolution is introduced in an object. Adapted inference algorithms associated with the developed EOOBN model are introduced in section 4. Finally, a conclusion, some perspectives and future works are presented in the last section.

2. STATE OF THE ART

2.1 Complex system

A complex system is a large system with four main characteristics: it is composed with a large number of components, these components are interconnected, effects of these interconnections are uncertain, and some of their characteristics are likely to evolve over time (dynamically). The goal of this communication is to develop an approach for modelling these complex systems in order to evaluate the risk when one or some of their composed components are destabilized by an external event or an internal cause. Such kind of model can be used to assist the assessment process of indicators or the decision making process, in different domains such as economy, medicine, production and many other fields. In Amaral and Ottino (2004), the author points out issues related to classical
modelling methods based on assumptions which eventually can bias the results by ignoring the aspects of interdependency, dynamic and size of the system. Finding another approach to simulate these complex systems when avoiding a great number of hypothesis is worth of research. Bayesian Networks are very efficient for modelling uncertainties. Meanwhile Dynamic Bayesian Network may be used when there is a temporal dimension in the system behaviour see Murphy (2002). In the case of system with a huge number of components, a possibility to reduce this complexity is to use the so called Object Oriented Bayesian Networks (OObN) in order to exploit possibilities offered by this modelling technique. The idea of modelling repeatable systems by object oriented techniques has been already considered in a certain number of studies such as Jaeger (2000), Weber and Jouffe (2006) to mention just a few. In the following paragraph, we introduce basics of static and dynamic Bayesian network characteristics.

2.2 Bayesian network and Dynamic Bayesian Network

A Bayesian Network is a directed acyclic graph (DAG) that represents a certain relationships (in general causal relationships) between variables in a certain knowledge domain; each node represents a random variable associated with a conditional probability table (CPT) characterizing its parameters. Bayes theorem is the central theory in the mechanism of inference in Bayesian Networks. It permits to propigate some local observations through the graph in order to update a priori knowledge about the state of other nodes, see Nielsen and Jensen (2009), Pearl (1988). Figure 1 shows an example of a Bayesian Network that represents the performance evaluation mechanism of a production machine. In this example, the basic elements (nodes in the corresponding BN) that may influence the productivity (pieces/hour) of a machine are: machine performance, workers’ motivation, upstream production flow and products’ quality. All these elements are called variables in the BN. Meanwhile Products’ Quality and Upstream Product influence the Product; nodes representing Products’ Quality and Upstream Product are therefore known as parents of node representing Product. There are two types of probability tables in a BN see Godichaud et al. (2012b): prior probabilities tables for root variables (variables without parents) like Machine Performances and conditional probabilities tables for a variables with parents like Products’ Quality see Godichaud et al. (2012a), Godichaud et al. (2012b). Indeed, a BN model is not only a static representation of knowledge but also a tool for the evidence inference which updates the probabilities in the network and enables the refinement of the results according to the observed situation see Ben Hassen et al. (2013).

Fig. 1. Representation of machine performance

In order to take into account of possible dynamic behaviour of systems, dynamic Bayesian networks (DBN), are introduced as possible extension of a BN. The DBN is a series of time-slice BN; a typical DBN is a Hidden Markov Models (HMM), see Rabiner and Juang (1986). Learning techniques in a DBN use the same principles as in the classical BN see Murphy (2002). For instance, in the former example of Fig.1, it is reasonable to consider that machine performances will decline over time, so that the node Machine Performances becomes a dynamic node; Fig.2 shows a DBN model of problem considered in Fig 1 with 2 time-slices, where the dynamic node is MachinePerformances_{t} (MP_{t}). The communication between time-slices uses the transition model determined by a transition matrix A as:

Fig. 2. Dynamic Bayesian network representing a machine performance

- the transition model: \(A = P(MP_{t+1} | MP_{t-1}) \)
- the initial state: \(\pi = P(MP_{0}) \)

2.3 Object Oriented Bayesian Network

Using BN techniques for modelling risk assessment processes becomes increasingly complex when the size of the system increases. For a large scale system with many interacting elements, constructing a BN to represent its functioning behaviour may be very challenging. Meanwhile, when the size of network grows, the model visibility reduces and the update of parameter becomes burdensome. For this reason, an object oriented techniques might be an alternative to reduce the complexity by highlighting a generic pattern representative of the various dimensions of the problem. An object oriented Bayesian network (OObN), is a direct application of the object paradigm see Bangso and Wullemien (2000), Koller and Pfeffer (1997). The basic element is the class, fragment of a Bayesian network who has three sets of nodes: input, output and internal nodes. The input and output nodes are the interface of a class which can be seen from the outside. The OObN takes advantage of classic BN but introduces the concept of instance nodes. An instance node is an abstraction of a part of a network which can be used as an elementary component to represent the whole structure. The notion of encapsulation allows the transmission of all properties of the network fragment. An object oriented network can be viewed as a hierarchical description/model of a problem. This makes the modeling easier since the OObN-fragments at different levels of abstraction are more readable. An OObN model can be built by asking the experts’ opinions or using the learning techniques. In Langseth and Nielsen (2003) and Wullemien and Torti (2012), the authors give some insights into OObN structure learning. The construction of such a model can be facilitated by an ontology representation see Liu et al. (2015). Once the structure of the system is defined, the Conditional Probability Tables
(CPTs, also called parameters) have to be parametrized. In Langseth and Bangsø (2001) the author extends the parameter learning algorithm to the objects who have the same structure based on OO assumption. The parameters being identical, this reduces the number of parameters to be specified or learnt. Modelling a complex system by an OOBN allows not only reducing the design work, but also updating calculations. However, most of existing works dealing with this topic consider that parameters do not change from an object to another which is not a realistic assumption in a real world problem modelling context. As our main goal is to use OOBN for the representation of a large, repeatable and inherited system, this shortcoming must be remedied. In the next section, we will describe a proposed extension of OOBN paradigm that we refer to as Extended Object Oriented Bayesian Network or EOBN for short. An adapted inference mechanism for this EOBN will be presented in section 4.

3. EXTENDED OBJECT ORIENTED BAYESIAN NETWORK

In this section, we present an extended object oriented Bayesian network (EOOBN) which introduces much more flexibility, such as the possibility of having different parameters for different objects and taking into account dynamic behaviour of the system, etc. The main steps for constructing an EOBN will be considered in the subsequent paragraphs showing how the extension is introduced.

3.1 Extended OOBN

To overcome the limitations of classical OOBN associated with the structure building Bangsø and Wullemien (2000) and Koller and Pfeffer (1997), and the difficulty to take into account dynamic interactions Koller and Pfeffer (1997), we propose here an extended OOBN to ease parameter variation and dynamic consideration process. The original contribution in this communication is to develop an EOBN which simulates the large scale system with different parameters for objects having the same structure. Moreover our approach is easy to adapt by collaboration mechanism. Here below are the main components of an EOBN:

Class and Object

In this section, we will consider two levels in EOBN: definition of a class is made at structure level (that is the nodes and their connexions in the object) and the object itself will be instantiated both through the input values and with respect to its parameters at the object level which are likely to evolve with context or time.

Class: A class \((C)\) is the structure part \((S)\) in a BN independently of the CPT parameters values. It has three kind of nodes namely: input nodes, output nodes and internal nodes. Only the input and output nodes are visible from outside the class.

Object: An object \((O(S, P))\) in the OOBN is an instantiation of the corresponding class. There are two parts in an object, the structure \((S)\) which inherits from the class and the parameters \((P)\) which will be defined by experts or learning processes.

We refer to input and output nodes as communication channel for the class/object entity because they are in charge of exchanging information for the class/object. Here are some conditions that must be satisfied:

Fig. 3. Class associated with a machine

- Input nodes cannot have parents inside the class
- Input node is a reference node which is the projection of an output or a normal upstream node
- Internal nodes cannot have neither parents nor children outside the class
- Output nodes cannot have child inside the class

In Figure 1 we give BN model of performance evaluation problem of a single machine. If we consider a real production workshop there may exist many similar machines so that a single machine may be considered as an object; Figure 3 shows a class level of such a machine and Figure 4 depicts the object level model.

An industrial processes (a production line for instance) can be represented through connected items (representing machines for instance). The input node is the Upstream Product which comes from the last machine, the output node is the Product which will be sent to the next machine. Only the output and input nodes can be seen from the outside (see Fig.3). The internal nodes such as Productions Quality, Works Motivation are encapsulated in the class. The class characterizes only the structure of the network. A class can be used only after its instantiation; in this case a class is converted into an object (see Fig.4). The EOBN not only inherits all the advantages of the classical OOBN such as hierarchy or encapsulation but also has much more flexibility in the quantitative part. The possibility of having different parameters values from an object to another variation of the parameters is achieved by the instantiation of a class. The necessity to follow the behaviour of real world systems appeal for introducing dynamicity in the model. This can be done by extended classical DBN in object oriented frame as shown in the following paragraph.

3.2 Extended DBN by object

Although in Bangsø and Wullemien (2000) a DBN simulation approach is given based on a self-reference node in
an object, a confusion might appear when trying to add the dynamic part within a large OOBN. To overcome this issue, we introduce the virtual nodes in the EOOBN to simulate the dynamic part. And we obtain an dynamic EOOBN which refers to as a DOOBN.

Virtual node: The virtual node is a communication channel for the class/object. It usually stands for the temporal node.

- The virtual node is either an input node or an output node in the class/object.
- It is added for dynamic node in the class/object as a communication channel with other time-slice
- The transition model represents the parameters between the virtual input and the dynamic node. Conditional probabilities between a dynamic node and its virtual output are equalled to 1

![Fig. 5. A dynamic class for a machine with virtual nodes](image)

An example of a dynamic class is given on Fig.5. The internal node Machine Performances (MP for short) is a dynamic variable, the virtual input MP at t_i receives the temporal information from the time-slice t_{i-1} and the virtual output MP for t_{i+1} is a projection of MP_{t_i}, which transfers the current information to the next time-slice t_{i+1}. The parameters for the dynamic relationships are:

- $A_{t_i,t_{i-1}} = P(MP_{t_i} | MP_{t_{i-1}})$
- $A_{t_{i+1},t_i} = P(MP_{t_{i+1}} | MP_{t_i}) = 1$

Parameter $A_{t_i,t_{i-1}}$ is the conditional probability table between time-slice t_i and t_{i-1} and parameter $A_{t_{i+1},t_i} = 1$ just transfers the information from t_i to t_{i+1}. Adding the virtual node in the class/object allows the encapsulation of an object. The communication between the time-slices through the virtual node keeps the independence of each time-slice.

3.3 Construction method

The construction of a dynamic EOOBN can be done by carrying out the following steps:

1. Formalize the structure S of a system (by splitting the system into different classes C)
2. Design the structure of each class C with respect to S and without considering the dynamic part
3. Identify the dynamic node in the class N_t and add the virtual input and output node around the dynamic node
4. Instantiate the class by introducing the parameters corresponding to the object
5. Connect the objects through their communication channels

![Fig. 6. Example of a dynamic EOOBN for the representation a production line](image)

Figure 6 shows a three time-slices model of a production line formed by three machines. In Fig.5 the M^2_t represents the second machine at time t_2. Machine exchange production information. For instance the input node (Upstream Product) of the second machine M^2 receives the output information (Product) from the first machine M^1. Dynamic evolution of Machine Performance is transferred by the virtual nodes. We refer to the second and third steps as class level, the forth step as object level and the first and last steps as global network level. The EOOBN that we propose in this communication is always organized at two levels: global level and object level. In order for existing inference algorithms to work for the proposed EOOBN some adjustments are required that will be presented in the next section.

4. PROPAGATION IN EOOBN

Here we propose the algorithms for solving the inference problem in an EOOBN. In the real world when an observation is made, it can be used to either predict a future behaviour and/or diagnose the causes resulting in the current system state. The capacity of inference is an advantage of BN. As we have mentioned, the information propagation of a classic OOBN is done by either developing all the objects Bangsø and Wullimain (2000) to obtain a classical BN or by using the MSBN Koller and Pfeffer (1997), Xiang and Lesser (2000), losing by the way the sense of object oriented modelling. Traditional inference techniques are not suitable for the EOOBN processing due to the number of parameters and variables. Because of the size of EOOBN the inference work should also take into account the calculated size and time. For this reason, we propose here an adapted algorithm for EOOBN calculation using the advantages associated with the virtual nodes.

4.1 Local calculation

At the object level, as input and output nodes separate the objects, inference can be performed locally with no need of extra information provided by its neighbours.

The classical BN algorithms can be applied for the object calculation given that all the parameters are known. Indeed internal and output nodes correspond to previous knowledge and input nodes receive the probability from their neighbourhood. Local calculation can result of four situations:

1. There is no observation in the global network
2. There is observation(s) in the object
3. There is an update information(s) at the input of an object
There is only one type update information(s) at the output of an object.

"No observation in the network" means that the network spreads by itself with time evolution. If there are several types (input and output) of information update, the semi-local calculation is to be used. Since at this time the soundness of a junction tree is broken, an object needs some more information from its neighbours. This information is the conditional probabilities between the input and output nodes which are always the constants and can be computed easily. This extra information keeps the soundness of the object. But the semi-local calculation is only needed when inference is performed for a certain object of the global network. The feature of the local calculation is saving the computing time and size. Because computation can be performed in smaller parts of the global network, there is no need to build a big, complex junction tree. Moreover some objects inherit their structures from a same class, and they have the same junction tree. Due to local calculation possibilities, objects may do the computation independently, allowing possible parallel computation.

4.2 Information flow

The computation in an EOOBN has two levels, the object level is the local calculation, and the global level is the information flow.

![Fig. 7. Information flows without observation](image)

No observation When there is no observation, the network spreads by itself. The information follows the same direction as the communication channels (see Fig. 7), the machines receive the input informations such as *Upstream Product* and *MP* at t_{i-1} and process the output like *Product* and *MP* for t_{i+1} to the downstream objects.

![Fig. 8. Information flows introducing and observation](image)

Observation If there is an observation in object, for instance M_{ij}^m, the propagation of the information between objects is described in Fig. 9 and Fig. 10. Because the object has the local computation ability, one just needs to control the information flows. The algorithm for the inference is presented in Fig. 11.

In this algorithm, the computation needs to be done first at M_{tm}^m with $1 \leq m < j$ and at M_{ij}^t with $t_1 \leq t < t_i$ which

![Fig. 9. Information flow between time-slices t and $t-1$](image)

![Fig. 10. Information flow between time-slices t and $t+1$](image)

5. CONCLUSION

A new modelling technique using an extended Bayesian approach referred to as EOBN and based on the concept of Oriented Object paradigm has been proposed to tackle modelling challenges raised by large scale and complex real world systems. The principles of defining the structure in the class and distributing the parameters for the instantiation have been shown. EOBN models appear to be much powerful than the classical OOBN while preserving all its benefits, such as encapsulation, hierarchy and top-down design. When a repetitive structure allows the use of such Object Oriented representation, EOBN is undoubtedly suitable for modelling complex situations encountered in risk management framework. To take into account the possibility of varying parameters and the system dynamics, EOBN have been adapted and changed to obtain dynamic OOBN referred to as DOOBN where each time-slice is associated with an object and parameters are allowed to change from slices through the introduction of virtual nodes. An illustrative application in an industrial process has been used along the communication to show the interest of such modelling technique. Furthermore, inference algorithms demonstrate the gain of using EOBN in terms of local calculation and simultaneous computation. In a future work, learning techniques associated with such modelling will be considered.

REFERENCES

Fig. 11. Information propagation organigram

