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0 - INTRODUCTION 

0.1. Traditional spatial economic analysis is limited to the 

description of precise spaces. 

To say that an economic space is precise means: 

(1) that this space has, or else, has not given constituent cha- 

racteristics and (2) that the agents located there prefer, or 

else, do not prefer one possible action to another. 

Proposition (1) implies that an economic space is 

perfectly delimited and that it can be clearly partitioned into 

homogeneous subspaces. Proposition (2) implies that economic 

agents undertake exact economic calculations and optimize, under 

rigid constraints of resource limitation, objective functions 

whose arguments are clearly defined. 

Thus, traditional spatial economic analysis is based 

on a binary logic: presence or absence of the space's characte- 

ristics, preference or non-preference of agents with respect to 

possible actions. This logic supposes the principle of the 

excluded middle. 

0.2. However, the real world is imprecise. The observed economic 

spaces (areas of influence, regions, attraction zones, market 

areas, etc.) have "more or less" the given characteristics; 

instead of having frontiers, they have ill-chiselled limits; 

they partially overlap one another and they do not allow them- 

selves to be subdivided without ambiguity. Likewise, economic 

agents pursue vague objectives, sometimes incompatible or con- 

tradictory, and they appraise imperfectly the constraints which 

limit their resources. 

The analyst who admits that the lights and shades 

of expression "modify everything" and are, at the same time 

essential, intends to retain them in full. But he must go 

beyond the usual literary comments which are often juxtaposited 

The author thanks M.Emmanuel ANIZOBA, Docteur ès Sciences économiques of 
the University of Fribourg (Switzerland) for translating this paper into 

english. Of course, the author alone is responsible for the text (C.P.) 
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to scientific analysis and whose purpose is to relativize the 

conclusions, in other words, to contest implicitly the results. 

He is bound to give a formalized expression of these nuances 

and gradations of the real world and he ought to reconcile the 

imprecision inherent in the latter with the precision of the 

mathematical model being used. 

0.3. It is true that n-ary logics have been in use for some time 

now: POST (1921), LUKASIEWICZ (1937), MOISIL (1940). But, it is 

with the recent development of the theory of fuzzy subsets that 

the elaboration of a spatial economic study, perfectly rigorous 

and fully formalized, has become possible. 

This theory, presented for the first time by ZADEH 

(1965) [50] is making great strides and penetrates every branch 

of mathematics. A few primers are now available [18] ] [ 21 ] [ 23 ] 

[39 ] [51 ] . 

0.4. Since 1974, the Institut de Mathématiques Economiques of 

the University of Dijon, associated with the Centre National de 

la Recherche Scientifique (France), devotes an important part 

of its researches to the theory of fuzzy subsets and its appli- 

cations, especially its applications to spatial economic analysis. 

In the Institute, research has followed four direc- 

tions : 

0.4.1. : Firstly, it was absolutely necessary to rigorously 

formulate the axiomatic framework of the theory of fuzzy subsets 

[29] , , to clearly distinguish between the latter and probability 

calculus [30] [38] ] [ 41 ] , to assemble the principal mathemati- 

cal results [399 ] to present the concepts and theorems which 

are useful to economics [27] ] and more importantly to spatial 

economic analysis [ 28] and to resolve a number of algorithmic 

problems [440 ] . 

0.4.2. : Next, many types of fuzzy economic spaces were studied: 

attraction zones for sale-points [8] [11 ] , areas of fuzzy 

spatial interactions [12] ] [ 13 ] , fuzzy regions [ 31 ] , french 

fuzzy régions defined by a fuzzy numeric taxonomy [3] [45] ] [ 46 ], 
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fuzzy regional dynamic systems [33 ] , fuzzy interregional 

relations [4 1 , fuzzy hierarchy of a system of central places 

[32 ] and fuzzy urban spaces [42 ] . 

0.4.3. : Then, analyses of fuzzy spatial behaviours of the 

consumer [ 34 ] [ 35 ] and of the producer [ 36 ] led to a reformu- 

lation of the theories of partial equilibria which prepares 

the way for that of the theory of general spatial equilibrium 

and of the optimum [ under study ] . 

0.4.4. : Finally, various contributions have been made to gene- 

ral economics: fuzzy multicriterion analysis [22 ] , fuzzy 

decision theory [ 19 ] [ 20 ] and fuzzy econometrics [ 14 ] . 

0.5. The aim of the present study is not to summarize the tota- 

lity of these works. 

The time has come for the presentation, with all the 

rigour called for in this new and, for some people, unwonted 

field, of the scientific foundations of the theory of fuzzy 

economic spaces in the course of elaboration. 

This reconsideration of the foundations of the theory 

should answer two series of questions: 

0.5.1. : On what axiomatic framework is the description of eco- 

nomic universes based? Has it at its disposal specific and novel 

mathematical instruments, sufficiently pertinent and sophisti- 

cated ? 

0.5.2. : Can the description of fuzzy spatial behaviours of 

economic agents rely on a coherent and an appropriate type of 

economic calculation? On what theory of value is a fuzzy economic 

calculation based? 

0.6. The above set of questions command the plan which will be 

followed: 1 - Fuzzy economic universes; 2 - Fuzzy spatial 

behaviours. 

0.7. Remark: In order to avoid any ambiguity in the notation of 

mathematical terms, ordinary concepts (non-fuzzy) are underlined, 

whereas fuzzy concepts are not. 
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For instance, A C E is read: A is a fuzzy subset of the ordinary 

reference set E. Furthermore: �(x) designates an ordinary func- 

tion, whereas f(x) defines a fuzzy function. Likewise: 
[a�,a2 ] 

designates a non-fuzzy interval, whereas 
[t1 ,tz ] represents 

a fuzzy interval. 

For lack of space, the results of numerous theorems 

are cited without demonstrations, but the complete references 

indicate in what books and articles these demonstrations can be 

found. 
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1 - FUZZY ECONOMIC UNIVERSES 

1.1. Every space is defined by a given set of localities equipped 

with characteristics and a configuration. A space, S, is thus 

represented by a triplet as follows: S = (set of localities, set 

of characteristics of the localities, configuration of the loca- 

lities). 

1.2. The word "locality" is an undefined term in the axiomatics 

of spatial analysis [1 ] . One can replace it by equivalent 

words such as site, spot, place. It designates, intuitively, a 

part of the space considered as an elementary unit. 

Formally, localities are the points of the space under 

consideration. A set of localities is denoted by E = 
e p 7 3 p E P 

where P is a finite or infinite set of indices. 
- 

The non-triviality of E implies that Card(E) � 1. 

The cardinality of E occupies an important place in the abstract 

description of a given space. If the cardinal of E is finite or 

countable infinite, the abstract space is discrete. If the 

cardinal of E is non-cÓUDtab'lE!'� infinite the abstract space is 

continuous. We shall verify, in paragraph 1.4., the existence of 

close relations between the cardinality of E and the formai pro- 

perties of the configurations of localities and,with these pro- 

perties, the concrete interpretation associated with them. 

1.3. The set of localities E is the reference set which represents 

the support for physical, biological and human processes. Its 

complete description requires that it be equipped with a set of 

characteristics which particularize the localities. 

1.3.1. The geographical space is equipped with material and 

immaterial characteristics. The first designate. more particu- 

larly the elements of climate, relief, air, water, fauna and 

flora, soil and subsoil, peopling, rural and urban habitat, 

transportation networks, etc. The second indicate such charac- 

teristics as accessibility, viability, aesthetic and sanitary 

qualities, etc. In a wider sense, the characteristics of manking 
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(ethnic, languages, modes of life,...) and those of objects 

(physical, chemical, biological, cultural,..., properties) 

are likened to the characteristics inherent in the localities 

where they are durably implanted. 

1.3.2. Each of these characteristics has at least one dimension 

owing to the fact that it imposes conditions on economic acti- 

vity. One then proceeds from concrete characteristics of the 

geographical space to those of the economic space which is, 

as a set equipped with properties, an abstract space. In a wider 

sense, we assign to the economic space the characteristics of 

agents (elasticity of demand or of supply over a market segment 

or surface, propensity of a region to export and to import,...) 

and of economic goods (agricultural, industrial and commercial 

characteristics of a zone, touristic character of a town,...). 

Precisely, every subset of localities equipped with 

appropriate characteristics is a particular economic universe. 

By universe, we mean a spot where an activity is taking place. 

For instance, a market area is a subset of localities which has 

the power of continum and which is equipped with ail the charac- 

teristics specifying the number, the size and the behaviours 

of the co-traders, as well as the nature and the properties of 

the exchanged goods and the conditions of their transportation. 

In this context, a market area is an economic universe. Like- 

wise, an economic region, a zone of influence of an agglomera- 

tion, a zone of attraction of a commercial unit, of a bank or 

an hospital, etc., are economic universes. 

Current language, in spatial analysis, makes use of 

the term "space" and is obliged to employ the plural and/or 

unite it with qualificatives in order strip it of its natural 

ambiguity and to precise what we propose to call economic 

universes: regional spaces, spaces pertaining to hospitals, etc. 

Whatever the vocabulary, what is of import is the utilization 

of rigorously defined concepts. 

1.3.3. Usually, one supposes that a universe has or has not a 

given characteristic. For instance, a region is known to be 

agricultural or industrial, rich or poor. However, such 
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affirmations turn out to be too -; imlil 1 1-\@ ing They are based on 

the implicit use of arbitrary tliresliolds on and a fier which 

the presence or the absence of a characteristic c is accepte. 

They lead to partitions of the space which violate tire overlap- 

pings observed in reality and which correspond d to zones of f 

graduai transition from one suhset to ;rooter. In other tords, 

they lead to a tracing of clear-cut t frontiers whcre 0 n 1 y limi- 
- 

trophe and hyhrid belts exist. 

The dichotomy presence-al»ence causes the loss of an 

important amount of information, that which, contrains the nuances 

and which bestows s it t With richness. It t is s préférable to préserve 

all tris information and to suitahly \ express s thé C' fu'ziness s 

which envelops the observes uni verses. Refering g hack k to the e 

above-mentioned example, it t is s gênera il y more exact t to say that t 

a region is s s i mul taneous 1 y "not t very" agr i c u 1 1 u ra 1 and "very" 

industrialized, or that it is "rather" ric. rhe hre�cnce, 

"more or less" clear, of a given characteristic c is then Cnl1 

recognized without loss of information, We thus avoid the cons- 

truction of arbitrary partitions and the ouf artiricial 

frontiers. 

Let 0. = 
�,\S 5 , 

, he the set of chrrac ter istics of the 

localities, with s E S, S heing a set of indices, finite or not. 

Formally, one supposes that a locality (elementary 

spatial l unit) has more or less s a given characteristic with 

which the entire space to which it helongs is equipped. 

1e'e define a set of v mappings, denoted 
h�, /�14s 

with s = 
1,...,v,... from F into z, where z1 is a preorderecl 

set and, such that: 

V s e S , ,«s : E » M 

zip E P � 
e p » "S(ep) G M 

� 

In this way, we have v (fuzzy suhsets, A,, 
of the referential E, 

such that: 
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We hâve, 

Vs s E S : Card(r_1)Card(E) _ =Ca rcl 1-� 

where CP(E) is the fuzzy power-set of H. 

We note that the fuzzy power-set off has the structure 

of a vectorial lattice, whereas the non-fuzzy power-set (called 

clear power-set) of E,(P(_E), has the structure of a 13boolean 

lattice. 

We have, in thismanner, expressed the idea that a 

locality has more or less a given characteristic. 

For example, if s=1 denotes agricultural character 

and if s=2 denotes industrial character, then E as a whole has 

the agricultural character and the industrial character. However 

Au is the fuzzy subset of the localities having "more or less" 

the agricultural character. For a given p, the function 
¡;\ .1-\1 1 (ep) 

takes a high value if the locality e is very agricultural or 

a low value if the locality 
ep 

is not very agricultural. Like- 

wise, A2 is the fuzzy subset of the localities having more or 

less the industrial character. Etc. 

We emphasize that fuzziness characterizes the subsets 

of the referential E, but the referential itself is an ordinary 

set. 

1.3.4. The theory of fuzzy subsets furnishes the mathematical 

model appropriate for the elaboration of a formalized theory of 

fuzzy economic universes. The scrutiny of the axiomatics of the 

theory of fuzzy subsets indicates that we can: (1) show that 

the theory of fuzzy economic universes has a rigorous scientific 

foundation and (2) state the relations of this theory with ordi- 

nary spatial economic theories (sure and random cases) and show 

that this new theory includes the previous ones as particular 

cases. 
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1.3.4.1. Every family, à" , of fuzzy subsets of E. forms what we 

propose to call a 3-algebra over E [229 . 

Let �As , / 
1 � su 

°°\ 
be a family, �, of fuzzy 

subsets of E. We have: 

A1 1 
C 

A2 
C ... 

C As 
C ... or 

A 1 D A 2 D 
... D 

As � 
... 

and fA 7 t is a monotone sequence. 

We call �-algebra any family T of fuzzy subsets of 

rfCE) , the fuzzy power-set of E, such that: 

(1 .3.4. 1 . 1 .) : E E 3='; 0 E g: 

(1.3.4.1.2.): If A G *$ and [A 7 \ is monotone, then lim A G y 

(1.3.4.1.1.� and(1.3.4.1.2.) are the properties of a monotone family 

of fuzzy subsets of E. 

The pair (E,� ) defines a fuzzifiable set. 

A fuzzy measure on a fuzzifiable set is a mapping, u, 

with domain the � -algebra � and co-domain a preordered or ordered 

and bounded set, M, satisfying the following axioms: 

(1.3.4.1.3.) : Axiom 1 : �c (_E) - 1 ; c� (�) - = 0 

(1 . 3 . 4 . 1 . 4 .) : Axiom 2 . � s s A E lt : : Au .1t (A V - s 
M 

. s 
M 

where A and V are, respectively, the lower and upper bounds 
M M 

of M. 
- 

1.3.4.1.5. : Axiom 3 : s (E S, V A s e r,t cz S, A C 
At) 

==� li (A r) �(A�) . 
1.3.4.1.6. : Axiom 4 : If 

A f f 
and if 

ÎA s 
7 is monotone, then: 

lim [{(A) = ,u ( 1 im A ) . 
s -') 00 

s 
S --b 00 

s 

We note that axiom 4 should not be used unless the 

set _E is infinite. Also, the set M can be non-numeric. 

The triplet (E:,'3* , y) defines a fuzzified set. 

It is easy to check that numerous particular fuzzified 

sets can be defined according to the characterization of M: 
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- Fuzzified -sets of ZADFIi (50 i : \1 = ( 0,1 1 I . The interval 

[0,1 j | o f 1R is a total 1 ordercd set. I t ha s the structure of a 

distributive vectorial 1 lattice witlr respect t to tlre opérations s A 

and 1' ( respect i ve 1 y , the minimum and the max imum of a membership 

function with respect to an élément). ln empirical studies, 

fuzzified IADFI1 sets s are very much in n use. 

- Fuzzified sets of (�0(�lll::� [1(11 i : ",9 = l. , whcre �� is a lattice, 

partially or r total 1 y orclerecl. :\ccording to the Properties of f 

lattices, fuzzified sets which are more or less gênerai can he 

defined distributive lattices, mo�lularv lattices (weak distri- 

butivity), Boolean n lattice,, etc. 

- 
Finally, more général fuzzified sels can be constructed by 

bestowing on �1 more gênerai structures �2) i . 

For instance: M = 
['-!1''-!21 

| C [0,1 j : : theory of phi- 

fuzzy subsets [52 j [45 ] . 

\1 =1(1), ulwre �_(1_l is the power-set of 

the set V: theory ofj-fuzz}' subsets. 

'1 is sap r è 0 rd e r , 

f.tc. 

1 t ï évident t thaï t i 1- \ 
1 = f 0, ]) , 

we have the ordinary 

set theory as a part îcular case. 

1.��.-L2. 'fhe axiomatic framcuork ul the theory of fuzzy subsets 

includes that of then theorv on measure sets. 

In effect, let 
A 

/ 1 � s � 
00] 

be a family, (Q, , of 

ordinary �� subsets s of 1 f. . 

Lc know that t a a - : 1 1 g chI' i s any family, Q. , of suhsets s 

of Jn' (1:1 , the power-set of ï L, such that: 

().5.4.2.).) : L E �_2 

(1.5.4.2.2.) : (��E�,t%1�C�:_\�Eôl,.) =� :\ � E dl 

there A is the complément of A in ï: . 

(1.5.4.2.5.): (V e S, V �s 
E �8, � r , t G S , Af 

Il 
At = 0) 

00 

=�- U A . E 

The pair r I I:,(',�7 de fi nos a measurable set. 

A positive measure on a measurable set is a mapping, m, 

with domain the a - a l g eh 1'3 �. anal d \..: i the 0 - dom a i n IR +, such that: 
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(1 .3.4.2.4.) : Axiom 1 : m(0) = 0 or 

�1.3.4.2.5.) : Axiom 2 : m( Û.As) - 
= E 

m(Ag) 
s=1 

- s 
s=1 

-s 

The triplet (E,�,m) defines a measure set on E. 

We note especially that a measure has the additive 

property given by (1.3.4.2.5), whereas the fuzzy measure has only 

the monotony property given by (1.3.4.1.5.)fiowever, any family 

having the additive property has also the property of monotony, 

but the converse is false. We also observe that a 3-algebra over 

E has not the property of complementation, whereas a a-algebra 

has (1.3.4.2.2.) 

1.3.4.3. In the same manner, we show that the axiomatics of the 

theory of fuzzy subsets include those of probability theory as 

a particular case [30] [38] ] [ 41 ] . 

It will suffice to recall that a probability is a 

particular case of a measure. 

Let (E,�) be a probahilizable set defined as at points 

(1.3.4.2.1.) ) to (1 .3.4.2.3.) 

A probability on a probabilizable set is a mapping, p, 

from � into 1R+, such that: 

(1.3.4.3.1.): Axiom 1 : p(E) 1 1 

(1 . 3. 4. 3. 2.): Axiom 2 : 'roi s E S, � As 6fi : p(A ) � 
0 

(1.3.4.3.3.): Ax iom 3 : (V s E S, V 6s E Q, �f r,t E S, Ar 
n 

At 
= 0, 

rr t) ==� p( ( U A ) = E p(A ) . 
ses sens 

The triplet (E,tQ,p) defines a probabilized set. Again, 

we observe that the properties of a probability measure are parti- 

cular cases of those of a fuzzy measure. 

In addition, after a very careful distinction between 

the theory of fuzzy subsets and the theory of probability, we 

can construct a theory of fuzzy random sets which handles the 

probabilities of fuzzy events [ 9 [10] ] [ 21 ] [ 30 ] [ 38 ] [ 41 ] [ 52 ] . 

The latter turns out to be fundamental in the elaboration of 

fuzzy statistical theory. 
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1.4. Finally, an economic universe is not just any whatever. 

It has a configuration. In effect, it obeys the laws which 

induce its development. For example, the locations of traders 

in a market area are differently arranged according to the 

structure of the market and according to the mechanism of price 

formation associated with it: competition, monopoly, oligopoly, 

etc. 

Firstly, an economic universe has a form. Generally, 

in the case of precise spaces, one uses représentations based 

on elementary geometry or on analytic geometry: Von THUNEN's 

or ALONSO's concentric circles, WEBER's "triangle of localization", 

LOESCH's nested hexagons , etc. More generally, one can have 

recourse to general topology in order to formalize the represen- 

tation of universes having any forms whatever [26] . In the 

case of imprécise spaces, one should, likewise, describe the 

fuzzy topological properties. 

Next, if an économie universe is a surface, it has 

dimension too. If it exists, the measure of the surface leads 

then to tlle calculation of its area. In the case of imprecise 

spaces, one should résolve the problem of estimating the area of 

a surface having imprecise contours. 

Then, the localities belonging to an economic universe 

occupy positions. They have a positional relation among them. 

We are thus led to a geometry of position, that is, to the 

theory of networks [25 1 In the case of imprecise spaces, we 

have to define fuzzy networks. 

Finally, having a positional relation among them, the 

points of an economic universe are separated by a distance or 

by many distances. Hquipped with a distance, a space then becomes 

a metric space. Under this hypothesis, the distance induces a 

topology in the space under considération. In the case of impre- 

cise spaces, one should define fuzzy metric spaces. 

In short, a configuration, in this context, is defined 

by a quadruplet: (form, dimension, position, distance). 

Remark: This formulation is close to the one presented, in the 

case of precise spaces, in reference [17] . . However, it concedes 

neither the same place nor the same role to distance and to the 

set of characteristics of the localities. 
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1.4.1. The description of the fuzzy morphology of a given imprecise 

universe is based on the generalization of the notion of open 

sets and the concepts derived thereof , from which one defines a 

fuzzy topology on E. � 

1.4.1.1. A fuzzy subset, A, of E, being defined as an element of 

the set of mappings, ME, of E, into a preordered set M, the 

structure of M induces a topological structure on �(�), the 

fuzzy power-set of E [ 39 ] . 

A fuzzy topology on the referential E is a family, g(E), 

of fuzzy subsets of ME; �(E) C ME and its éléments satisfy the 

following axioms: 

(1.4.1.1.1.) : 0 E � ( E ) 

(1.4.1.1.2.) : E E � ( E ) 

II .4. 1 . 1 .3.1 : ['V r, t � S, Ar G % (E) and 
At e K (E.) 1 

==?�:� (Ar n At) 
E Z(E) 

(1 .4. 1 . 1 . 4.) : CAs E � (E.), s E S, S countable j 

==� U A E t (E) . 
sES 

S - 

The pair (_E, t) defines a fuzzy topological space. The 

elements of £ (E_) are called open fuzzy subsets with respect to E. 

1.4.1.2. The union of ail the open sets containecl in A E j(E) is 
o - 

the interior of A denoted by A. If A is an open set, it is its 

own interior. 

1.4.1.3. Provided that the set M has the complement property, we 

can define the fuzzy subsets which are closed in E. If A E � (�), 

the complement of A, written A, is called a closed fuzzy subset 

with respect to E. 

However, we saw in 1.3.4.1. that the définition of a 

� -algebra on E does not assume the existence of the complement 

property. In this case and with rigour in mind, it is impossible 

to construct closed sets. But, we can define a pseudo-complementa- 

tion. For instance, if M = [0,1 ] the pseudo-complement of A, 

, is such that: 
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d ep 
E E, p E P, A C e : ;i (e ) = 1 

4A(ep 

We easily verify that: A n A f 0 and A U Â f E . Under these 

conditions, if A �E �(E), the pseudo-complement of A is called a 

pseudo-closed fuzzy subset with respect to E. 

1.4.1.4. The intersection of all the closed (pseudo-closed) sets 

containing A E \y (E_) is the closure of A, denoted by A . If A is 

closed (pseudo-closed), it is its own closure. 

1.4.1.5. The exterior of a fuzzy subset A E GP(E.) , written ext(A), 

is the interior of its complement (pseudo-complement). 

We have: 

ext(A) = Â - "Â"1 . 

1.4.1.6. The fuzzy frontier of a fuzzy subset A is a fuzzy subset 

X E e 'D 3 (E) , such that: 

a o 0 0 0 
A = A U ext(A) = A U A = A U A 

1.4.1.7. We can also define a fuzzy topology on E using the notion 

of neighbourhood. With respect to E, a fuzzy subset A is a 

neighbourhood of a fuzzy subset 
At, 

written 
V(At), 

if there exists 

an open fuzzy subset, A , of E such that: 

A. C A ÇA . 

We notice that this definition is different from that 

of a neighbourhood in ordinary topology. In effect, in the case 

of non-fuzzy subsets we consider the neighbourhood of a point, 

whereas in the case of fuzzy subsets we consider the neighbourhood 

of a set. This difference is explained by the fact that A is an 

element of M� . 

The family of all the neighbourhoods of 
A 

E J (E) is 

called a system of neighbourhoods of A and denoted by �(At). 

1.4.1.8. From the above notions, we can generalize the usual 

properties of general topology and apply them to the fuzzy subsets 

of a given reference set. 

We can then define the conditions for the convergence 

of sequences of fuzzy subsets and for the continuity of mappings 
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from one fuzzy topological space into another. It is especially 

possible to generalize the concept of homomorphism. Any bijection 

f of a fuzzy topological space into another, with f and f 
1 

continuous, is a fuzzy homomorphism. This notion is fundamental 

in topology because, a homomorphism is an isomorphism of topolo- 

gical structures. If two fuzzy topological spaces are homomorphic, 

any property which is true for one is also true for the other. 

In other words, fuzzy homomorphism preserves the properties of 

the fuzzy morphologies of the localities. These properties consti- 

tute the topological invariants of the fuzzy universe under 

description [2] [47] ] [ 48 ] [ 49 ] . 

1.4.2. In the case of precise spaces, if an economic universe has 

a surface and if, in addition, a measure of this surface (area) 

exists, we say that it is integrable. The case of imprecise spaces 

presents the difficulty of estimating areas of surfaces having 

fuzzy contours. Its resolution is furnished by the concept of 

fuzzy integral which generalizes the usual concept of the integral. 

1.4.2.1. The area of a surface bounded by an ill-defined frontier 

is obtained by the integration of fuzzy functions of real variables 

[ 7 ] . 

A fuzzy valued function, f, of a variable in a real 

interval is a function from gt into �(�), the fuzzy power-set of 

the real line: 

f : IR : »�P(flO 

x 6 [a,b] cm )f(x) = y 

and whose m.embership function, written 
.v f�w) , 

is such that: 

JU f (x) : t e ) �tf(x) (1) E 
[0,1] 

By virtue of this definition, y is a fuzzy subset. 

1.4.2.2. In addition, if we suppose that y is a normal, convex and 

piecewise continuous fuzzy subset offR, then y is a fuzzy number 

[5][6] . 

Let _g, be a function from tR into'R: 

lR 
IR � TIR 

x � �À (x) 1 
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such that ^x E �� �' f (x) 1£�,(x)l ] 
= X 

The graph of this function is called a level-curve X. 

We assume that the integral 
Sb �X(x) 

dx exists and that the 

function 
£* (x) 

is continuous. a 

Let L be the set of function�,l, from R into R such 

that: 
job 

(1.4.2.2.1.) Ja 1(x) dx exists 

(1.4.2.2.2.) : 1 is the countable union of pièces of level-curves, 

that is,: 1 = U l. , , where li 
1 
is continuous. Lac curve, li , , 

delimits a surface, Ti, whose area is designated by Ai. 

The fuzzy integral, written I(a,b), of f(x) over the 

non-fuzzy interval [a,b] ] is defined by the membership function: 

L'Un M fA) = sup min �(�.) 
- - 1 E L i 

1 

A = 1: A 
i 

where u(Ai) is the level of the curve li 1 bounding 
T.. 

1.4.2.3. We have the following result [7]: 

(1.4.2.3.1�: V A E � , there exists a 
curve £A 

of level X over the 

interval [a,b] , bounding a surface T with an area A such that: 

��I(a�b) (A) - i! I(a,b)l £,(x) �xl = X 

- 

This proposition guarantees the existence and the 

uniqueness of the solution. 

(1.4.2.3.2�: Remark: This theorem leans on the condition that 

Il f (x) 
(t) is continuous at t t and at t x and that 

t I! f ( x) 
(t) is not t 

locally constant at t over the intervals 
[.!1 '.!2] 

. 
, 

If the continuity at t of the fuzzy valued function is 

not satisfied, many level curves X can coincide. If 
nff 

(t) is 

constant over intervals 
[tl,t2 ], some level curves X can degenerate 

into zones of level À . 
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The result given in(1.4.?.3.1.) remains valid for the 

more general definition of the fuzzy integral I(a,b), by putting: 

I(a,b) - 

9 :jb �(x)dx _ = T 

"� 

where f! (.� ) is s the true value of the surface T, of area A, bounded 

by the axes, y = 0, x = a, x = b and the curve such that: 

;.e(�) - min ,l! f ( ) [g ( x) 
1 

x�Eta,b] '�� - 

in other words, the smallest true value of the points on the 

frontier of the given surface, which is the curve y - = g(x). 

1.4.2.4. From the aforesaid the theory of fuzzy integration 

generalizes the Riemann integral and handles intégral calculus in 

the framework of fuzzy internais as well as the intégrais of 

functions of a fuzzy variable [7 J . 

1.4.2.5. Remark: In spite of this, there exists another theory of 

fuzzy integration which generalizes the Lehesgue integral [44] . . 

1.4.3. The points of an economic uni verse are in a positional rela- 

tion. In the case of precise spaces, we can use a network to 

formally describe these positional relations and study their 

properties. As for imprecise spaces, it is easy to construct fuzzy 

networks. However, their interpretation calls for comment. 

1.4.3.1. Let Il: be a referential and r be a correspondence in E. 

A fuzzy network, G, is a pair G = (1l',I') such that: 

V 
ep 

E E , 
'\te 

E 
p(ep) � 

p,q E 
P : f1 )(e ,e ) 

G M 

where M is a preordered set. More often than not, one chooses 

M = [0,1 ] . 

In a fuzzy network, the value given to an arc or a line 

expresses the degree of membership of this arc or line to the 

network. One should thus not mistake a fuzzy network for an 

ordinary valued network. In the latter case, an arc (or a line) 

exists or does not exist: we choose M = 
�0,1� . 

If the arcs (or 

the lines) have given values, the latter express other properties. 



19 

In a fuzzy network, the existence of ail the arcs does not offer 

the same précision. Between any pair of points, the value given 

to an arc or a line is a fuzzy measure. The latter indicates the 

existence of a hierarchy between the arcs or lines which is either 

given objectively and independently of any human appréciation, or 

given subjectively and expressing a personal opinion. 

We can also state clearly the fuzzy positional relations, 

such as, for instance: a given locality is "strongly" connected 

with another situated to the North, "very weakly" with a locality 

situated to the South, "moderately" with a locality to the East and 

"weakly" with a locality to the West. 

1.4.3.2. We know that one of the principal applications of network 

theory is the treatment of path problems. 

Let G C E2 be a finite fuzzy network. A path in G, 

denoted by c, is an ordered r-tuple, with or without répétition 

of the vertices of the network, such that: 

with 
ep k 

E E , k=1,2,...,r, and the condition: 

V (e Pk 
e 

Pk+1 
) E - F.2 : JI G ( e Pk , e Pk+1 

) � 0 , k=1,2,...,r-1. 

To each path c, we associate a value, v(c), defined by: 

v(c) - 
;1 G ( e Pl ,e P2 ) A 

... A 
Hr(e pr-1 ,e pr ) 

, 

which expresses the degree of membership of the path c to the 

fuzzy network and which is equal to the minimal value of the 

membership functions of the arcs at this path. 

Let 
C(e ,e ) 

be the set of ail the paths existing between 

any two points. We have by définition: 

C(e P ,e ) q = (e Pï ep, e p2 
, ... , ' 

ep , e pr = e ) . q 

We can thus construct "the strongest path", denoted by 

C (ep,eq) , 
from e to e , by putting: 

v*(e ,e ) = V v (e - e , ... , e , e = e ) . 
P « 

Cee e) 
Pi P Pr-1 Pr 1 
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The strongest path of a fuzzy network is not necessarily 

unique. In addition, it is evident that it not expresses a flow 

between two points; it indicates the sequence of arcs which have 

the strongest degree of membership to the network [32] . 

1.4.3.3. Remark: This definition of the strongest path uses the 

Max-Min composition. More generally, one replaces the operation 

(A) in the expression v(c) with an operation (*) provided that the 

latter has the properties of associativity and of monotony. For 

instance, if (*) is multiplication (.), we obtain: 

v(epl ,e ) 

= 

MG(e Pl eP2 ) a ... ''V(en �en ) 
� 

1.4.3.4. From the adore said we can proceed to study the properties 

of fuzzy networks. One of the most interesting for spatial analysis 

is the property of connexity which permits us to express the more 

or less great accessibility of the points of the given fuzzy universe. 

We generalize the usual concepts of connexity found in network 

theory [ 42 ] . 

A fuzzy network is strongly connected at the level� 

if and only if, between any pair (ep,e�l) c L�,there exists at 

least a strongest path with value �\. It is clear that if a network 

is strongly connected at the level �, then the same holds true at 

the level a' if a' � a . 

In order to measure the degree of strong connexity of a 

fuzzy network G, at the level ci, we define the connexity number, 

written 
wc�(G) . 

Let 
w�(ep,e�{) 

he the maximum number of disjoins 

paths between the vertices 
ep 

and 
eq 

having the value Q. The 

connexity number of the fuzzy network., G, at the level a is given by: 

w (G) = A 

q) 

wx(e�,e� i . 

It characterizes the diversity of the paths valued 

and joining the two points which are the least well-linked at 

this level. 

If wQ(G) = 0, the fuzzy network is not strongly connected 

at the level ait could evidently be at the level of �,c', with 

GY ' � ex . 



;1 1 

If w u ,(t;l - = s - - 1, any ' two vertices are .i 0 i ne LI hy (s - Í) 

distinct paths having a value greater than or equal to 0:. This 

numher is eslmcially use fui in the study of the articulation of f 

a fuzzy network. In effect, hl;' ( C; ) is s the minimum number (1 élé- 

ments of a set of the vertices of a fuzzy network whose suppres- 

sion implies that t the latter ceases to be strongly connected at t 

the level u. In the particular case where �8(G) 
= 

1 , there exists 

a vertex, called a-point of articulation, whose suppression brings 

about the appearance of a suh-network not strongly connected at 

the level �. 

Finally, a fuzzy network is semi-strongly connected at 

the level a if and only if, for everv pair 
�e ,e ' � 

[2 there 

exists at t leaat one strongest path h \' él 1 u c d �;/0.. in one of thé two 

direction--.. It .� �impty ,�o mr�·:recl aï the level a1 if and only i�:, 

:'.�- :'\.'crv pair 
(;.,e 7\ E 

1:2, there exists at least one strongest 

�:. ha in uith value a. 

1.4.4. Being in a posit ional relation a!l1O n g themselves, the point- 

of an économie universe are separated by distances. 

1.4.4.1. Considering the case of précise spaces, the distances are 

mappings of f f � into 1R which associate with every pair of the points S 

of t� a real number and which satisfy the well-known conditions of 

non-negativity, regularity, symmetry and triangular inequality. A 

space equipped with a distance, d, is a rnetric spacc, wx-itteri 

(L,d). The problem consista then in choosing a distance compatible 

with tfre disposition of ttie localities (eoclidean, rectilinear, 

c i rcum- radi a 1 distances, net4�-c.,rk-c'istance, etc.). However, the 

stringent character of the conditions that a distance must satisfy 

has sometimes led to the questioning of the expediency to resort 

to weak metrics in the définition of which the conditions of rcgu- 

lari ty and/or of symmc1 l'Y are \\C'JkcJ1cd [37 j 1 . But in non-re�lIl :11' 

and/or non-symmetric spaces, weak distances (déviation, quasi- 

metric, weak metric) renia in précise. 

The approximation of a geographical distance by a 

top CI 1 ü:.t i cal distance or even hy a weak distance docs not lead to 

the explanation o1 thé fuzzy character often depicted by t 11 e 
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relation of remoteness between two localities. An économie agent 

can estimate that two points are "very close", "rather remote", 

"very distant" with respect to each other, either because he 

lacks complete information on the objective measure of the geo- 

graphical distance, or because he indulges in an appreciation 

into which enter more or less explicit considerations such as 

the amount of time »eeded to ply between the points, the charac- 

teristics of the means of transport, the negative utility resul- 

ting from the journey, etc. Instead of weighting a precise 

distance in a more or less arbitrary manner by coefficients 

representing these factors approximately, it is preferable to 

define a fuzzy distance, denoted by d. 

1.4.4.2. A fuzzy metric space, (E,d), can firstly be defined in 

the following way [42 j : 

Let Abe a fuzzy binary relation in E , that is, a binary 

relation such that: 

'rj(e ,e ) E E2, e (R. e q 
� 

(e p e q 

M 

where M is a membership set (generally 
= 

[0,1] ) and 
r�(ep,ea) is the degree of membership of the ordered pair (e ,e ) to the 

binary relation 3*1 . 
p q 

A fuzzy distance is a fuzzy binary relation in _E" 

satisfying the following axioms: 

(1 .4.4.2. 1 .) : 
Positivity: V(ep,eq) 

C E2 , ;.;d(ep,ea) 
� 0 4=� 

ep f en 

(1.4.4.2.2.): 
Regularity: � (ep,ea) 

E E:2 
I1d(e ,e ) = 

0 4=� e = e 

(1.4.4.2.3.): Symmetry: 
(e p eq 

E2 , 
I1d(e ,e ) " '"d�q�p� 

(1.4.4.2.4.): Triangular inequality: V (e ,e ,e ) E E3 , , 

1,�. d(ep , er ) '� "�'d (ep, eq ) 
* 

¡,: d ( e ,e ) 

where (*) is an operation to be chosen according to the properties 

of the fuzzy économie universe under consideration. 

If (*) - = (V) : the relation d is a fuzzy ultra-metric. 

In addition,every Max-I�9in transitive fuzzy binary relation, that 

is, such that: 

(ep eq e r 
E E3, 

u�(ep,er) � eV V [p jJ.. (e , e ) 
A 

I�,� (ea,er)1 
] 
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and which is anti-reflexive and symmetric, is a fuzzy distance. 

We have in effect: 

[ f.1 ¡Q Ce ,e ) 1\ J.:;O (e ,e )] 
] - 1 - [ 

;.:2 (ep,ea) V ,-��(ea�er) 
1 

From whence, we have: 

f�� (ep�er) � V [,� � 10 (e ,e ), ¡.' J'O (e ,e )] 
1 

and conversely. 

Thus defined, fuzzy distance expresses the imprecise 

evaluation of the remoteness of the points of a universe, since 

the membership function, 
^j(e ,e ), 

of the ordered pair (e 
,e ), 

of localities having the fuzzy distance d, indicates the more or 

less great importance of the remoteness of en and of 
eu. 

From thence, the concepts of weak distances (deviation, 

quasi-metric, etc.) can be extended to the cases of fuzzy relations 

of remoteness. The same holds true in respect of concepts of 

distance from a point to a subset of points and of distance 

between two subsets of a metric space. 

1.4.4.3. The appreciation of the remoteness of a point from 

another is formulated in a second manner, different from the 

previous one, if one supposes that the distance from 
ep 

to 
eu 

is 

"near k" , where k is a constant. In spite of its apparent 

exactitude, such a judgment is in fact characterized by an 

imprecision concerning the evaluation of the distance [42] . 

We thus define a precise distance by a mapping, d, 

from E 2into R+ and a fuzzy relat ion CRj in E.2 to which corresponds, 

by the mapping d, a fuzzy subset D cm+. We say that D is 

induced by d in R+. 

The membership function of D is given by: 

z � D(z) 

P a d -1 (z) 
1 

.1� .1� (ep, eq' 

This membership function expresses a degree of likelihood 

or of credibility of the appreciation placed on the distance d. 

One verifies immediately that, in the particular case 

where 
0D(z) = 1, no indétermination characterizes this appreciation. 

This definition generalizes the usual notion of distance, which 



way not the case in the formulation presented in paragraph 1.;, '.' 

1.4.4.4. Remark: . 

�.!.4.4.4.).): These are other possible définition of fuzzy me�° � 

spaces which could be obtained from the memberstlip functions 

fuzzy binary relations, such as, for instance, the relations oL 

similarity and of dissimi7aritv [21 1 

(1.-9. ;. l.=.j: "!!c :." `zlw ; � ' '1 t- t '11t '\" to the fact chat son.c 

gênera 1 i za t i ons of the définition ost ,1is1:tn,,(' hâve no c o nn c t 1 

with �;:'C';�:"C!;`itlC1-!1 1 Jist ,'IC' and !t� :¡¡"1IC;' ''.'7t! itl ri by a topologic. 

distance. il!,� ;��!I�' hc�,�:�' 1 t"ie,'�! �' \virrp !�-� , fui the genera. 1 zee! 

euclidt'an distance and t lie genc ra i .. ��.; �I:...�;:.�_ of Ilamming ',�etwEm�7 

two [11�=)' s111)scts [21 � ] f 24 ] . These concepts express the J i ffe r. net 

w h � i� h",' ; \;1 ,1 ,i c' t l' l' i -: (' s tiu , . ��.�m�.l7tw C' 'if f .1 i referential l with respect t 1: l ' 

1h('ir r 1',"::'e:tIV,' c1e' T�;w � oi me m hors h i p of f t l7c (-. two fuz zy �, suri .,·t =: , 



25 

2 - FUZZY SPATIAL BEHAVIOURS i 

2.1. A spatial economy, considered at any given moment, is 

completely described by the set of agents implanted in it and 

by the set of actions which are, a priori, within their reach. 

Let G = 
jG^ ^ 

denote the set of agents indexed by 

t, with tEl, T being a finite set of indices; these agents 

are located in localities indexed by p', with p' E P, P being 

a set, finite or not, of indices. 

To simplify, we denote an agent by the index which 

identifies him and by the index which refers to his location. 

Let = 
{khi') be the set of possible actions, h, 

indexed by k, k Ex ' where K is a set, finite or not, of 

indices; these actions are feasible in localities indexed by 

p E P, and this, by an agent t implanted in locality p'. 

Note that the set of indices which refers to the 

locations of the agents is the same as that which indexes 

the localities of their possible actions, since the former 

covers the description of the same space. Generally, however, 

we have p � p' for an agent t and a possible action 
kh . 

With the above notations, the framework for the 

analysis of a spatial economy is specified by the set _G and 

the family 
�h� , 

Writting m = k.p.p'.t, the social state of a 

spatial economy is an m-tuple 

h = (lhl ' 1 **» -1 k t ...) 
of the set of ail possible social states, denoted by 

Il ht x n hp�) x ( n kh x II ph) . 
t 

' 
p k 

" 
p 
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2.1.1. In order to describe the theoretic foundations of the 

analysis of a spatial economy, attention must be focused on , 

the description of individual behaviour with respect to the 

set of a priori possible actions, for, the study of social 

behaviours refers to the problem of aggregation of individual 

behaviours and collective choices. 

Under these conditions, one reasons with t and p' 

fixed and it suffices to write H = 
lkh 1 

V to designate the 

set of possible actions. `. 

We admit, to begin with, that the choice made by 

the agent, within the set of possible actions, is guided by 

the preference of this agent with respect to the different 

actions between which he must opt. In 2.2., we shall consider 

the introduction of a limitation constraint affecting the 

set of possible actions. 

2.1.2. We recognize fully that, placed in a fuzzy univers, 

the economic agent does not generally manifest a perfect 

aptitude to clearly discriminate, among the a priori possi- 

ble actions, between those he prefers and those he does not 

prefer. His knowledge about the space in which he lives is 

incomplete and imperfect, and his information on the actions 

is insufficient. In addition, even if he is well informed, 

it does not follow that his behaviour obeys a binary logic 

of the type; preference-non preference. Human nature is 

such that the spatial behaviour of the individual is 

generally imprecise. 

Behaviour is thus characterized by a structure 

(H,01) , where�R, is a fuzzy binary relation between the 

elements of H2 This relation is such that: 

where M is a preordered and bounded membership set (a non- 



numeric set will do) and 
¡1� (l�h @ qh) designates the level 

of preference between the two actions under consideration. 

The relation A indicates that the agent puts into 

correspondence two possible actions, and this, at a "more 

or less" high level of préférence. The level expresses the 

degree of imprecision which affects this correspondence. 

This structure of imprécise individual preference 

(H/Jl ) can also be written a S (il, � , �v ) in 0 l' Je l' to 

properly distinguish between strict t preference, denote by 

�, 
and indifference symbolizeJ hy"v . 

2.1.2.1. In the particular case where individual behaviour 

obeys a binary logic, strict prefereme is asymmetricand ir- 

reflexive. 

C�enerally, an économie agent has, more or less, 

a preference between two possi'lo actions, I 1 

MiR (kh, ih) � t1 � q h, I)li) , 
\\ e propose to cal 

l /1 � ( k h, ah) 

the strong degree of preiermce of Ph with respect to ah 

and to call 
'�'� o ( "j h � Eh) 

the weak degree of preference of 

qh with respect to Eh . 

In this manner, the structure (il, is equiped 

with the fuzzy antisymmetric c property, a la a KAUFMANN [21 j , 

because: 

However, the hypothesis according to which 

J1 a\ (k h, ah) - J1 � (i h, �� 
= 0 wi 11 not he taken up until 1 

paragraph 2.1.2.2. in the framework of the définition of 

the structure of indifférence and where this hypothesis 

will be shown to he � partim l,ir case of fuzzy symetry. 

For the structure (M, ^), what is of import hère is that: 
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such that 

In addition, we admit that imprecise preference is 

Max-Min transitive in order to subsequently ensure that the 

set of imprecise choices is not empty (see 2.1.4.). � 

We have thus: 

which means that if the preference for 
kh 

with respect to 

oh is at least equal to the maximum of 
ah 

for the smallest 

preference values of 
Ph 

with respect to 
ah 

and of 
ah 

with 

respect to rh , then the fuzzy relation a is Max-Min transi- 

tive. In short, the direct preference between two possible 

actions is at least as strong as the indirect preferences 

which require the intervention of a third possible action. 

We note that this formulation expresses a transi- 

tive property which is weaker than the classical formulation. 

The latter can be obtained by replacing the Max operator by 

the boolean sum and the Min operator by the boolean product 

(which are equivalent in the context of boolean operators). 

2.1.2.2. In the particular case where individual behaviour 

obeys a binary logic, indifference is symmetric and reflexive. 

Generally, an economic agent can be more or less indifferent 

between two possible actions. Thus, the structure (H,rv) is 

equiped with the property of fuzzy symmetry. We have: 

The property of fuzzy symmetry implies that of fuzzy refle- 

xivity when we have 1 = k and q = p. We have: 
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The degree of indifference can be zero. In fact, 

it is possible for the agent to discriminate between any 

two actions in which he has absolutely no interest, or else, 

to consider himself in the impossibility of comparing any 

two actions. In the two cases, the set of choices is empty 

and the membership function to the relations, of the two 

considered actions is equal to zero. 

An important conséquence is deduced from the above. 

The property of totality of the indifference relation and of 

the preference relation is guaranteed. It follows that the 

axiom of comparability need not be stated, for if two actions 

kh 
and 

qh are considered to be non-comparable, then 

� �(ph,ah) - 0. The situation of non-comparability does not 

raise specific problems as in the framework of classical 

theory. 

On the other hand, the fact that indifference of 

zero degree expresses the case of the impossibility to 

compare two actions, this does not imply that indifference 

is, a priori, a transitive relation. The same condition 

prevails under the hypothesis that indifference is of degree 

greater than zero, but different from one. Imprecise indiffe- 

rence does not necessarily have a structure of équivalence. 

There is thus good reason to lay down the condi- 

tion of Max-Min transitivity of indifference in order to 

ensure the coherence of individual fuzzy behaviour. 

2.1.3. It is easy to verify that fuzzy preference defined as 

follows: 

defines a structure (H, �) of fuzzy total preorder. 
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However, contrary to classical results [ 15] , , 

if the structure of imprecise preference-indifference, (H,�) 
is really a fuzzy preorder, it does not follow that indiffe- 

rence is right congruent (respectively left congruent) with 

respect to strong preference and, hence, that (H,iv) is a 

structure of equivalence. 

However, there is proof [ 34] ] that if the following 

two conditions are satisfied: 

(i) the strong preferences, for the indifferent actions Ph 

and 
qh 

with respect to the indifferent actions h and 

mh , are at least equal to the level of indifference 

between the actions Pli and 
qh 

(ii)the weak preferences, for the indifferent actions rh and 

h with respect to the indifferent actions Ph and ih, 

are strictly equal to the level of indifference between 

the actions rh and sh 
m n 

then the structure (11,,v) is a structure of equivalence. 

It can be shown that these two conditions respect 

the property of Max-Min transitivity [ 34] . 

In other words, within the fuzzy preorder, all the 

non-fuzzy subsets, denoted by PH , PH C H , such that: 

form between them subrelations of similarity. But a subrela- 

tion of similarity is maximal if it is not a subrelation of 

similarity of any other of the same nature, and this, within 

the relation under consideration. The property of fuzzy sym- 

metry, in conjunction with the properties of reflexivity 

and Max-Min transitivity, does not necessarily imply that the 

maximal subrelations of similarity are disjoint. 

On the other hand, if conditions (i) an cl (ii) arc 

satisfied, then thé maximal suorelations of similarity form 

classes of similarity. We say then that the fuzzy preorder is 

reducible . 
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Finally, it can be shown that conditions (i) and 

(ii) bestow on the structure (H,�) 
the properties of right 

and left congruence of imprecise indifference with respect 

to imprecise strong preference [34] . . 

The fuzzy preorder being reducible , the relation 

formed between themselves by the classes of similarity is 

necessarily antisymnetriç and as such, these classes of 

similarity form between themselves a fuzzy order relation. 

2.1.4. We are now in a position to define an imprecise indi- 

vidual behaviour for decidable choice. 

Let (H,» be a structure of fuzzy preference and 

J Cl be a non-empty fuzzy subset of H. 

An action kh E J is said to be optimal with respect 

to J if and only if 
kh 

is a maximal element of the struc- 

ture (J,�,) � that is, if and only if: 

We denote by N(J) the set of optimal actions in J. 

An action kh E J is a best element of J, if and 

only if 
kh 

is a maximum of the structure (J,�), that is, if 

and only if: 

Let S(J) stand for the set of best eleraents of J; 

we propose to call S(J) the set of imprecise choices. 

With the set S(J) given, we can formulate the 

description of the imprecise behaviour, associated with the 

structure (H,^) , of the economic agent. We define the mapping 

S of the fuzzy power-set of H into H, such that: 

Choice is always possible and imprecise individual choice 

behaviour is decidable, if and only if the mapping S is 

defined everywhere. 



2.1.5. The im¡J1Cl�j:(' choice bch.1viour associated with any 

préférence structure can ho non-dec i dable . It is thus neces- 

sary to specify the condition that a fuzzy structure, 

(H��), 
must satisfy in order thaï tic associated imprécise 

choice hcl�.�, i,�ar be ..1;:. i_�.�(;1�. 

2.1.5.1 let u� c:;�rv:.i�l-�ry firstly, Un: case where card(H) 

is finite. If 
(ijA) 

is an imprécise préférence structure 

which is a finite structure of fuzzy total preoder, then we 

can associated it with a dcci dable iupiecise choice behaviour. 

In fact, lot J be any fuzzy non-empty subset of H. 

Since car;l (11) js �; fihicc, it t suffices to make a pairwise 

comparison of its éléments in order Id obtain the greatest 

éléments of J. Thus S(I) i5 a011� �u:l�t.y. 

2.1.5.2. Vie nc\t \: un., 1 J Li' r 111. case 4�Im re card(H) is infinite. 

If (11,?�) is an imprécise préférence structure which is an 

infinité structure ni tu...) total 1111..', Iller, then we can 

associate it with a �i�: i�l,;(,l� imp rec i .-� (. choice behaviour, 

if and only if the structure ..,itisfie.s the condition of an 

ascendjn� lm in, t I:n! i , i t mJ only r if every increasing 

séquence, I�l�l lu)' 
.11 i; 1 ��u;rl:. u1 Il is finite. 

Indcud, if hy hypothesis iht condition of ascending 

chain is not satisfied, then these exists an increasing 

séquence, ('hj ( li ) » of 
éléments of Il and the fuzzy subset, J, 

of H defines hy: 

nas no dcst clouent, anu nellce j(jj - ,C �f}. imprecise cnoice 

behaviour is Ii 0 t d ( c i Il il hIc'" Whcncc r h c contraciiction. 

Conversely, if thcre cxists by hypothesis 

J E �P(H) - 0 such that S(J) = 0 and if we choose 
kh 

E J, 

then, as 
kh 

is not maximal since S(J) = N(J) = 0 , we can 

find 9h E .1 such that : 
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Since 
ih E J 

is not maximal, we can find 
rh 

E J such that 

flJCPkh,qlh) � i1J(qlh,Pkh) � fJ.J((h,rh) � Pr(�h,qlh), 

and 50 forth. We thus construct an infinite increasing seqncip ... 

which contradicts the condition of ascending chain. Hence, it 

f 0 Il 0 \\ s that S(J) � 0 for each J E cy CiD - 0 . 

2.1.6. It can be verified that the function a a fuzzy mea_v..� _ 

on H. To see this, let 3C be a family of fuzzy subsets of fui. 

We have: �1 � .... , H k' ..., �-In, 
... Ex(1(11) there CP(H) is the 

fuzzy nouer set cf Il. 

2.1.6.1. 
Since . k 1 hl = 0, if 

Eh 
and 

ih 
are two actions 

which are considered uninteresting or incomparable, we have: 

E K 

As 
kh 

and 
ih , � kh E H , Vih G M » are elements of the 

reference set H, we also have: 

H E �i' 

2.1.6.2. Any sequence [Hn\ ' , 
ele:nent of 5f , is monotone, 

because conditions (i) and (ii) defincd in section 2.1.3. 

guarantee that the similarity classes form, among themselves 

and by inclusion, a fuzzy order relation. It follows that: 

00 

lim H = n H , lim H e K 
n --+- 00 k=1 1 n --+- 00 

By 2.1.6.1. and 2.1.6.2., we verify that 7_r is a �-algebra 

ovtr H. 

2.Î .6.3. The function ;�� is a fuzzy measure over the fuzzifiable 

set (H,K ). 

Indeed: 

2.1.6.3.1. By the definition of �, we have: 

b�(0) = 0 and p(H) = 1 . 

2.1.6.3.2. The function c! taking its values in M which is 

preordered and bounded, we have: 

� :' k = 1C , n � �: ( H�. ) J � V y K 
if , 

M k M 
where A and V arc L. r tivclv the :' lower and upper bounds of M. 

�.1 �1 
- 
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2.1.6.3.3. The order relation, by inclusion, on If implies 

that: 

Vh. E Je , 
d H k 

E 3C ,i if H. 
J 

C 
Hk , 

we hâve : 

�u (H �- ."(H�) . 

2.1.6.3.4. If the set H is infinite, and since each sequence 

rH 1 , element of Je, is monotone, then by the theorem of 

nested sets, we have: 

lim 1� (H ) - 9(lim H ) 
n -+ 00 

n 
n --� 00n 

By 2.1.6.3.1., 2.1.6.3.2., 2.1.6.3.3. and 2.1.6.3.4., we 

verify that p is a fuzzy measure and that the triplet 

(H, IC, P) is a fuzzified set. 

2.1.7. The economic interpretation of this result is important. 

The theory presented here, of fuzzy spatial preference (on 

possible actions), is neither ordinal nor cardinal. 

We propose to call it a "valuation theory of pre- 

ference", the term "valuation" being taken to mean "fuzzy 

measure". 

Now, if M, the membership set to which the function 

J.1 belongs, is equal to f0,1 � , we fall on the ordinal concep- 

tion of preference as a particular case. The agent prefers 

or does not prefer one action to another. Therefore, Y is a 

boolean characteristic function. 

In the same manner, if the function 9 is a measure 

proper, that is, if the f-algebra over H is a o-algebra over 

H, and if ;u has the additive property, we find the cardinal 

conception of preference as a particular case. The agent measures 

by how much he prefers one action to another action and he adds 

up his preferences for two or more actions. 

Following the same reasonint, if the function J.1 is a 

probability, that is, if the t-algebra over H is a a-algebra 

over H and if P verifies the axioms of BOREL-KOLMOGOROV, we 

find the stochastic theory of preference as a particular case. 

A probability is a particular measure. 

We thus verify the generality of the "valuation theory 
of preference".. 
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2.2. The set of possible actions has, until now, been defined 

in purely physical terms. But owing the scarcity which funda- 

mentally characterizes the means at the disposal of an economic 

agent, there always exists a limitation constraint affecting 

this set. Individual behaviour is then analysed in the frame- 

work of economic calculus which consists of the optimization 

of an objective function under resource limitation constraint. 

In consumer theory, the set H becomes a set of 

possible consumptions and the resource limitation constraint 

is a budget constraint. The optimal demand is that which 

optimizes preference (which maximizes utility eventually) 

over the set of efficient consumptions, and this, while taking 

into account the budget constraint. 

In producer theory the set H becomes a set 

of possible productions and the constraint becomes technolo- 

gical. The optimal supply is that which, respecting the 

technological constraint, maximizes profit over the set of 

efficient productions. 

Now, it can be shown that if the preferences are 

fuzzy, the existence of a budget constraint implies that all 

the possible consumptions are more or less efficient. Formally, 

the fuzzy subset of more or less efficient consumptions plays 

the role of a fuzzy constraint. Consumer's equilibrium is 

attained for a fuzzy demand which optimizes imprecise 

preference (which maximizes fuzzy utility eventually) under 

this fuzzy constraint [ 34 ] [ 35 ] . 

In the same manner, we show that all the possible 

productions are more or less efficient and that the producer's 

equilibrium is attained for a fuzzy supply which, under this 

fuzzy constraint, raises the profit to a more or less high 

level 1 [36] . . 
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2.2.1. These models of fuzzy spatial equilibrium of the consumer 

and the producer are based on specifications which are peculiar 

to their respective fields of study. We show here that they are 

particular cases of the economic calculus of optimizing a 

fuzzy objective function under a fuzzy constraint. The problem 

boils down to finding, within the set of possible decisions 

that the agent can take a priori, that decision which best 

satisfies the fuzzy objective function as well as the fuzzy 

constraint. 

2.2.1.1. From now onwards, we put M = [ 0,1 ] . 

Let H be a countable set of possible actions denoted 

by kh , 
with k = 1,...,z, and which are realizable within a set 

of localities designated by p, with p = 1,...,s. We have 

A fuzzy objective is a fuzzy subset of H denoted by 

H, such that: 

A fuzzy constraint is a fuzzy subset, C, of H, such 

that: 

A fuzzy decision is a fuzzy subset, F, of H, such 

that: 

By definition, an optimal fuzzy decision is the inter- 

section (when this is not empty) of a fuzzy objective (fuzzy 

subset of possible actions totally preordered with the aid of a 

choice criterion) and a fuzzy constraint (fuzzy subset of more 

or less efficient actions). , 

Thus: F = H n C , and the problem reduces to finding: 
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2.2.1.2. It can be shown that [ 23 H 35] : : 

Sx is called the set of a-cuts of the fuzzy subset C. 

By this theorem, the problem of finding the fuzzy 

optimal decision is reduced to that of finding the extremum 

of a scalar function. 

Let�p be a function, such that: 

and let � be a function, such that: 

After establishing that the function � has the following 

properties: 

it can be shown [231 [351 ] that, if � is continuous and 

decreasing over [0,11 , then: 

(i) � has a fixed point, that is: 

(ii) sup MF(Ph) = â 
. 
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Using this theorem, the solution to the problem of 

finding sup P,(Ph) 
amounts to finding (1,� = sup ,À1Ph) . 

2.2.1.3. We know that: 

where suppC stands for the support of C, that is, the subset, 

such that: - 

By virtue of propositions (i) and (ii): 

and, C C suppC, since � � 0. 

In order to calculate a supremum, we have to find an 

appropriate set A, such that: 

To this end, we use the following result [23] [55] : : 

sup it (Ph) = sup -Vkh) 

2.2.2. Finally, it remains to study the continuity conditions 

for the function �(") = sup �u(�h) . 

To this end, we impose the condition of strict convexity on the 

fuzzy subset C. A fuzzy subset, C, is strictly convex if and 

only if the membership function is strictly quasi-concave, that 

is, if and only if: 
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A theorem due to ASAI and TANAKA [23] states, 

under the above hypothesis, a sufficient condition for the 

continuity of �(k) . 

if the fuzzy subset, C, is strictly convex, then 

2.2.3. Thus, at equilibrium (which is also an optimum), the 

fuzzy decision optimizes the imprecise objective-function 

under the fuzzy limitation constraint placed on the possible 

actions. In the economic space, the locality, where the optimal 

action, compatible with the restriction imposed on the set of 

possible actions, is realized, is simultaneously determined. 



40 

3 - CONCLUSION 

3.1. We have verified that the fuzziness which characterizes the 

real world should no more constitue a setback to scientific 

analysis. Fuzzy économie spaces can be the subject of a theory 

presenting the same rigour as the traditional theory of precise 

économie spaces. 

3.2. The general character of the theory of fuzzy economic spaces 

is established, for the mathematical model which underlies it 

contains, as particular cases, the theory of sure sets and that 

of random sets. It is thus unnecessary to match fuzzy spaces 

against precise spaces. The latter are limiting cases of the 

former. The theory of fu��y economic spaces emhodies that of 

ordinary spaces. 

3.3. Ilowever, interesting though it may be, this aptitude for gene- 

rality is not the principal c:�uality of the theory of fuzzy economic 

spaces. It should be emphasized that the latter contains new and 

considerable results: it renews the theory of value, it modifies 

the theory of spatial behaviours and it deepens the description 

of economic universes and of their configurations. 

In addition, on ail these points, the analysis gains 

in realism without loss of rigour. 

3.4. Certainly, numerous and delicate researches should still 

be pursued in order to cover a domain as vast as this: the elabo- 

ration of fuzzy spatial theories of equilihrium, of the optimum and 

of disequilibrium and the introduction of time and some dynamics 

seem, notably, to be tasks that should have priority. But, we can 

anticipate that the analysis of fuzzy economic spaces, which is 

based on axiomatic foundations and which has at its disposai the 

efficient and powerful tools that it needs, will enjoy the theore- 

tical developments that it solicits and bring its assistance to 

the solution of decision problems. 
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