
HAL Id: hal-01527171
https://hal.science/hal-01527171v1

Preprint submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game semantics as a singular functor, and definability
as geometric realisation

Clovis Eberhart, Tom Hirschowitz

To cite this version:
Clovis Eberhart, Tom Hirschowitz. Game semantics as a singular functor, and definability as geometric
realisation. 2017. �hal-01527171�

https://hal.science/hal-01527171v1
https://hal.archives-ouvertes.fr


Game semantics as a singular functor, and
definability as geometric realisation

Clovis Eberhart and Tom Hirschowitz

LAMA (UMR 5127, CNRS and Université Savoie Mont-Blanc)

Abstract. Game semantics is a class of models of programming languages
in which types are interpreted as games and programs as strategies. Though
originally designed for sequential languages, its scope has recently been
extended to concurrent ones. A salient feature of game semantics is the
notion of innocence, which requires strategies to be determined by their
values on a certain class of plays, called views.
In previous work, we have obtained a representation theorem for Tsukada
and Ong’s categories of views and plays, in particular by constructing an
embedding 𝐕 of views into a coslice of a certain presheaf category. We here
exploit this result to exhibit an efficient categorical account of two crucial
constructions of game semantics. First, we recover the interpretation of
normal forms into innocent strategies as the singular functor associated
to 𝐕. Second, the corresponding geometric realisation functor yields the
standard definability result saying that any innocent strategy is (isomor-
phic to) the interpretation of a normal form.

1 Introduction

Innocent game semantics [16, 12] has led to fully abstract models for a variety of
functional languages, where programs are interpreted as strategies in a game.
Concurrent extensions of game semantics have recently been designed, based
on event structures [3] or on sheaves [9, 10, 6, 19].

An important result in games semantics asserts that the interpretation of
normal forms induces a bijection with (some variant of) finite innocent strate-
gies. The goal of this paper is to reconstruct this phenomenon categorically, in
the setting of Tsukada and Ong’s games model [19], relying on the well-known
Yoneda structure on categories [17, 21]. Admittedly, this is only a partial recon-
struction, as composition of strategies through parallel composition plus hiding
is missing from the picture. Still, we find the simplicity and algebraic topological
nature of our construction worth communicating.

Our starting point is the representation theorem proved in [5], which (sim-
plifying a bit for expository purposes) exhibits an embedding 𝐏𝐴⊢𝐵: ℙ𝐴⊢𝐵 ↪
(𝐴 ⊢ 𝐵)/�̂� of Tsukada and Ong’s category of plays ℙ𝐴⊢𝐵 over any arenas 𝐴 and
𝐵 into a coslice (𝐴 ⊢ 𝐵)/�̂� of a certain presheaf category �̂�. We here construct a
further embedding 𝐓𝜎⊢𝜏 : NF𝜎⊢𝜏 ↪ (𝐴 ⊢ 𝐵)/�̂� of normal forms of type 𝜎 ⊢ 𝜏 into
the same coslice (assuming that the types 𝜎 and 𝜏 yield arenas 𝐴 and 𝐵).



From there, using the standard categorical yoga of singular functors and ge-
ometric realisation, we are able to reconstruct (i) the translation of normal forms
into innocent strategies and (ii) the ‘definability’ map, which associates to each
(finitely presentable) innocent strategy 𝑋 a normal form 𝑅 such that ⟦𝑅⟧ ≅ 𝑋.
The former (i) is given by the composite

NF𝜎⊢𝜏
𝐓𝜎⊢𝜏−−→ ((𝐴 ⊢ 𝐵)/�̂�) (𝐕𝐴⊢𝐵)⋆

−−−−−→ 𝕍𝐴⊢𝐵 , (1)

where (𝐕𝐴⊢𝐵)⋆ denotes the singular functor associated to the composite embed-
ding

𝐕𝐴⊢𝐵: 𝕍𝐴⊢𝐵 ↪ ℙ𝐴⊢𝐵 ↪ (𝐴 ⊢ 𝐵)/�̂�.

The latter (ii) is the corresponding geometric realisation 𝐕𝐴⊢𝐵
! . We prove that the

composite (1) coincides with Tsukada and Ong’s interpretation of normal forms,
and that 𝐕𝐴⊢𝐵

! (𝑋) is indeed a normal form antecedent of 𝑋, up to isomorphism.
Our proof of this last fact relies on a notion of finite complex relative to 𝐴 ⊢ 𝐵,
which is defined following standard algebraic topological techniques [11]: we
prove such complexes to coincide both (1) with the 𝐓-image of normal forms
and (2) with the 𝐕!-image of finite innocent strategies.

Related work

Tsukada and Ong’s games draw inspiration from Melliès’s reformulation of in-
nocence [14] and our sheaf-based notion of innocent and concurrent strategies [10].
There are other alternative representations of plays, e.g., Boudes’s thick subtrees [2],
specific intersection types [7], or resource terms [20]. Ours is close in spirit. A
main difference lies in our emphasis on morphisms between plays, which is of
course key in stating the adjunction between geometric realisation and singular
functor. A further difference is that our correspondence is less tight: the embed-
ding lands into a much larger category. In a sense, this looseness is precisely
what allows us to also embed normal forms and innocent strategies (using co-
completeness).

Plan

We start in Section 2 by quickly reviewing some basic notation and a few cate-
gorical facts. We continue in Section 3 by recalling the representation theorem
from [5] and explaining how plays map to the relevant coslice category. We
continue in Section 4 by defining our functor from normal forms to the same
coslice category. In Section 5, we construct the relevant singular functor and
prove (Theorem 2) that it yields the correct interpretation of normal forms into
innocent strategies. In Section 6, we construct the corresponding geometric re-
alisation functor and show (Theorem 3) that it yields the expected antecedents
for all finitely presentable innocent strategies. Finally, we conclude in Section 7.



2 Preliminaries

We often confuse natural numbers 𝑛 with the corresponding finite sets {1, …, 𝑛}.
For any category 𝒞 and object 𝑐 ∈ 𝒞 , the coslice category 𝑐/𝒞 has morphisms

from 𝑐 as objects, and as morphisms (𝑐 𝑓−→ 𝑑) → (𝑐 𝑔−→ 𝑒) all morphisms ℎ: 𝑑 → 𝑒
in 𝒞 such that ℎ ∘ 𝑓 = 𝑔. Furthermore, 𝒞 denotes the category of presheaves on
𝒞 , i.e., contravariant functors to sets. For all such presheaves 𝑋, 𝑓: 𝑐 → 𝑐′, and
𝑥 ∈ 𝑋(𝑐′), we denote 𝑋(𝑓)(𝑥) by 𝑥 ⋅ 𝑓 (resp. 𝑓 ⋅ 𝑥 for covariant functors). The
Yoneda embedding is denoted by y: 𝒞 → 𝒞 . We will make one concrete use of
the notion of a finitely presentable object in a category [1].

Given any functor 𝐹 : 𝒞 → 𝒟 , we denote precomposition by 𝐹 𝑜𝑝 by Δ𝐹 : 𝒟 →
𝒞 , which maps any 𝑌 ∈ 𝒟 to the presheaf mapping any 𝑐 ∈ 𝒞 to 𝑋(𝐹 (𝑐)). This
should not be confused with 𝐹 ⋆: 𝒟 → 𝒞 , which we define to map any 𝑑 ∈ 𝒟 to
the presheaf 𝑐 ↦ 𝒟(𝐹 (𝑐), 𝑑). When 𝒟 is cocomplete, this 𝐹 ⋆ has a well-known
left adjoint 𝐹!, given by mapping any 𝑋 ∈ 𝒞 to ∫𝑐 𝑋(𝑐) ⋅ 𝐹 (𝑐). The latter is a
coend, in which ⋅ denotes iterated coproduct, i.e., 𝐹 (𝑐) + … + 𝐹 (𝑐)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑋(𝑐) times

. E.g., when 𝒟

is the category of sets and functions, the coend is the quotient of ∑𝑐 𝑋(𝑐) ⋅ 𝐹 (𝑐)
by the equivalence relation generated for all 𝑓: 𝑐 → 𝑐′, 𝑥′ ∈ 𝑋(𝑐′) and 𝑢 ∈ 𝐹 (𝑐)
by (𝑥′, 𝑓 ⋅ 𝑢) ∼ (𝑥′ ⋅ 𝑓 , 𝑢). A particular, well-known case is Yoneda reduction: for all
presheaves 𝑋 ∈ 𝒞 , the canonical morphism ∫𝑐 𝑋(𝑐)⋅y𝑐 → 𝑋 is an isomorphism.

3 Representing plays

In this section, we recall Tsukada and Ong’s games and our representation the-
orem.

3.1 Brief review of Tsukada-Ong games

Tsukada and Ong’s games are based on the standard notion of arena, of which
we adopt the following innocuous simplification:

Definition 1. An arena is a simple, countable forest, i.e., a directed, simple graph in
which all vertices are uniquely reachable from a unique root (= vertex without a parent).

Remark 1. For size reasons, let us interpret ‘countable’ in the restricted sense that
vertices are all natural numbers. This entails that arenas form a set.

Example 1. Anticipating a little, the considered simply-typed 𝜆-calculus will have
one basic type 𝑜, and 𝔹 ≔ (𝑜 → 𝑜 → 𝑜) will be interpreted as the arena below left

𝑚2 𝑚1 𝑚0. 𝑚2 𝑚1 𝑚0 𝑚 𝑚′.

An example type of higher rank is (𝔹 → 𝑜) → 𝑜, which yields the arena above
right.



Notation 1 In any arena, vertices will be called moves, and roots will be deemed ini-
tial. We denote by √𝐴 the set of roots of 𝐴. If 𝐴 is an arena and 𝑚 is a move in 𝐴, then
𝐴/𝑚 is the forest strictly below 𝑚, and 𝐴 ⋅ 𝑚 denotes 𝐴/𝑚 when 𝑚 ∈ √𝐴. Any forest 𝐴
is a coproduct of trees, so that 𝐴 ≅ ∑𝑚∈√𝐴 𝑇𝑚 where each 𝑇𝑚 is a tree. For any arena 𝐴
and 𝑚 ∉ 𝐴, we denote by 𝑚.𝐴 the unique tree 𝑇 such that √𝑇 = {𝑚} and 𝑇 ⋅ 𝑚 = 𝐴.
Thus, any forest may be written as 𝐴 = ∑𝑚∈√𝐴 𝑚.(𝐴⋅𝑚). The ownership of any vertex
𝑚 ∈ 𝐴 is O (for Opponent) if the length of the unique path from a root to 𝑚 is even,
and P (for Proponent) otherwise. So, e.g., all roots have ownership O.

Example 2. The arenas of Example 1 may be denoted by 𝑚0.(𝑚1+𝑚2) and 𝑚′.𝑚.𝑚0.(𝑚1+
𝑚2), respectively.

More generally, we will consider a simply-typed 𝜆-calculus with one base
type 𝑜, whose types are inductively interpreted as arenas:

⟦𝑜⟧ = 𝑚𝑜.∅ ⟦𝜎 → 𝜏⟧ = ∑
𝑞∈√⟦𝜏⟧

𝑞.(⟦𝜎⟧ + ⟦𝜏⟧ ⋅ 𝑞).

Notation 2 In the sequel, we often leave ⟦−⟧ implicit, i.e., 𝜏 sometimes implicitly de-
notes ⟦𝜏⟧. Let us moreover observe that any type has the shape 𝜏1 → … → 𝜏𝑛 → 𝑜, and
that this is interpreted (up to isomorphism of forests) as 𝑚𝑜.(∑𝑖⟦𝜏𝑖⟧). Thus, 𝜏 ⋅ 𝑚𝑜 =
∑𝑖⟦𝜏𝑖⟧. Such sums of interpretations of types will occur frequently in the sequel, and
we adopt the convention of denoting by 𝑚𝑖 the root of the 𝑖th term of the sum.

The next step is to define categories of plays. Let us fix arenas 𝐴 and 𝐵, and
let 𝐴 ⊸ 𝐵 denote the empty arena ∅ if 𝐵 = ∅, and otherwise the simple graph
obtained by adding to 𝐴 + 𝐵 an edge 𝑏 → 𝑎 for all 𝑏 ∈ √𝐵 and 𝑎 ∈ √𝐴. The
notion of ownership straightforwardly extends to 𝐴 ⊸ 𝐵: it is left unchanged in
𝐵 but reversed in 𝐴.

For any 𝐴 and 𝐵, the category ℙ𝐴⊢𝐵 of plays has as objects all alternating,
P-visible justified sequences over 𝐴 ⊸ 𝐵, as is standard in game semantics.
Briefly, one first defines justified sequences as sequences of moves in 𝐴 ⊸ 𝐵 with
valid pointers. Then, one defines the view of any move in any justified sequence.
Preplays are then defined as alternating, P-visible justified sequences, where P-
visibility means that any P-move points into its view. Finally, plays are preplays
of even length.

A peculiarity is that ℙ𝐴⊢𝐵 , following Melliès [14], has more morphisms than
prescribed by the prefix ordering. It in particular incorporates permutations of
independent moves. Specifically, morphisms 𝑓: 𝑃 → 𝑄 of preplays are defined
as injective maps between moves preserving OP blocks: if 2𝑖 is the index of a
Proponent move in 𝑃 , then 𝑓(2𝑖) = 𝑓(2𝑖 − 1) + 1. In words, if 𝑃 = (𝑚1…𝑚𝑛) and
𝑄 = (𝑚′

1…𝑚′
𝑛′ ), the ‘image’ of 𝑚2𝑖−1 (an O-move) is 𝑚′

𝑓(2𝑖−1), and the condition
says that 𝑚2𝑖, the successor of 𝑚2𝑖−1, is mapped to the successor of 𝑚′

𝑓(2𝑖−1), i.e.,
𝑚′

𝑓(2𝑖−1)+1.

Example 3. An example play on the arena corresponding to (𝔹 → 𝑜) → 𝑜 is



((𝑜 𝑜 𝑜) 𝑜) 𝑜
𝑚′

𝑚
𝑚0

𝑚
𝑚0

𝑚2
𝑚0

𝑚,

where time flows downwards (so the play really is 𝑚′𝑚𝑚0𝑚𝑚0𝑚2𝑚0𝑚) and ar-
rows denote justification pointers.

Proposition 1. Preplays and morphisms between them form a category ℙℙ𝐴⊢𝐵 , with
composition given by composition of underlying maps.

Definition 2. The category ℙ𝐴⊢𝐵 is the full subcategory of ℙℙ𝐴⊢𝐵 spanning plays. A
view on (𝐴, 𝐵) is a non-empty play in which all Opponent moves point to their prede-
cessors. Let 𝐈𝐴⊢𝐵: 𝕍𝐴⊢𝐵 → ℙ𝐴⊢𝐵 denote the corresponding full subcategory embedding.

3.2 Plays as proof trees

In order to explain the design of the category 𝕃 over which our representation
theorem will take presheaves, let us take a detour through a sequent calculus
description of Tsukada-Ong plays. Melliès [15] has revealed a link between plays
(and strategies) in game semantics and a simple intuitionistic sequent calculus.
We consider a simple non-linear variant, in which formulas are game semantical
arenas. In our sequent calculus, an arena 𝐴 = ∑𝑖 𝑚𝑖.𝐴𝑖 is understood as a logical
formula much like ⋀𝑖 ¬𝐴𝑖. The rules are then a mere adaptation of Melliès’s.

An arena sequent is a list of arenas, possibly with a distinguished arena, de-
noted by 𝐴1, …, 𝐴𝑛 ⊢, resp. 𝐴1, …, 𝐴𝑛 ⊢ 𝐴, and our sequent calculus has the
following inference rules:

[Λ(Γ⊢𝐴),𝑚]
Γ, 𝐴 ⋅ 𝑚 ⊢

Γ ⊢ 𝐴
(𝑚∈√𝐴)

[@(𝐴1 ,…,𝐴𝑛⊢),𝑘,𝑚]
𝐴1, …, 𝐴𝑛 ⊢ 𝐴𝑘 ⋅ 𝑚

𝐴1, …, 𝐴𝑛 ⊢ (
𝑘∈𝑛,
𝑚∈√𝐴𝑘 )

[Sum𝑆 ]
𝑆 … 𝑆

𝑆
.

Remark 2. The inference rules are designed to model plays rather than simply-
typed terms. Indeed, the Λ(Γ⊢𝐴),𝑚 rule only handles one of the possibly many
roots of 𝐴. We will however see below that the Sum rule allows to also interpret
normal forms.

Notation 3 All rules are annotated with their conclusion, which will be omitted when
clear from context.



Let us now interpret plays as derivations in our sequent calculus, starting
with an example.

Example 4. Recall the play of Example 3, on the arena (𝔹 → 𝑜) → 𝑜 = 𝑚′.𝑚.𝔹 =
𝑚′.𝑚.𝑚0.(𝑚1 + 𝑚2). It will be interpreted as

Sum𝑚.𝔹, 𝑚1 + 𝑚2, 𝑚1 + 𝑚2 ⊢ ∅ @3,𝑚2𝑚.𝔹, 𝑚1 + 𝑚2, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ 𝔹 @1,𝑚𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹 ⊢ 𝔹

Sum𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ 𝔹 @1,𝑚𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹 ⊢ 𝔹 Sum𝑚.𝔹 ⊢ 𝔹 @1,𝑚𝑚.𝔹 ⊢ Λ𝑚′ ,
⊢ 𝑚′.𝑚.𝔹

which is essentially the typing derivation of the corresponding resource term [20]:
𝜆𝑓.𝑓[𝜆𝑎𝑏.𝑓 [𝜆𝑦𝑧.𝑧], 𝜆𝑎′𝑏′.𝑓 []]. Briefly, 𝜆𝑓 corresponds to 𝑚′, calls to 𝑓 correspond
to 𝑚, 𝜆𝑎𝑏 and 𝜆𝑎′𝑏′ correspond to 𝑚0, etc. A crucial point is that branches in the
derivation tree precisely correspond to views of the original play. Let us notice
in passing that derivations lose track of the total ordering between moves fea-
tured by plays. A final remark: the sequent 𝑚.𝔹, 𝑚1 + 𝑚2, 𝑚1 + 𝑚2 ⊢ ∅, though
syntactically similar to 𝑚.𝔹, 𝑚1 + 𝑚2, 𝑚1 + 𝑚2 ⊢, is in fact very different, as no
move may be played from it.

Example 5. A simpler example, which we will use below to illustrate the branch-
ing features of innocent strategies, corresponds to the resource term
𝜆𝑓.𝑓[𝜆𝑎𝑏.𝑎, 𝜆𝑎′𝑏′.𝑏′]:

Sum𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ ∅ @2,𝑚1𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹 ⊢ 𝔹

Sum𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ ∅ @2,𝑚2𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹 ⊢ 𝔹 Sum𝑚.𝔹 ⊢ 𝔹 @1,𝑚𝑚.𝔹 ⊢ Λ𝑚′ .
⊢ 𝑚′.𝑚.𝔹

Let us try to figure out the general picture. Given arenas 𝐴 and 𝐵, any play
𝑝 ∈ ℙ𝐴⊢𝐵 may be decomposed into a (possibly empty) sum1 𝑝 = ∑𝑖∈𝑛 𝑡𝑖 of
threads, where a thread is a non-empty play in which all moves are hereditarily
justified by the first move. Now, any such thread 𝑡 starts with a move 𝑚0 ∈ √𝐵
and continues with 𝑚1 ∈ √𝐴 + 𝐵 ⋅ 𝑚0. The following is only a slight generalisa-
tion of the considerations preceding [19, Lemma 55]:

Lemma 1. Let 𝐶𝑚0 = 𝐴+𝐵 ⋅𝑚0. The category 𝕋𝐴⊢𝐵 of threads over 𝐴, 𝐵 is isomorphic
to the coproduct ∑𝑚0𝑚1

ℙ𝐶𝑚0 ⊢𝐶𝑚0 ⋅𝑚1 .

Accordingly, given any 𝑝′ ∈ ℙ𝐶𝑚0 ⊢𝐶𝑚0 ⋅𝑚1 , we would like to interpret 𝑚0𝑚1𝑝′ re-
cursively as below left

1 This is not quite a coproduct in ℙ𝐴⊢𝐵 , but in a category with more morphisms.



𝐃(𝑝′)
𝐴, 𝐵 ⋅ 𝑚0 ⊢ 𝐶𝑚0 ⋅ 𝑚1 @𝑘,𝑚1𝐴, 𝐵 ⋅ 𝑚0 ⊢ Λ𝑚0𝐴 ⊢ 𝐵

𝐃Γ,𝐵⋅𝑚0⊢𝐶⋅𝑚1 (𝑝′)
Γ, 𝐵 ⋅ 𝑚0 ⊢ 𝐶 ⋅ 𝑚1 @𝑘,𝑚1Γ, 𝐵 ⋅ 𝑚0 ⊢ Λ𝑚0Γ ⊢ 𝐵

where 𝑘 = 1 if 𝑚1 ∈ √𝐴, 𝑘 = 2 otherwise, and 𝐃 denotes the map from plays
to derivations that we are trying to define. However, the recursive call does not
quite typecheck, because 𝐃(𝑝′) has conclusion 𝐶𝑚0 ⊢ 𝐶𝑚0 ⋅𝑚1 instead of 𝐴, 𝐵⋅𝑚0 ⊢
𝐶𝑚0 ⋅ 𝑚1. So we need to generalise a bit:

Notation 4 Let

!(𝐴1, …, 𝐴𝑛 ⊢) = (∑
𝑖∈𝑛

𝐴𝑖 ⊢) and !(𝐴1, …, 𝐴𝑛 ⊢ 𝐵) = (∑
𝑖∈𝑛

𝐴𝑖 ⊢ 𝐵).

We define, for any 𝑆 = (Γ ⊢ 𝐵) = (𝐴1, …, 𝐴𝑛 ⊢ 𝐵), a map 𝐃𝑆 mapping plays
over !𝑆 to derivations over 𝑆. This time we may correctly define 𝐃𝑆 (𝑚0𝑚1𝑝′) as
above right, where (𝑘, 𝐶) = (𝑖, 𝐴𝑖) if 𝑚1 ∈ √𝐴𝑖 and (𝑘, 𝐶) = (𝑛 + 1, 𝐵 ⋅ 𝑚0) if
𝑚1 ∈ √𝐵 ⋅ 𝑚0 (leaving implicit the isomorphism 𝕋!𝑆 ≅ ∑𝑚0𝑚1

ℙ!(Γ,𝐵⋅𝑚0⊢𝐶⋅𝑚1)).

Finally, we translate 𝑝 = ∑𝑗 𝑡𝑗 ∈ ℙ𝑆 using the Sum rule:
…

𝐃𝑆 (𝑡𝑗)
𝑆

…

𝑆
⋅

In particular, the empty play is interpreted as the nullary sum.

3.3 Proof trees as presheaves

We have thus interpreted plays into sequent calculus derivations. The latter, be-
ing tree-like structures, are easily viewed as presheaves over a certain category:

Definition 3. Let 𝕃 denote the free category on the graph with

– a vertex for each arena sequent, plus one for each rule Λ(Γ⊢𝐴),𝑚 and @Γ,𝑘,𝑚;

– for each rule 𝜌 with conclusion 𝑆 and premise 𝑆′, edges 𝑆 𝑡−→ 𝜌 𝑠←− 𝑆′.

Remark 3. In [5], a slightly more complicated variant of 𝕃 is presented, which
allows to represent not only plays, but also interaction sequences, the basic ingre-
dient for parallel composition. The present definition is simpler, and sufficient
for our purposes.

Let us now inductively interpret derivations 𝜋 of conclusion 𝑆 into mor-
phisms 𝑆 → ⟦𝜋⟧ in �̂�, which will yield the desired interpretation of plays into
𝑆/�̂� by composition. We again start with an example.

Example 6. The derivation of Example 5 will be interpreted as the presheaf 𝑈
with:



– for each arena sequent 𝑆, an element of type 𝑆 for each occurrence of 𝑆 in
the derivation (except that the premises and conclusion of each Sum rule are
equated),

– for each non-Sum rule 𝜌, an element of type 𝜌 for each occurrence of 𝜌,
– for each 𝑟 ∈ 𝑈(𝜌), 𝑈(𝑡)(𝑟) is the occurrence of the conclusion of 𝜌 correspond-

ing to 𝑟, and 𝑈(𝑠)(𝑟) is the occurrence of the premise of 𝜌 corresponding to
𝑟.

A detailed definition of 𝑈 is in the first two parts of Figure 1. Elements are in the
first part; and the action of morphisms is defined in the second part. Reading
this in full detail is of course not mandatory, but having a look may be useful
for setting things straight. We introduce elements following the proof bottom-
up and breadth-first, and proceed similarly for equations. An efficient way of
representing all this data is to depict the category of elements of 𝑈 , which has
as objects all pairs (𝑐, 𝑥) with 𝑥 ∈ 𝑈(𝑐), and as morphisms (𝑐, 𝑥) → (𝑐′, 𝑥′) all
morphisms 𝑓: 𝑐 → 𝑐′ such that 𝑥′ ⋅ 𝑓 = 𝑥. This category is displayed on the left
in the last part of Figure 1 (displaying just 𝑥 instead of (𝑐, 𝑥) for readability). The
element pointed by (𝐴 ⊢ 𝐵) is the bottom one, 𝑠⊢𝑚′.𝑚.𝔹.

Let us now define our interpretation in full generality, by induction on the
given derivation. The Λ and @ rules are easy to interpret. Indeed, given any

proof 𝜋 of 𝑆′, if 𝜌 is one of Λ or @, we interpret

𝜋
𝑆′

𝑆
𝜌 as the bottom row below

left

𝑆′ ⟦𝜋⟧

𝑆 𝜌 𝜌 • ⟦𝜋⟧

∑𝑖∈𝑛 𝑆 ∑𝑖∈𝑛⟦𝜋𝑖⟧

𝑆 ⋁𝑖⟦𝜋𝑖⟧,

where the marked square is as pushout in �̂�. Similarly, given proofs 𝜋1, …, 𝜋𝑛 of

𝑆, we interpret

⟦𝜋1⟧
𝑆

…
⟦𝜋𝑛⟧

𝑆
𝑆

Sum as the bottom row above right.

We now have the object part of our representation: the composite

𝐏𝑆 : ℙ!𝑆 → DerivationsS → 𝑆/�̂�,

for all arena sequents 𝑆. For any play 𝑝 ∈ ℙ!𝑆 , there is a bijection between
the moves of 𝑝 and the elements of 𝐏𝑆 (𝑝) of type Λ and @. Given a morphism
𝑓: 𝑝 → 𝑞, this directly induces a candidate morphism 𝐏𝑆 (𝑓 ): 𝐏𝑆 (𝑝) → 𝐏𝑆 (𝑞) on
such elements. Clearly, there is at most one extension of this candidate to all ele-
ments that qualifies as a proper morphism. Indeed, for all elements 𝑥 ∈ 𝐏𝑆 (𝑝)(𝑆),
there exists some Λ or @ element 𝑦 ∈ 𝐏𝑆 (𝑝)(𝜌) and map 𝜕 ∈ {𝑠, 𝑡} such that
𝑥 = 𝑦 ⋅ 𝜕; naturality thus imposes

𝐏𝑆 (𝑓 )(𝑥) = 𝐏𝑆 (𝑓 )(𝑦 ⋅ 𝜕) = 𝐏𝑆 (𝑓 )(𝑦) ⋅ 𝜕.



𝑈(⊢ 𝑚′.𝑚.𝔹) = {𝑠⊢𝑚′ .𝑚.𝔹} 𝑈(Λ𝑚′ ) = {𝑥𝑚′ } 𝑈(𝑚.𝔹 ⊢) = {𝑠𝑚.𝔹⊢}

𝑈(@(𝑚.𝔹⊢),1,𝑚) = {𝑥𝑚} 𝑈(𝑚.𝔹 ⊢ 𝔹) = {𝑠𝑚.𝔹⊢𝔹} 𝑈(Λ(𝑚.𝔹⊢𝔹),𝑚0 ) = {𝑥1
𝑚0 , 𝑥2

𝑚0 }

𝑈(𝑚.𝔹, 𝑚1 + 𝑚2 ⊢) = {𝑠1
𝑚.𝔹,𝑚1+𝑚2⊢, 𝑠2

𝑚.𝔹,𝑚1+𝑚2⊢} 𝑈(@(𝑚.𝔹,𝑚1+𝑚2⊢),2,𝑚1 ) = {𝑥𝑚1 }

𝑈(@(𝑚.𝔹,𝑚1+𝑚2⊢),2,𝑚2 ) = {𝑥𝑚2 } 𝑈(𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ ∅) = {𝑠1
𝑚.𝔹,𝑚1+𝑚2⊢∅, 𝑠2

𝑚.𝔹,𝑚1+𝑚2⊢∅}

𝑥𝑚′ ⋅ 𝑡 = 𝑠⊢𝑚′ .𝑚.𝔹 𝑥𝑚′ ⋅ 𝑠 = 𝑠𝑚.𝔹⊢ = 𝑥𝑚 ⋅ 𝑡 𝑥𝑚 ⋅ 𝑠 = 𝑠𝑚.𝔹⊢𝔹 = 𝑥1
𝑚0

⋅ 𝑡 = 𝑥2
𝑚0

⋅ 𝑡

𝑥1
𝑚0

⋅ 𝑠 = 𝑠1
𝑚.𝔹,𝑚1+𝑚2⊢ = 𝑥𝑚1

⋅ 𝑡 𝑥2
𝑚0

⋅ 𝑠 = 𝑠2
𝑚.𝔹,𝑚1+𝑚2⊢ = 𝑥𝑚2

⋅ 𝑡 𝑥𝑚1
⋅ 𝑠 = 𝑠1

𝑚.𝔹,𝑚1+𝑚2⊢∅

𝑥𝑚2
⋅ 𝑠 = 𝑠2

𝑚.𝔹,𝑚1+𝑚2⊢∅

𝑠1
𝑚.𝔹,𝑚1+𝑚2⊢∅ 𝑠2

𝑚.𝔹,𝑚1+𝑚2⊢∅

𝑥𝑚1
𝑥𝑚2

𝑠1
𝑚.𝔹,𝑚1+𝑚2⊢ 𝑠2

𝑚.𝔹,𝑚1+𝑚2⊢

𝑥1
𝑚0

𝑠𝑚.𝔹⊢𝔹 𝑥2
𝑚0

𝑥𝑚

𝑠𝑚.𝔹⊢

𝑥𝑚′

𝑠⊢𝑚′ .𝑚.𝔹

𝑠

𝑡

𝑠

𝑡

𝑠
𝑡

𝑠
𝑡

𝑠

𝑡

𝑠

𝑡

𝐕(𝑚′𝑚) 𝐕(𝑚′𝑚𝑚0𝑚2)

𝐕(𝑚′𝑚𝑚0𝑚1) 𝑈

Fig. 1. Presheaf for the derivation of Example 5



It remains to verify that for any other 𝑦′ and 𝜕′ such that 𝑥 = 𝑦′ ⋅ 𝜕′, we have
𝑦 ⋅ 𝜕 = 𝑦′ ⋅ 𝜕′, which indeed holds. This ends the definition of 𝐏𝑆 , and we may at
last state:

Theorem 1 ([5]). For all arena sequents 𝑆, there is an embedding 𝐏𝑆 : ℙ!𝑆 → 𝑆/�̂� of
the category of Tsukada-Ong plays over !𝑆 into a coslice of �̂� under 𝑆. The composite

embedding 𝐕𝑆 defined by 𝕍!𝑆
𝐈!𝑆−→ ℙ!𝑆

𝐕𝑆−→ 𝑆/�̂� is full.

A more detailed presentation and a proof of the case 𝑆 = (𝐴 ⊢ 𝐵) are available
in [5].

Example 7. The presheaf 𝑈 of Example 6 may alternatively be described as the
(implicitly pointed) pushout on the right in the last part of Figure 1.

4 Representing normal forms

Our next step is to extend the representation theorem to normal forms in the
simply-typed, non-deterministic 𝜆-calculus studied by Tsukada and Ong. Briefly,
it is simply-typed 𝜆-calculus with one base type 𝑜, one constant ⊥ of type 𝑜, plus
non-deterministic sum, denoted by 𝑀 + 𝑁 . Up to may testing equivalence, all
terms are equivalent to some normal form. Tsukada and Ong define these as the
class of typed terms covered by the following grammar:

𝑅 ::= 𝜆𝑥1…𝑥𝑝.⊥ | 𝑄1 + … + 𝑄𝑛+1 𝑄 ::= 𝜆𝑥1…𝑥𝑝.𝑦𝑅1…𝑅𝑘,

with 𝑛, 𝑝, 𝑘 ∈ ℕ and 𝑦 is fully applied (so the grammar is implicitly typed). Let
us start by observing that normal forms may be defined in natural deduction
style:

𝛾, 𝑥1 : 𝜎1, …, 𝑥𝑝 : 𝜎𝑝 ⊢ ⟨𝑅1, …, 𝑅𝑘⟩ : 𝜏1, …, 𝜏𝑘

𝛾 ⊢ 𝜆𝑥1…𝑥𝑝.𝑦𝑅1…𝑅𝑘 : 𝜎1 → … → 𝜎𝑝 → 𝑜
(𝛾′(𝑦) = 𝜏1 → … → 𝜏𝑘 → 𝑜)

… 𝛾 ⊢ 𝑄𝑖 : 𝜎 … (𝑖 ∈ 𝑛)
𝛾 ⊢ ∑

𝑖∈𝑛
𝑄𝑖 : 𝜎

… 𝛾 ⊢ 𝑅𝑗 : 𝜏𝑗 … (𝑗 ∈ 𝑘)
𝛾 ⊢ ⟨𝑅1, …, 𝑅𝑘⟩ : 𝜏1, …, 𝜏𝑘

,

where 𝛾′ = (𝛾, 𝑥1 : 𝜎1, …, 𝑥𝑝 : 𝜎𝑝).

Remark 4. This slightly differs from Tsukada and Ong’s presentation, but clearly
yields the same terms. Indeed, they distinguish a particular case of the second
rule when 𝑛 = 0, which they denote by 𝜆𝑥1…𝑥𝑝.⊥. The only thing that matters
here is that our nullary sum will be interpreted in the same way.

Our interpretation of normal forms is given by showing that, up to the interpre-
tation of simple types as arenas, the natural deduction rules are derivable in the
sequent calculus of Section 3.2. Let us start with an example.



Example 8. Recall the play (and resource term) of Example 5, 𝜆𝑓.𝑓[𝜆𝑎𝑏.𝑎, 𝜆𝑎′𝑏′.𝑏′]
of type (𝔹 → 𝑜) → 𝑜. Turning the multiset of arguments into a sum, we obtain
the normal form 𝑅 ≔ 𝜆𝑓.𝑓(𝜆𝑎𝑏.𝑎 + 𝜆𝑎′𝑏′.𝑏′), which is interpreted as the exact
same derivation. This differs from what we would obtain by lifting the sum, i.e.,
from 𝑅′ ≔ (𝜆𝑓.𝑓(𝜆𝑎𝑏.𝑎)) + (𝜆𝑓 .𝑓(𝜆𝑎′𝑏′.𝑏′)):

Sum𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ ∅ @2,𝑚1𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹 ⊢ 𝔹 @1,𝑚𝑚.𝔹 ⊢ Λ𝑚′ .
⊢ 𝑚′.𝑚.𝔹

Sum𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ ∅ @2,𝑚2𝑚.𝔹, 𝑚1 + 𝑚2 ⊢ Λ𝑚0𝑚.𝔹 ⊢ 𝔹 @1,𝑚𝑚.𝔹 ⊢ Λ𝑚′⊢ 𝑚′.𝑚.𝔹 Sum.⊢ 𝑚′.𝑚.𝔹

What these derivations become when interpreted into presheaves should be
clear.

Let us now consider the general case. The second rule, for 𝑅 = ∑𝑖∈𝑛 𝑄𝑖, will
be interpreted straightforwardly using the Sum rule, so that 𝐓(𝑅) will roughly
be the derivation below left:

𝐓(∑𝑖𝑄𝑖) =
…

𝐓(𝑄𝑖)
𝛾 ⊢ 𝜎

… (𝑖 ∈ 𝑛)

𝛾 ⊢ 𝜎
Sum

𝐓⟨𝑅1, …, 𝑅𝑘⟩
𝛾, ∑𝑖∈𝑝𝜎𝑖 ⊢ ∑𝑗∈𝑘𝜏𝑗

𝛾, ∑𝑖∈𝑝𝜎𝑖 ⊢
@

𝛾 ⊢ 𝑚𝑜.(∑𝑖∈𝑝𝜎𝑖)
Λ𝑚𝑜 .

Now, we would like to derive the rule for 𝑄 = 𝜆𝑥1…𝑥𝑝.𝑦𝑅1…𝑅𝑘 by something
like the derivation above right (assuming 𝑦 has type 𝜏1 → … → 𝜏𝑘 → 𝑜).
There is one little glitch, however: we expect to make a recursive call on 𝛾, 𝑥1 :
𝜎1, …, 𝑥𝑝:𝜎𝑝 ⊢ ⟨𝑅1, …, 𝑅𝑘⟩:𝜏1, …, 𝜏𝑘, but the context we get is 𝛾, ∑𝑖∈𝑝 𝜎𝑖 ⊢ ∑𝑗∈𝑘 𝜏𝑗 :
some arenas are grouped together, according to the 𝜆-abstraction that intro-
duced them. We thus need an additional parameter.

Definition 4. A grouping of a typing context 𝛾 = (𝑥1 : 𝜎1, …, 𝑥𝑛 : 𝜎𝑛) consists of a
natural number 𝐾 ∈ ℕ and a monotone map 𝑔: 𝑛 → 𝐾 . Given such a 𝑔, the grouped
context 𝑔[𝛾] is the list of arenas of length 𝐾 whose 𝑖th element is ∑𝑙∈𝑔−1(𝑖)⟦𝜎𝑙⟧ (where
the sum is ordered according to 𝛾). We generalise the notation 𝑔[𝛾] to sequents by posing
𝑔[𝛾 ⊢ 𝜏1, …, 𝜏𝑘] = (𝑔[𝛾] ⊢ ∑𝑗∈𝑘 𝜏𝑗). Similarly, for any sequent 𝑆, !𝑆 denotes !id |𝑆|[𝑆],
i.e., we apply ! to the ungrouped arena sequent corresponding to 𝑆.

We thus define for all sequents 𝑆 = (𝛾 ⊢ 𝛿) and groupings 𝑔 a map 𝐓𝑔,𝑆 : NF𝑆 →
𝑔[𝑆]/�̂�. First, 𝐓𝑔,𝑆⟨𝑅1, …, 𝑅𝑘⟩ should map any tuple ⟨𝑅1, …, 𝑅𝑘⟩ with 𝛾 ⊢ 𝑅𝑗 : 𝜏𝑗



for all 𝑗 ∈ 𝑘 to some derivation of 𝑔[𝛾] ⊢ ∑𝑗∈𝑘⟦𝜏𝑗⟧. We straightforwardly let:

𝐓𝑔,𝑆⟨𝑅1, …, 𝑅𝑘⟩ =
…

𝐓+
𝑔,𝑆 (𝑄𝑗

𝑙 )
𝑔[𝛾], 𝜏𝑗 ⋅ 𝑚𝑜 ⊢
𝑔[𝛾] ⊢ ∑

𝑗∈𝑘
𝜏𝑗

Λ𝑚𝑗

… (𝑗 ∈ 𝑘, 𝑙 ∈ 𝑛𝑗)
𝑔[𝛾] ⊢ ∑

𝑗∈𝑘
𝜏𝑗

Sum,

where we decompose each 𝑅𝑗 as ∑𝑙∈𝑛𝑗
𝑄𝑗

𝑙 , with 𝛾 ⊢ 𝑅𝑗 : 𝜏𝑗 and 𝜏 = (𝛼1 →
… → 𝛼𝑝𝑗 → 𝑜), for all 𝑗 ∈ 𝑘. We cannot directly use 𝐓(𝑄𝑗

𝑙 ) in the recursive call,
however, as this would have conclusion 𝑔[𝛾] ⊢ 𝜏𝑗 instead of 𝑔[𝛾] ⊢ ∑𝑗∈𝑘 𝜏𝑗 . We
thus define an intermediate interpretation, 𝐓+, mapping normal forms 𝛾 ⊢ 𝑄 : 𝜎
to derivations of 𝑔[𝛾], 𝜎 ⋅ 𝑚𝑜 ⊢, by:

𝐓+
𝑔,𝑆 (𝜆𝑥1…𝑥𝑝.𝑦𝑅1…𝑅𝑘) =

𝐓𝑔+!,(𝛾,𝑥1:𝜎1,…,𝑥𝑝:𝜎𝑝⊢𝜏1,…,𝜏𝑘)⟨𝑅1, …, 𝑅𝑘⟩

𝑔[𝛾], ∑
𝑖∈𝑝

𝜎𝑖 ⊢ ∑
𝑗∈𝑘

𝜏𝑗

𝑔[𝛾], ∑
𝑖∈𝑝

𝜎𝑖 ⊢
@𝑘𝑦,𝑚𝑖𝑦

,

where 𝑔+! : 𝑛 + 𝑝 → 𝐾 + 1 is obtained by coproduct, 𝑘𝑦 is unique such that
𝑦 ∈ 𝑔−1(𝑘𝑦), and 𝑖𝑦 is the index of 𝑦 therein. Concretely, letting 𝛾′ ≔ (𝛾, 𝑥1 :
𝜎1, …, 𝑥𝑝 : 𝜎𝑝) = (𝑧1 : 𝛼1, …, 𝑧𝑁 : 𝛼𝑁 ) and Γ ≔ (𝑔[𝛾], ∑𝑖∈𝑝 𝜎𝑖), the 𝑘𝑦th arena in Γ
is ∑𝑙∈(𝑔+!)−1(𝑘𝑦) 𝛼𝑙, and (∑𝑙∈(𝑔+!)−1(𝑘𝑦) 𝛼𝑙) ⋅ 𝑚𝑖𝑦 = 𝛼𝑦 ⋅ 𝑚𝑜, which must have the form
∑𝑗∈𝑘 𝜏𝑗 .

We thus have defined maps

𝐓𝑔,𝑆 : NF𝑆 → 𝑔[𝑆]/�̂�,

for all sequents 𝑆 and groupings 𝑔: |𝑆| → 𝐾 .

Definition 5. For all sequents 𝑆 = (𝛾 ⊢ 𝜎), let 𝐓 = 𝐓𝑖𝑑|𝛾|,𝑆⟨−⟩: NF𝑆 → 𝑆/�̂�.

The set NF𝑆 is here viewed as a discrete category, and 𝐓 is evidently injective,
hence trivially an embedding.

5 Game semantics as a singular functor

At this stage, for all sequents 𝑆 = (𝛾 ⊢ 𝛿), we know how to embed views and
plays over !𝑔[𝑆] and normal forms over 𝑆 into the coslice category 𝑔[𝑆]/�̂�. We
may now show how this allows us to automatically translate normal forms into
innocent strategies. Let us first recall what innocent strategies are. They stan-
dardly come in two flavours, so let us disambiguate:



Definition 6. The category of behaviours over (𝐴, 𝐵) is the presheaf category 𝕍𝐴⊢𝐵 .
Similarly, the category of strategies over (𝐴, 𝐵) is the presheaf category ℙ̂𝐴⊢𝐵 . A

strategy is innocent iff it is in the essential image of right Kan extension along 𝐈op .

Now, for any sequent 𝑆 = (𝛾 ⊢ 𝛿) and compatible grouping 𝑔, simply un-
folding the standard Yoneda structure on categories yields the solid part of the
diagram below (leaving some dependencies on 𝑆 and 𝑔 implicit for readability):

𝕍!𝑔[𝑆] 𝑔[𝑆]/�̂� NF𝑆

𝕍!𝑔[𝑆] 𝕍!𝑆 .

y

𝐕

𝐕⋆𝜒𝐕

𝐓

⟦−⟧

Δ𝜃𝑔,𝑆

(2)

where 𝜒𝐕 is a left extension and absolute left lifting of y [17]. Concretely,

𝐕⋆(𝑝)(𝑣) = 𝕍!𝑔[𝑆](𝐕(𝑣), 𝑝),

and (𝜒𝐕
𝑣 )𝑣′ : 𝕍!𝑔[𝑆](𝑣′, 𝑣) → (𝑔[𝑆]/�̂�)(𝐕(𝑣′), 𝐕(𝑣)) is merely 𝐕 on morphisms. This

automatically yields our candidate interpretation, namely the composite 𝐕⋆ ∘ 𝐓.
Furthermore, the arenas composing !𝑆 and !𝑔[𝑆] are isomorphic, and thus in-
duce an isomorphism 𝜃𝑔,𝑆 : 𝕍!𝑔[𝑆] → 𝕍!𝑆 between the corresponding categories of
views, hence (by precomposition) an isomorphism between the corresponding
presheaf categories, which we denote by Δ𝜃𝑔,𝑆 : 𝕍!𝑆 → 𝕍!𝑔[𝑆]. Letting ⟦−⟧ denote
Tsukada and Ong’s interpretation, we obtain the dashed arrows in (2). We have:

Theorem 2. For any sequent 𝑆 = (𝛾 ⊢ 𝛿) with grouping 𝑔 and normal form 𝛾 ⊢ �⃗� : 𝛿,
we have 𝐕⋆(𝐓(�⃗�)) ≅ Δ𝜃𝑔,𝑆 ⟦�⃗�⟧, where ⟦�⃗�⟧ = ⟨⟦𝑅1⟧, …, ⟦𝑅𝑘⟧⟩.

Concretely, this means that Δ𝜃𝑔,𝑆 (⟦�⃗�⟧)(𝑣) = ⟦�⃗�⟧(𝜃𝑔,𝑆 (𝑣)) ≅ (𝑔[𝑆]/�̂�)(𝐕(𝑣), 𝐓(�⃗�))
for all 𝑣.

Example 9. Recall the play 𝑈 of Figure 1 (and Examples 5 and 6). From the de-
scription of 𝑈 as a pushout, we see that it has three views: 𝑚′𝑚, 𝑚′𝑚𝑚0𝑚1, and
𝑚′𝑚𝑚0𝑚2. The intuitive difference between 𝑅 and 𝑅′ is that 𝑅 feeds 𝑓 with a
non-deterministic argument, so calls to it from 𝑓 may play either like 𝜆𝑎𝑏.𝑎 or
𝜆𝑎′𝑏′.𝑏′. This is not the case in 𝑅′, which non-deterministically chooses between
two functions, the first of which calls its argument 𝑓 on 𝜆𝑎𝑏.𝑎 whilst the second
calls it on 𝜆𝑎′𝑏′.𝑏′.

This shows up already on 𝑚′𝑚, since 𝐕⋆(𝐓(𝑅))(𝑚′𝑚) ≅ 1 and 𝐕⋆(𝐓(𝑅′))(𝑚′𝑚) ≅
2. And it further leads 𝑅′ to reject some plays accepted by 𝑅. E.g., denoting by
∏𝐈(𝑆) the (innocent) strategy associated to any behaviour 𝑆, we in particular
have

∏𝐈(𝐕⋆(𝐓(𝑅)))(𝑈) ≅ 𝐕⋆(𝐓(𝑅))(𝑚′𝑚𝑚0𝑚1) ×𝐕⋆(𝐓(𝑅))(𝑚′𝑚) 𝐕⋆(𝐓(𝑅))(𝑚′𝑚𝑚0𝑚2)
≅ 1 ×1 1
≅ 1,



but
∏𝐈(𝐕⋆(𝐓(𝑅′)))(𝑈) ≅ 𝐕⋆(𝐓(𝑅′))(𝑚′𝑚𝑚0𝑚1) ×𝐕⋆(𝐓(𝑅′))(𝑚′𝑚) 𝐕⋆(𝐓(𝑅′))(𝑚′𝑚𝑚0𝑚2)

≅ 1 ×2 1
≅ 0,

where 1 ×2 1 denotes the pullback of 1 2 1,1 2 which is indeed empty.

Let us return to the theorem.

Proof (Proof sketch). We proceed by induction. Let us start by recalling the fol-
lowing characterisation of ⟦�⃗�⟧: let us assume 𝛾 ⊢ ⟨𝑅1, …, 𝑅𝑘⟩ : 𝜎1, …, 𝜎𝑘, with
𝑅𝑗 = ∑𝑙∈𝑛𝑗

𝑄𝑗,𝑙 for all 𝑗 ∈ 𝑘, and 𝑄𝑗,𝑙 = 𝜆𝑥1 : 𝜎𝑗
1…𝑥𝑝𝑗 : 𝜎𝑗

𝑝𝑗 .𝑦𝑗,𝑙𝑅𝑗,𝑙
1 …𝑅𝑗,𝑙

𝑘𝑗,𝑙 for all

𝑗 ∈ 𝑘 and 𝑙 ∈ 𝑛𝑗 . Then, letting 𝛾𝑗 = (𝑥1 : 𝜎𝑗
1, …, 𝑥𝑝𝑗 : 𝜎𝑗

𝑝𝑗 ), (𝛾, 𝛾𝑗)(𝑦𝑗,𝑙) = 𝜏𝑗,𝑙
1 → … →

𝜏𝑗,𝑙
𝑘𝑗,𝑙 → 𝑜, and 𝑆𝑗,𝑙 = (𝛾, 𝛾𝑗 ⊢ 𝜏𝑗,𝑙

1 , …, 𝜏𝑗,𝑙
𝑘𝑗,𝑙 ) we have

⟦�⃗�⟧ = ∑𝑗∈𝑘 ∑𝑙∈𝑛𝑗
(𝑚𝑗𝑚𝑦𝑗,𝑙 ▹⟨⟦𝑅𝑗,𝑙

1 ⟧, …, ⟦𝑅𝑗,𝑙
𝑘𝑗,𝑙 ⟧⟩),

where 𝑚𝑦𝑗,𝑙 denotes the move corresponding to 𝑦 in ! (𝛾 ⊢ 𝜎1, …, 𝜎) and 𝑚𝑗𝑚𝑦𝑗,𝑙 ▹𝑆
is defined in [18]. Roughly, 𝑚𝑗𝑚𝑦𝑗,𝑙 ▹𝑆 denotes the strategy playing 𝑚𝑗𝑚𝑦𝑗,𝑙 and
then 𝑆. We thus have

Δ𝜃𝑔,𝑆 ⟦�⃗�⟧ = ∑𝑗∈𝑘 ∑𝑙∈𝑛𝑗
(𝑚𝑗𝑚𝑖𝑦𝑗,𝑙 ,𝑘𝑦𝑗,𝑙 ▹⟨Δ𝜃𝑔+!,𝑆𝑗,𝑙 ⟦𝑅𝑗,𝑙

1 ⟧, …, Δ𝜃𝑔+!,𝑆𝑗,𝑙 ⟦𝑅𝑗,𝑙
𝑘𝑗,𝑙 ⟧⟩),

where 𝑖𝑦𝑗,𝑙 denotes the unique index in 𝐾 such that 𝑔(𝑦𝑗,𝑙) = 𝑖𝑦𝑗,𝑙 , and 𝑘𝑦𝑗,𝑙 denotes
the index of 𝑦𝑗,𝑙 in 𝑔−1(𝑖𝑦𝑗,𝑙 ). But by induction hypothesis and definition of 𝐕⋆ and
𝐓, this is isomorphic to 𝐕⋆(𝐓(�⃗�)).

6 Definability as geometric realisation

Let us now consider definability. For 𝑆 = (𝛾 ⊢ 𝛿), given any 𝑋 ∈ 𝕍!𝑔[𝑆], we thus
seek a normal form 𝛾 ⊢ �⃗� : 𝛿 such that ⟦�⃗�⟧ ≅ 𝑋. Our candidate relies on:

Definition 7. The geometric realisation functor 𝐕!: 𝕍!𝑔[𝑆] → (𝑔[𝑆]/�̂�) is defined (up
to unique commuting isomorphism) as the left Kan extension of 𝐕 along y.

As is well-known, this is well defined because 𝑔[𝑆]/�̂� is cocomplete, and we have
𝐕!(𝑋) ≅ ∫𝑣 𝑋(𝑣) ⋅ 𝐕(𝑣). Furthermore, 𝐕! is left adjoint to 𝐕⋆. Our second main
result is:

Theorem 3. For any 𝑋 ∈ 𝕍!𝑔[𝑆]𝑓 , i.e., any finitely presentable presheaf on 𝕍!𝑔[𝑆],
𝐕!(𝑋) is the 𝐓-image of a normal form �⃗�, and furthermore 𝐕⋆(𝐕!(𝑋)) ≅ 𝑋, so that
in particular 𝐕⋆(𝐓(�⃗�)) ≅ 𝑋.

Example 10. Recall the normal forms 𝑅 and 𝑅′ of Example 8. By the standard
characterisation of left Kan extensions as colimits, 𝐕!(𝑅) and 𝐕!(𝑅′) respectively
correspond to the pushouts below:



𝐕!(𝑚′𝑚) 𝐕!(𝑚′𝑚𝑚0𝑚2)

𝐕!(𝑚′𝑚𝑚0𝑚1) 𝐕!(𝑅)

𝐕!(∅) 𝐕!(𝑚′𝑚𝑚0𝑚2)

𝐕!(𝑚′𝑚𝑚0𝑚1) 𝐕!(𝑅′)

which indeed are 𝑅 and 𝑅′.

Returning to the theorem, the second point is relatively easy. Indeed, for all
𝑣 ∈ 𝕍 ,

𝐕⋆(𝐕!(𝑋))(𝑣) ≅ (𝑔[𝑆]/�̂�)(𝐕(𝑣), 𝐕!(𝑋))
≅ (𝑔[𝑆]/�̂�)(𝐕(𝑣), ∫𝑣′ 𝑋(𝑣′) ⋅ 𝐕(𝑣′))
≅ ∫𝑣′ 𝑋(𝑣′) ⋅ (𝑔[𝑆]/�̂�)(𝐕(𝑣), 𝐕(𝑣′))
≅ 𝑋(𝑣).

The last isomorphism holds by Yoneda reduction and full faithfulness of 𝐕; and
the penultimate one by:

Lemma 2. For any sequent 𝑆, 𝑣 ∈ 𝕍!𝑔[𝑆], and 𝑋 ∈ 𝕍!𝑔[𝑆], the canonical map

∫𝑣′ 𝑋(𝑣′) ⋅ (𝑔[𝑆]/�̂�)(𝐕(𝑣), 𝐕(𝑣′)) → (𝑔[𝑆]/�̂�)(𝐕(𝑣), 𝐕!(𝑋))

is an isomorphism.

Proof (Proof sketch). Let 𝐕!(𝑋) = (𝑔[𝑆] 𝑡−→ 𝑅) and consider the binary relation ≺
on the elements of 𝑅 defined by 𝑥 ≺ 𝑦 iff 𝑥 = 𝑦 ⋅ 𝑡 or 𝑥 ⋅ 𝑠 = 𝑦. Let now ≤ denote
the reflexive transitive closure of ≺, which forms a partial order. For any arena
sequent 𝑆′ = (𝛾′ ⊢ 𝜎′) and 𝑥 ∈ 𝑅(𝑆′), the elements below 𝑥 determine a view
𝑣𝑥, an element 𝑦𝑥 ∈ 𝑋(𝑣𝑥), and an inclusion 𝑖𝑥: 𝐕(𝑣𝑥) ↪ (𝑋(𝑣𝑥) ⋅ 𝐕(𝑣𝑥)) ↪ 𝐕!(𝑋).
Now, consider any map 𝑓: 𝐕(𝑣) → 𝐕!(𝑋). Letting 𝑥 denote the image of the top

element of 𝐕(𝑣), we obtain that 𝑣 = 𝑣𝑥 and 𝑖𝑥 = 𝑓 , so 𝑓 factors as 𝐕(𝑣) ≅ 𝐕(𝑣𝑥) 𝑖𝑥

𝐕!(𝑋). One then verifies that this provides a unique antecedent to 𝑓 .

It remains to show that 𝐕!(𝑋) is indeed the image of a normal form. For this,
the following notion will be helpful:

Definition 8. For any 𝑋 ∈ �̂�, a finite complex (relative to 𝑋) is a finite composite
𝑋 → 𝑌 of pushouts of maps of the form 𝑆 → 𝐕(𝑚0𝑚1), for all arena sequents 𝑆 and
𝑚0𝑚1 ∈ 𝕍!𝑆 :

– the identity id𝑋 is a finite complex relative to 𝑋;
– and for all finite complexes 𝑓: 𝑋 → 𝑌 and 𝑚0𝑚1 ∈ 𝕍!𝑆 , the bottom row of

𝑆 𝐕(𝑚0𝑚1)

𝑋 𝑌 𝑍𝑓

is again a finite complex.



The term ‘complex’ refers to a standard construction in cofibrantly generated
factorisation systems [11]. Intuitively, for any arena sequent 𝑆, finite complexes
relative to 𝑆 are obtained from 𝑆 by grafting finitely many OP blocks. The fol-
lowing should thus seem natural:

Lemma 3. The essential image of 𝐓: NF𝑆 → 𝑔[𝑆]/�̂� has as objects all finite complexes
relative to 𝑔[𝑆].

Proof (Proof sketch). That any normal form is mapped by 𝐓 to a finite complex
follows by induction from the very definition of 𝐓. Conversely, we also proceed
by induction on the length of the given complex. The only non-trivial point is
that when we add one composite, we need to find the occurrence in the corre-
sponding term where to graft the corresponding OP block.

A handy property of finite complexes is:

Lemma 4. Finite relative complexes are stable under pushout.

Proof. We proceed by induction on the length of one of the given complexes. For
the induction step, consider any finite complex 𝑓: 𝑋 → 𝑌 relative to 𝑋, pushout
𝑔: 𝑌 → 𝑍 of a generating map 𝑆 → 𝐕(𝑚0𝑚1), and any map ℎ: 𝑋 → 𝑋′. We need
to show that the bottom row of

𝑆 𝐕(𝑚0𝑚1)

𝑋 𝑌 𝑍

𝑋′ 𝑌 ′ 𝑍′

𝑓

ℎ

𝑓 ′

𝑔

𝑔′

is a finite complex relative to 𝑋′. But by induction hypothesis 𝑓 ′ is, and by the
pushout lemma, 𝑔′ is a pushout of 𝑆 → 𝐕(𝑚0𝑚1), hence the result.

Because finite colimits reduce to pushouts and initial object, and because the
forgetful functor 𝑋/�̂� → �̂� creates pushouts, we have:

Corollary 1. Finite complexes relative to 𝑋, with relative complexes as morphisms be-
tween them, form a subcategory of 𝑋/�̂� which is closed under finite colimits.

We may finally prove that 𝐕!(𝑋) is the image of a normal form: 𝐕!, being a left
adjoint, preserves colimits, so 𝐕!(𝑋) is a finite colimit of objects of the form 𝐕(𝑣),
which clearly are finite complexes. So 𝐕!(𝑋) is a finite colimit of finite complexes,
hence itself a finite complex by Corollary 1, hence isomorphic to the image of a
normal form by Lemma 3.



7 Conclusion and perspectives

Based on the embedding of plays into a coslice of a presheaf category, we have
recovered (1) the interpretation of normal forms as innocent strategies as a sin-
gular functor and (2) definability as the corresponding geometric realisation. We
find intriguing that the whole coslice may in fact be assigned an interpretation
into innocent strategies, thus wildly generalising the interpretation of normal
forms. E.g., this flexibility might be useful to handle recursive definitions, in-
terpreting them as cyclic presheaves. On such generalised terms 𝑀 , geometric
realisation will however not return something isomorphic to 𝑀 in general, only
some sort of unfolding [4].

As mentioned in the introduction, a fundamental aspect of game seman-
tics which is not treated here is composition of strategies, in particular associa-
tivity, and stability of innocent strategies. In ongoing work, we use presheaf-
based techniques, in particular the exact squares of Guitart [8], to give alterna-
tive, streamlined proofs of these results.
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