Exploratory Spatial Data Analysis of the distribution of regional per capita GDP in Europe, 1980-1995
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The aim of this paper is to study the dynamics of European regional per capita product over time and space. This purpose is achieved by using the recently developed methods of Exploratory Spatial Data Analysis. Using a sample of European regions over the 1980-1995 period, we find strong evidence of global and local spatial autocorrelation in per capita GDP throughout the period. The detection of clusters of high and low per capita products during the period is an indication of the persistence of spatial disparities between European regions. This analysis is finally refined by the investigation of the spatial pattern of regional growth.

Introduction

The integration of the European market has stimulated the analysis of regional economic convergence within the European Union in the recent macroeconomic literature [START_REF] Neven | Regional convergence in the European community[END_REF][START_REF] Abraham | Regional convergence in the European Monetary Union[END_REF][START_REF] Armstrong | Convergence among the regions of the European union[END_REF]Molle and Broeckhout 1995). Most of the time, the empirical methods that have been used are identical to the methods used in international studies. However, at the regional scale, spatial effects and particularly spatial autocorrelation are determining for the analysis of convergence processes.

Several factors, like trade between regions, technology and knowledge diffusion and more generally regional externalities and spillovers, lead to geographically dependent regions: there are spatial interactions between regions and the geographical location plays an important role.

Despite their importance, the role of spatial effects in convergence processes has been only recently examined using spatial statistics and spatial econometric methods (Lopez-Bazo et al. 1999;[START_REF] Fingleton | Estimates of time to economic convergence: an analysis of regions of the European Union[END_REF][START_REF] Rey | US regional income convergence: a spatial econometric perspective[END_REF].

Therefore, this paper aims at studying the dynamics of European regional per capita product over time and space. In this purpose, we use the recently developed methods of Exploratory Spatial Data Analysis to examine the spatial distribution of regional per capita products. The detection of global and local spatial autocorrelation enables to characterize the way the economic activities are located in the European Union and the way this pattern of location has changed over the period.

In the second section, we briefly present the principles and methods of Exploratory Spatial Data Analysis (ESDA). Using a sample of European regions over the 1980-1995 period, we compute in the third section a global spatial autocorrelation statistic, as well as local Moran autocorrelation statistics (Moran scatterplot and LISA; [START_REF] Anselin | Local indicators of spatial association-LISA[END_REF][START_REF] Anselin | The Moran scatterplot as an ESDA tool to assess local instability in spatial association[END_REF] in order to detect clusters of high and low per capita products. Indeed, the existence of those clusters during the period would be an indication of the persistence of spatial disparities between European regions. The spatial pattern of regional growth is finally investigated.

Exploratory Spatial Data Analysis

Exploratory Spatial Data Analysis (ESDA) is a set of techniques aimed at describing and visualizing spatial distributions, at identifying atypical localizations or spatial outliers, at detecting patterns of spatial association, clusters or hot spots, and at suggesting spatial regimes or other forms of spatial heterogeneity [START_REF] Haining | Spatial data analysis in the social and environmental sciences[END_REF][START_REF] Bailey | Interactive spatial data analysis[END_REF]Anselin 1998aAnselin , 1998b)). These methods provide measures of global and local spatial autocorrelation.

1 Global spatial autocorrelation

Spatial autocorrelation can be defined as the coincidence of value similarity with locational similarity [START_REF] Anselin | SpaceStat, a software package for the analysis of spatial data[END_REF]. Therefore there is positive spatial autocorrelation when high or low values of a random variable tend to cluster in space and there is negative spatial autocorrelation when geographical areas tend to be surrounded by neighbors with very dissimilar values.

The measurement of global spatial autocorrelation is based on the Moran's I statistic, which is the most widely known measure of spatial clustering [START_REF] Cliff | Detection of influential observations in linear regression[END_REF][START_REF] Cliff | Detection of influential observations in linear regression[END_REF][START_REF] Upton | Spatial data analysis by example[END_REF][START_REF] Haining | Spatial data analysis in the social and environmental sciences[END_REF]. For each year of the period 1980-1995, this statistic is written in the following way:

where xit is the observation in region i and year t, fut is the mean of the observations across regions in year t . n is the number of regions. Wy is the element of the spatial weight matrix W . This matrix contains the information about the relative spatial dependence between the n regions i . The elements wu on the diagonal are set to zero whereas the elements indicate the way region i is spatially connected to the region j . Finally, S0 is a scaling factor equal to the sum of all the elements of W .

The spatial weight matrix we use in this study is based on the 10 nearest neighbors calculated from the great circle distance between region centroids. In Europe, regions have on average 5 to 6 contiguous neighbors, our choice of 10 yields a ring around each region of approximately the first and second order contiguous regions and moreover connects United-Kingdom as well as some islands such as Sicilia, Sardegna, and Baleares to continental

Europe. Furthermore, it also connects Greece to Italy, so that the block-diagonal structure of the simple contiguity matrix is avoided. This feature is of particular interest when working on a sample of European regions, which are less compact than US states.

Noting z, the vector of the n observations for year t in deviation from the mean /ut ,

(1) can be written in the following matrix form:

(1)

In order to normalize the outside influence upon each region, the spatial weight matrix is row-standardized such that the elements in each row sum to 1. In this case, the expression

(2) simplifies since for row-standardized weights S0 =n. approach with 10000 permutations. In this approach, it is assumed that, under the null hypothesis, each observed value could have occurred at all locations with equal likelihood.

Moran

But instead of using the theoretical mean and standard deviation (given by [START_REF] Cliff | Detection of influential observations in linear regression[END_REF], a reference distribution is empirically generated for I, from which the mean and standard deviation are computed. In practice this is carried out by permuting the observed values over all locations and by re-computing I for each new sample. The mean and standard deviation for I are then the computed moments for the reference distribution for all permutations [START_REF] Anselin | Local indicators of spatial association-LISA[END_REF].

Local spatial autocorrelation

Moran's I statistic is a global statistic: it does not enable us to appreciate the regional structure of spatial autocorrelation. The global spatial autocorrelation may also be visualized in this graph since, from (2)

Moran's I is formally equivalent to the slope coefficient of the linear regression of Wz, on z, using a row-standardized weight matrix. Therefore, this regression can be assessed with diagnostics for model fit. The detection of outliers and sites, which exert strong influence on Moran's I, is based on standard regression diagnostics: studentized residuals and leverage measures are used to detect outliers, and Cook's distance is an influence measure [START_REF] Belsley | Regression diagnostics: identifying influential data and sources of collinearity[END_REF][START_REF] Haining | Diagnostics for regression modeling in spatial econometrics[END_REF][START_REF] Haining | Data problems in spatial econometric modeling[END_REF]. The studentized residual is a measure of the extreme character of an observation along the dependent variable domain and is calculated as the studentized difference between the actual value and the predicted value. The leverage quantifies the extreme nature of an observation in the range of the independent variable and is assessed using the diagonal elements of the hat matrix2 (Haoglin and Welsch 1978). Finally, the Cook's distance combines the two previous diagnostics and measures the extent to which regression coefficients are changed by the deletion of a particular observation (Cook 1977;[START_REF] Weisberg | Applied linear regression[END_REF].

Let us note however that the Moran scatterplot does not give any indications of significant spatial clustering and therefore, it cannot be considered as a Local Indicator of Spatial Association in the sense defined by [START_REF] Anselin | Local indicators of spatial association-LISA[END_REF].

Local indicators of spatial association (LISA) [START_REF] Anselin | Local indicators of spatial association-LISA[END_REF] defines a local indicator of spatial association as any statistics satisfying two criteria3. First, the LISA for each observation gives an indication of significant spatial clustering of similar values around that observation; second, the sum of the LISA for all observations is proportional to a global indicator of spatial association.

The local version of the Moran's I statistic for each region i and year t can then be written as following:

where the summation over j is such that only neighboring values of j are included. It is straightforward to see that the sum of local Moran's statistics can be written:

(3)

From (1), it follows that the global Moran's / statistic is proportional to the sum of local Moran's statistics:

',=2X./S° < 5)

For a row-standardized weight matrix, S0 =n so that /, = -V : the global Moran's / Moran's statistics will be correlated when the neighborhood sets of two regions contain common elements [START_REF] Ord | Local spatial autocorrelation statistics: distributional issues and an application[END_REF][START_REF] Anselin | Local indicators of spatial association-LISA[END_REF]. This is actually a problem of multiple statistical comparison and the significance levels must be approximated by the Bonferroni inequality or by the procedure elaborated by Sidak (1967)4. As noted by Anselin (1995, p.96):

"This means that when the overall significance associated with the multiple comparisons (correlated tests) is set to a , and there are m comparisons, then the individual significance a, should be set to a/m (Bonferroni) or l -( l -a ) 1/m (Sidak)". With m = n, the number of regions of the sample, these procedures can be overly conservative to assess the significance of local Moran's statistics. The second procedure requires that the variables are multivariate normal, which is unlikely to be the case with LISA. In this respect, we will present the results obtained with both the usual 5% pseudo-significance level, which may be too liberal, and the 10% Bonferroni pseudo-significance level (with n =138, we get a, =7.246.10"4), which may be too conservative in opposition to the proceeding one. These two significance level can therefore be considered as the two extreme bounds for the inference. [START_REF] Anselin | Local indicators of spatial association-LISA[END_REF] gives two interpretations for local Moran's statistics: they can be used, first, as indicators of local spatial clusters (or hot spots), which can be identified as locations or sets of neighboring locations for which the LISA are significant and second, as diagnostics for local instability, i.e. for significant outliers with respect to the measure of global spatial autocorrelation (atypical localizations or pockets of nonstationarity). The second interpretation of the LISA statistics is similar to the use of a Moran scatterplot to identify outliers and leverage points for Moran's I: since there is a link between the local indicators and the global statistic, LISA outliers will be associated to the regions which are the most influential on Moran's I.

Empirical results

We apply ESDA techniques to European regional data on per capita GDP in logarithms.

The data are extracted from the EUROSTAT-REGIO databank5. Our sample includes 138 regions for 11 countries (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Greece, Italy, Netherlands and Portugal in NUTS2 level6) over the 1980-1995 period7.

Global spatial autocorrelation

Table 1 displays the evolution of the spatial autocorrelation of per capita GDP over the 1980-1995 period for the 138 European regions of our sample. It appears that per capita regional GDPs are positively spatially autocorrelated since the statistics are significant with p = 0.0001 for every year8. This result suggests that the hypothesis of spatial randomness is rejected and that the distribution of per capita regional GDP is by nature clustered over the whole period. In other words, the regions with relatively high per capita GDP (respectively low) are localized close to other regions with relatively high per capita GDP (respectively low) more often than if this localization was purely random.

If we consider now the evolution of the Moran's / statistics over the period, we can see that the value of the statistic has slightly increased over the period. If this scheme keeps on in the future, the spatial distribution of per capita GDP will remain clustered and will not tend toward a spatially random distribution. Moran's / statistics thus indicates a global significant trend to the geographical clustering of similar regions in terms of log per capita GDP.

[Table 1 about here] [Figures 1 and2 about here]

Moran scatterplots

The Moran scatterplot can also be used to assess the presence of outliers, which are defined as the points further than 2 units away from the origin. In 1980, there are no regions that have a per capita GDP more than two standard deviations above the mean whereas Voreio Aigaio (Greece) and all Portuguese regions (except the capital region Lisboa) have per capita

GDPs less than two standard deviations below the mean (horizontal axis in Figure 1). There is no outlier on the vertical axis (Figure 1). In 1995, Hamburg and Darmstadt (Germany) are outliers with per capita GDPs more than two standard deviations above the mean (Figure 2).

The Portuguese regions cannot be considered as outliers anymore except Alentejo (Portugal)

as well as Ipeiros and Voreio Aigaio (Greece).

The first 2 columns and first 2 rows of Finally, a region is considered to be influential if the associated Cook's distance is larger than F(0.5;p;rt -p) = 0.6967 withp = 2 and n = 138. The results are not reported in the table since there was no occurrence of a region exceeding this level for all years (the highest value is 0.216 for Alentejo (Portugal) in 1988). These results suggest that, although some regions have large leverages and studentized residuals, no region appears to be particularly influential in the sample.

[Table 2 about here]

More insight to the evolution of Moran's scatterplots over time is provided by a newly introduced measure of space-time transitions, which is based on the classification of the transitions over time of a region and its neighbors in four groups [START_REF] Rey | Spatial empirics for economic growth and convergence[END_REF]. The first includes the transitions with a relative move of only the region, for example a HH region in the first period that becomes a LH region in the following period. The other cases are HL-LL, LH-HH and LL-HL. The second group contains the transitions of the neighbors only:

HH-HL, HL-HH, LH-LL and LL-LH while the transitions of both a region and its neighbors belong to the third group: HH-LL, HL-LH, LH-HL and LL-HH. Finally, the 4 cases in which the region and its neighbors remain at the same level are in the fourth group.

High stability in the types of transitions is reflected by a high amount of type 4 transitions and low values of the flux (or instability) measure, which is defined as the frequency of the first and second type of transitions over all 15 years of transitions. For time intervals of 1, 5 and 10 years, the fourth type of transition is always the most common one (95.6%, 89.9% and 85.3%) and the flux measure is respectively equal to 4%, 7.9% and 8.8%. These results denote a high cohesion between European regions and a very low rate of mobility, increasing very slowly with the transition interval. This finding is refined by the study of local spatial autocorrelation statistics.

Local Spatial Autocorrelation Statistics

In order to examine further these results that are consistent with EU economic reports, it is worth computing the local indicators of spatial dependence since no indication of significant local spatial clustering is provided by the Moran scatterplots. With the aim of identifying the spatial movements that occurred during the whole 1980-1995 period, we will only retain the phenomena of local clusters and the atypical localizations for which the local Moran's statistics are significant. The results of this procedure are summarized in Table 3.

[Table 3 about here]

The number of years over the whole period with significant local statistics (using a pseudo-level of significance of 5% and a Bonferroni pseudo-level of significance of 10%) is displayed in the second column9. The number of years during which the region falls into a certain quadrant of the Moran scatterplot with a significant local statistics are displayed in the following columns (HH, HL LH or LL). The corresponding years are finally displayed in the two last columns. Several points can be highlighted.

First, the local pattern of spatial association reflects the global trend to positive spatial autocorrelation since 98.83% of the significant local indicators, using the 5% pseudo significance level, fall either into quadrant I or in quadrant III of the scatterplot, i.e.

representing HH and LL types of clustering. We note however that the distribution between associations of the HH and LL types is uneven since 62.23% of the regions fall into quadrant I: we thus mainly detect regions or sets of regions with high per capita GDP surrounded by other regions with high per capita GDP10.

Second, deviations of the global trend are marginal and are dominated by a particular form of negative spatial association: the LH type, where a region with low per capita GDP is surrounded by regions with high per capita GDP (0.68% of the significant LISA). Only two HL regions, or "diamonds in the rough", are detected: Madrid (Spain) for 1991 and 1992. The 9 We can note that 66.1% of these indicators are significant at the 5% pseudo-significance level (1459 versus a total of 2208) and only 28.4% at the 10% Bonferroni pseudo-significance level (628 versus a total of 2208).

"doughnuts" or LH clusters are Brabant Wallon for 3 years, Hainault for 2 years and Namur for 3 years (Belgium), Friesland for 6 years and Drenthe for only one year (Netherlands), these regions constitute therefore a little pocket of non-stationnarity for a limited period of time".

Third, four regional clusters persist in time. The first is a significant LL form of clustering between all the Portuguese regions and almost all the Spanish regions. We can note that these "poor" regions entered the EU in 1986, that they benefited since 1989 of the regional aid to the so-called Objective 1 regions but that over all the period, the per capita GDP of these regions remains lower than the average. The same comment apply for the two LL form of clustering between some Italian Objective 1 regions (Puglia, Basilicata, Calabria, Sicilia) and between all the Greek regions (the Greek and the Portuguese regions are even significant using the 10% Bonferroni pseudo-significance level). The last clustering, of the HH type, relates mainly to German regions but also to some Belgian, French, Dutch and north Italian regions. However, most of the French regions that were significant in 1980 do not belong to the cluster any more in 1995 (only 4 northern regions of the 16 regions remain significant). These results show a high persistence of spatial inequality between the European regions across time: the regions that were surrounded by rich neighbors still benefit from their environment whereas the regions with poor neighbors remain negatively affected.

[Figures 3 and4 about here]

The spatial outliers identified by the 2 sigma rule are shown in the last set of rows in table 2. In 1980, all the Portuguese regions as well as the Spanish region Extremadura indicated clustering of very similar values. The situation in 1995 is very different since the Portuguese regions are replaced by the Greek regions (only Alentejo remains a spatial outlier).

10 Using the Bonferroni 10% pseudo-significance level, the picture is quite different since 11.78% of significant LISA fall in quadrant I and 16.67% of significant LISA fall in quadrant III, the latter including the regions with low per capita GDP surrounded by other regions with low per capita GDP.

11 No atypical localization is found when the Bonferroni 10% pseudo-significance level is used. 14

Spatial patterns of growth rates

To refine this analysis, we apply the ESDA techniques to the growth rates of per capita GDP in order to study the geographical patterns in growth processes. [Figure 5 about here]

The procedure of evaluation of local spatial autocorrelation applied to the growth rates (table 4, 3rd column) shows that the patterns of spatial association remain dominated by clustering of LL or HH types12. Galicia and Asturias in Spain are the 2 regions with low growth rates surrounded by regions with high growth rates. The regions with high growth rates surrounded by regions with low growth rates are to be found in Greece : Anatoliki Makedonia, Ionia Nisia and Kriti. The significant LISA at the 5% level are shown in figure 6.

To study the possible geographical characteristics implied by /? -convergence processes, we compared the pattern of spatial association of growth rate with the pattern of spatial association of initial per capita GDP (table 4, first and 3rd columns) in order to look for a possible inverse relationship. Several results can be underlined.

It appears that, in only 43% of the cases, the regions that were in a certain quadrant for per capita GDP level in 1980 are in the opposite quadrant for their growth rate. But this global feature masks different behaviors. Thus, the regions of Portugal and some Spanish regions had in 1980 a low per capita GDP and were surrounded by regions with low per capita GDP (clustering of the LL type) but their growth rate is, as for their neighbors, higher than the average (clustering of the HH type). The spatial autocorrelation indicators highlight the dynamic character of these regions, whose economic performances within the group of the Southern regions of Europe were often underlined. On the contrary, the majority of the French regions, the British regions, some regions in Belgium and in the Netherlands, are characterized by a configuration of the initial per capita GDP of HH type and a configuration of the growth rates of the LL type.

Other characteristics between the patterns of spatial association can be highlighted. On the one hand, within the group of the Southern regions, certain poor regions of Spain, Italy and Greece do not manage to take off, just like their neighbors (configurations of the LL type for the initial per capita GDP and the growth rates) or in spite of the dynamism of their neighbors (configuration of the LL type for the initial per capita GDP and of LH type for the growth rates). These regions thus show strong signs of delay of development. On the other hand, almost all the German regions are very dynamic since they started with high levels, as well as their neighbors and still had a HH type form of clustering for their growth rates.

[Table 4 about here]

[Figure 6 about here]

Conclusion

The study of the spatial distribution of regional per capita GDP in Europe over 1980-1995 using Exploratory Spatial Data Analysis (ESDA) highlights the importance of spatial interactions and geographical locations in regional growth and convergence issues. ESDA appears therefore as a powerful tool to finely reveal the characteristics of economic development of each region in relation to those of its geographical environment.

First, ESDA reveals significant positive global spatial autocorrelation, which is persistent over the whole period: regions with relatively high (resp. low) per capita GDP are and remain localized close to other regions with relatively high (low) per capita GDP and that the spatial distribution of regional per capita GDP is not random. From the applied econometrics perspective, this result has a major implication for the suitable estimation of /^-convergence models: spatial autocorrelation should systematically be tested for in cross section specifications and if detected, an appropriate spatial specification (spatial autoregressive model, spatial error model or spatial cross regressive model) should be estimated using the proper econometric tools to achieve reliable statistical inference.

Second, the Moran scatterplot and LISA show the persistence of the high-high and lowlow clustering types for regional per capita GDP, confirming the north-south polarization of European regions. This reveals some kind of spatial heterogeneity hidden in the global positive spatial autocorrelation pattern and may indicate the co-existence of two distinct spatial regimes. Spatial effects could then perform differently in Northern Europe than in Southern Europe. Moreover the convergence process, if it exists, may be different across regimes. Once again from the applied econometrics perspective, this result suggest that the potential for distinct spatial regimes should also be considered carefully in the estimation of /^-convergence models, which should be tested for structural instability. All these aspects will be studied in further research. Spatial lag of per capita growth rate (standardized) -3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
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  's I statistic gives a formal indication on the degree of linear association between the vector z, of observed values and the vector Wz, of spatially weighted averages of neighboring values, called the spatially lagged vector. Values of I larger than the expected value E( l) = -l/( n -l ) indicate positive spatial autocorrelation, while values smaller than the expected indicate negative spatial autocorrelation. Inference is based on the permutation

  of the local Moran's statistics. A positive value for , indicates clustering of similar values (high or low) whereas a negative value indicates clustering of dissimilar values. Due to the presence of global spatial autocorrelation, inference must be based on the conditional permutation approach: the value xi at site i is held fixed, while the remaining values are randomly permuted over all locations (note that only the quantity (x,, ~M<) needs to be computed for each permutation since the term (jc( , ~M,)/mo remains constant for a given region i ). It should be stressed that p -values obtained for the local Moran's statistics are actually pseudo-significance levels. Inference is further complicated by the fact that local

  association. Not surprisingly, the Moran scatterplots reveal a clear north-south polarization of the regions: northern regions are to be found in the first quadrant (HH type) while southern regions are in the third quadrant (LL type). The major change between 1980 and 1995 concerns the British regions: they are in the third quadrant in 1995 (LL) whereas they were in the first quadrant in 1980 (HH).In 1980, only 3 regions show association of dissimilar values (2 in quadrant II (LH) and 1 in quadrant IV (HL)). We can note however that Aquitaine (France) is located at the border between the French regions, which are HH regions, and the Spanish regions, which are LL regions. This geographical situation explains why Aquitaine is a HL region. The 2 LH regions are Wales and Northern Ireland (United-Kingdom). In 1995, there are 7 atypical regions (Hainaut and Namur (Belgium), Languedoc-Roussillon (France), East Anglia (United Kingdom)) in quadrant II (LH) and Aquitaine, Midi-Pyrenees (France) and Lazio (Italy) in quadrant IV (HL)).
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 1 Fig. 1. Moran scatterplot for log per capita GDP 1980

  bold significant at 5% (* significant at 10% Bonferroni) pseudo-signifiance level based on 10000 Permutations.
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 56 Fig. 5. Moran scatterplot growth rate o f per capita GDP over 1980-1995

  [START_REF] Anselin | Local indicators of spatial association-LISA[END_REF], which are used to test the hypothesis of random distribution by comparing the values of each specific localization with the values in the neighboring localizations.

	Moran Scatterplot
	Inspection of local spatial instability is carried out by the means of the Moran scatterplot
	(Anselm 1996), which plots the spatial lag Wz, against the original values z ,. The four
	different quadrants of the scatterplot correspond to the four types of local spatial association
	between a region and its neighbors: (HH) a region with a high1 value surrounded by regions
	with high values (Quadrant I in top on the right), (LH) a region a with low value surrounded
	by regions with high values (Quadrant II in top on the left), (LL) a region with a low value
	surrounded by regions with low values (Quadrant III in bottom on the left), (HL) a region with
	a high value surrounded by /regions with low values (Quadrant IV in bottom on the right).
	Quadrants I and IE refer to positive spatial autocorrelation indicating spatial clustering of
	similar values whereas quadrants II and IV represent negative spatial autocorrelation
	indicating spatial clustering of dissimilar values. The Moran scatterplot may thus be used to
	visualize atypical localizations, i.e. regions in quadrant II or in the quadrant IV. Moreover, the
	use of standardized variables allows the Moran scatterplots to be comparable across time.

However, one can wonder which regions contribute more to the global spatial autocorrelation, if there are local spatial clusters of high or low values, and finally to what point the global evaluation of spatial autocorrelation masks atypical localizations or "pockets of local nonstationarity", i.e. respectively regions or groups of contiguous regions, which deviate from the global pattern of positive spatial autocorrelation.

The analysis of local spatial autocorrelation is carried out with two tools: first, the Moran scatterplot

[START_REF] Anselin | The Moran scatterplot as an ESDA tool to assess local instability in spatial association[END_REF]

, which is used to visualize local spatial instability, and second, local indicators of spatial association "LISA" (

Table 2

 2 There are 12 such observations in 1980 and 1995, most of them being located in Portugal, Greece and Germany.

display a summary of the most extreme observations according to the Moran regression diagnostics for 1980 and 1995. First, the largest studentized residuals represent large deviations from the model fit. In the table are reported the 7 studentized residuals larger than 2 in absolute value in 1980 and 1995. Second are reported the observations associated with leverages higher than 2p/n (where p is the number of explanatory variables in the regression, i.e. p= 2 and n = 138).

  The computation of Moran's I statistics on the growth rate of per capita GDP between

	1980 and 1995 of the various regions reveals a positive spatial autocorrelation (0.422 with a
	/»-value of 0.0001). It means that the regions with relatively high per capita GDP growth rate
	(respectively low) are localized close to other regions with relatively high per capita GDP
	growth rate (respectively low) more often than if this localization was purely random.
	The Moran scatterplot for growth rates is displayed in figure 5. Compared to the
	scatterplots for per capita GDP in 1980 and 1995, there is much more instability: only 73.2%
	of the European regions show association of similar values (33.3% in quadrant I (HH) and
	39.9% in quadrant III (LL)) while 26.8% of the regions are negatively associated (11.6% in

quadrant II (LH) and 15.2% in quadrant IV (HL)). All the Portuguese regions have growth rates more than two standard deviations above the mean. Let's recall that they were outliers in the opposite quadrant in 1980. We will come back to this inverse relationship between the per capita GDP in 1980 and growth rates at the end of this paragraph. Finally, the most extreme observations according to the Moran regression diagnostics are shown in the last column of table 2. As for per capita GDP in 1980 and 1995, there was no influential region according to the Cook's distance criterion.

Table 1 .

 1 Moran's / statistics for log per capitaGDP over 1980GDP over -1995 

	Year	Moran's I	Standard deviation	Standardized value
	1980	0.774	0.033940	23.024
	1981	0.760	0.033971	22.574
	1982	0.746	0.033956	22.161
	1983	0.779	0.034083	23.060
	1984	0.757	0.034019	22.446
	1985	0.766	0.034077	22.692
	1986	0.785	0.034126	23.213
	1987	0.789	0.034164	23.289
	1988	0.773	0.034196	22.802
	1989	0.750	0.034221	22,113
	1990	0.762	0.034242	22.461
	1991	0.754	0.034311	22.174
	1992	0.770	0.034323	22.651
	1993	0.790	0.034272	23.259
	1994	0.799	0.034267	23.514
	1995	0.802	0.034222	23.653
	Note: The expected value for Moran's I statistic is constant for each year: E(l) = -0.007. All statistics are
	significant at p = 0.0001.			

Table 2 .

 2 Outliers : initial and terminal years and growth rates for log per capita GDP

		1980		1995		Growth	
		Region	Studentized	Region	Studentized	Region	Studentized
			Residual		Residual		Residual
		Sterea Ellada	-3.445158	Ile de France	-3.139385	Andalucia	3.497511
		Bruxelles	-2.893242	Hamburg	-2.886250	Extremadura	2.822284
	Studentized	Hamburg	-2.500151	Bruxelles	-2.654439	Galicia	2.745314
	residuals	Attiki	-2.298205	Luxembourg (Lux)	-2.612451	Luxembourg (Lux)	-2.666020
	exceeding	Ile de France	-2.225954	Attiki	-2.337432	Asturias	2.591420
	2 in absolute	Asturias	-2.099516	Darmstadt	-2.130149	Kriti	-2.436728
	value	Lüneburg	2.073019	Madrid	-2.005542	Ionia Nisia	-2.195220
						Notio Agaio	-2.142425
		Region	Leverage	Region	Leverage	Region	Leverage
		Centro	0.072428	Ipeiros	0.052553	Algarve	0.105763
		Norte	0.065610	Hamburg	0.046399	Centro	0.102492
		Alentejo	0.062048	Voreio Aigaio	0.040424	Norte	0.089878
		Algarve	0.058095	Alentejo	0.038027	Sterea Ellada	0.065942
	leverage	Voreio Aigaio	0.038353	Darmstadt	0.037616	Lisboa	0.064531
	exceeding	Hamburg	0.036314	Centro	0.034994	Luxembourg (Lux)	0.055558
	4/N	Extremadura	0.035489	Norte	0.032597	Alentejo	0.054656
		Ipeiros	0.035076	Dyptiki Ellada	0.031850	Picardie	0.030390
		Bruxelles	0.032278	Oberbayem	0.031539		
		Lisboa	0.031164	Luxembourg (Lux)	0.030974		
		Ionia Nisia	0.029664	Peloponnissos	0.030740		
		Anatoliki Makedonia	0.029641	Bremen	0.029290		
		Region	LISA	Region	LISA	Region	LISA
		Extremadura	3.668896	Anatoliki Makedonia	2.995502	Norte	3.708258
		Norte	4.323912	Kentriki Makedonia	2.587855	Centro	5.333233
		Centro	5.100167	Dyptiki Makedonia	2.769021	Lisboa	4.516306
	LISA	Lisboa	3.432059	Thessalia	2.891856	Alentejo	4.173558
	outliers	Alentejo	4.938435	Ipeiros	3.841003	Algarve	5.762157
	(2-sigma	Algarve	4.744208	Ionia Nisia	2.69785		
	rule)			Dyptiki Ellada	3.108809		
				Sterea Ellada	2.663872		
				Peloponnisos	3.045441		
				Voreio Aigaio	3.275564		
				Alentejo	2.801488		

Table 3 .

 3 Local Indicators of Spatial Association (LISA): Log per capitaGDP (1980GDP ( -1995) ) 

	Code	Region	Signif	HH	LH	LL	HL	Years 5%	Years 10% Bonf.
		BELGIUM							
	Be1	Bruxelles	1(0)	1			80		
	Be21 Anvers	6(0)	6			80-81 ;87; 93-95	
	Be22 Limburg (B)	12(0)	12			80-83;85-88;92-95	
	Be23 Oost Vlaanderen	4(0)	4			80-81:94-95	
	Be24 Vlaams Brabant	4 (0)	4			80-81;94-95	
	Be25 West Vlaanderen	5(0)	5			80-81:93-95	
	Be31 Brabant Wallon	5(0)	2	3		80:95/81:93-94	
	Be32 Hainaut	4(0)	2	2		80-81 / 94-95	
	Be33 Liège	4 (0)	4			80:93-95	
	Be34 Luxembourg (B)	9(0)	9			80-81:86-88:92-95	
	Be35 Namur	5(0)	2	3		80-81 / 93-95	
		GERMANY							
	De11 Stuttgart	16(15) 16(15)			80-95		80:82-95
	Del 2 Karlsruhe	16(16) 16(16)			80-95		80-95
	Del 3 Freiburg	16(16) 16(16)			80-95		80-95
	De14 Tübingen	16(16) 16(16)			80-95		80-95
	De21 Oberbayem	16(9)	16(9)			80-95		83-84:87-88:91-95
	De22 Niederbayem	16(9)	16(9)			80-95		87-95
	De23 Oberpfalz	16(16) 16(16)			80-95		80-95
	De24 Oberfranken	16(13) 16(13)			80-95		83-95
	De25 Mittelfranken	16(15) 16(15)			80-95		80:82-95
	De26 Unterfranken	16(13) 16(13)			80-95		83-95
	De27 Schwaben	16(13) 16(13)			80-95		83-95
	De5	Bremen	16(0)	16			80-95		
	De6	Hamburg	16(3)	16(3)			80-95		93-95
	De71 Darmstadt	16(2)	16(2)			80-95		93:95
	De72 Giessen	16(11) 16(11)			80-95		80:83-84:86-88:91-95
	De73 Kassel	16(4)	16(4)			80-95		92-95
	De91 Braunschweig	16(11) 16(11)			80-95		80:82-84:87-88:91-95
	De92 Hannover	16(7)	16(7)			80-95		80:82-84:93-95
	De93 Lüneburg	16(14) 16(14)			80-95		80-88:91-95
	De94 Weser-Ems	16(5)	16(5)			80-95		80-83:95
	Deal Düsseldorf	14(0)	14			80-90:93-95	
	Dea2 Köln	14(0)	14			80-81:83:85-95	
	Dea3 Münster	16(0)	16			80-95		
	Dea4 Detmold	16(2)	16(2)			80-95		93:95
	Dea5 Arnsberg	16(3)	16(3)			80-95		93-95
	Deb1 Koblenz	16(3)	16(3)			80-95		93-95
	Deb2 Trier	12(0)	12			80-81:85-90:92-95	
	Deb3 Rheinhessen-Pfalz	16(16) 16(16)			80-95		80-95
	Dec	Saarland	16(0)	16			80-95		
	Def	Schleswig-Holstein	16(10) 16(10)			80-95		81-87:93-95
	Dk	DENMARK	16(7)	16(7)			80-95		80:82-84:93-95
		SPAIN							
	Es11 Galicia	16(15)			16(15)	80-95		80-91:

93-95 Es12 Asturias 16(10) 16(10) 80-95 80-88:94 Es13 Cantabria 16(0) 16 80-95 Es21 Pais Vasco 9(0) 9 81-87 :94-95 Es22 Navarra 7(0) 7 81-87 Es23 La Rioja 11(0) 11 80-88:94-95 Es24 Aragon 4(0) 4 82-85 Es3 Madrid 16(7) 14(7) 2 80-90:93-95/91-92 81-87 Es41 Castilla-Leon 16(5) 16(5) 80-95 81-85 Es42 Castilla-la Mancha

  

			16(2)	16(2)	80-95	82-83
	Es43 Extremadura	16(16)	16(16)	80-95	80-95
	Es51 Cataluña	0(0)		
	Es52 Valenciana	13(0)	13	80-89:93-95
	Es53 Islas Baleares	9(0)	9	80-86:94-95
	Es61 Andalucía	16(16)	16(16)	80-95	80-95
	Es62 Murcia	16(5)	16(5)	80-95	81-85
		FRANCE			
	Fr1	Ile de France	2(0)	2	80-81
	Fr21	Champagne-Ardenne	9(0)	9	80-82 ;85-87 :93-95
	Fr22 Picardie	10(0)	10	80-83:85-87:93-95
	Fr23 Haute-Normandie	10(0)	10	80-89
	Fr24 Centre	8(0)	8	80-87
	Fr25 Basse-Normandie	10(0)	10	80-89
	Fr26 Bourgogne	11(1)	11(1)	80-90	81
	Fr3	Nord-Pas-De-Calais	3(0)	3	80-81:95
	Fr41	Lorraine	16(0)	16	80-95
	Fr42 Alsace	16(2)	16(2)	80-95	80:95
	Fr43 Franche-Comté	16(0)	16	80-95
	Fr51	Pays de la Loire	8(0)	8	80-87
	Fr52 Bretagne	10(0)	10	80-89
	Fr53 Poitou-Charentes	8(0)	8	80-87
	Fr61	Aquitaine	0(0)		
	Fr62 Midi-Pyrénées	0(0)		

TABLE 4 .

 4 Spatial Association Patterns: initial and terminal years and growth rates for log per capitaGDP (1980GDP ( -1995) ) 

High (respectively low) means above (respectively below) the mean.

The hat matrix is defined as H = X(X'X)~' X' where X is the matrix of observations on the explanatory variables in a regression.

Note that the[START_REF] Getis | The analysis of spatial association by use of distance statistics[END_REF] local statistics G,(d) and G' (if) are not LISAs in the sense defined by[START_REF] Anselin | Local indicators of spatial association-LISA[END_REF] since they are not related to a global statistic of spatial association and will not be used in this study.

More about this problem can be found in[START_REF] Savin | Multiple hypotheses testing[END_REF].

Series E2GDP measured in Ecuhab units.

We use Eurostat 1995 nomenclature of statistical territorial units, which is referred to as NUTS: NUTS1 means European Community Regions while NUTS2 means Basic Administrative Units.

We exclude Groningen in the Netherlands from the sample due to some anomalies related to North Sea Oil revenues, which increase notably its per capita GDP. We exclude also Canary Islands and Ceuta y Mellila, which are geographically isolated. Corse, Austria, Finland, Ireland and Sweeden are excluded due to data non availability over the 1980-1995 period in the EUROSTAT-REGIO databank. Berlin and East Germany are also excluded due to well-known historical and political reasons.

42.7% (15.2%) of the LISA computed are significant at the 5% pseudo-level (resp. 10% Bonferroni pseudo level).