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Introduction

Innocent game semantics [START_REF] Nickau | Hereditarily sequential functionals[END_REF][START_REF] Hyland | On full abstraction for PCF: I, II, and III[END_REF] has led to fully abstract models for a variety of functional languages, where programs are interpreted as strategies in a game. Concurrent extensions of game semantics have recently been designed, based on event structures [START_REF] Castellan | The parallel intensionally fully abstract games model of pcf[END_REF] or on sheaves [START_REF] Hirschowitz | Full abstraction for fair testing in CCS[END_REF][START_REF] Hirschowitz | Full abstraction for fair testing in CCS (expanded version)[END_REF][START_REF] Eberhart | An intensionally fully-abstract sheaf model for pi[END_REF][START_REF] Tsukada | Nondeterminism in game semantics via sheaves[END_REF].

An important result in games semantics asserts that the interpretation of normal forms induces a bijection with (some variant of) finite innocent strategies. The goal of this paper is to reconstruct this phenomenon categorically, in the setting of Tsukada and Ong's games model [START_REF] Tsukada | Nondeterminism in game semantics via sheaves[END_REF], relying on the well-known Yoneda structure on categories [START_REF] Street | Yoneda structures on 2-categories[END_REF][START_REF] Weber | Yoneda structures from 2-toposes[END_REF]. Admittedly, this is only a partial reconstruction, as composition of strategies through parallel composition plus hiding is missing from the picture. Still, we find the simplicity and algebraic topological nature of our construction worth communicating.

Our starting point is the representation theorem proved in [START_REF] Eberhart | Justified sequences in string diagrams: a comparison between two approaches to concurrent game semantics[END_REF], which (simplifying a bit for expository purposes) exhibits an embedding 𝐏 𝐴⊢𝐵 : ℙ 𝐴⊢𝐵 ↪ (𝐴 ⊢ 𝐵)/ L of Tsukada and Ong's category of plays ℙ 𝐴⊢𝐵 over any arenas 𝐴 and 𝐵 into a coslice (𝐴 ⊢ 𝐵)/ L of a certain presheaf category L. We here construct a further embedding 𝐓 𝜎⊢𝜏 : NF 𝜎⊢𝜏 ↪ (𝐴 ⊢ 𝐵)/ L of normal forms of type 𝜎 ⊢ 𝜏 into the same coslice (assuming that the types 𝜎 and 𝜏 yield arenas 𝐴 and 𝐵).

From there, using the standard categorical yoga of singular functors and geometric realisation, we are able to reconstruct (i) the translation of normal forms into innocent strategies and (ii) the 'definability' map, which associates to each (finitely presentable) innocent strategy 𝑋 a normal form 𝑅 such that ⟦𝑅⟧ ≅ 𝑋. The former (i) is given by the composite

NF 𝜎⊢𝜏 𝐓 𝜎⊢𝜏 --→ ((𝐴 ⊢ 𝐵)/ L) (𝐕 𝐴⊢𝐵 ) ⋆ -----→ V𝐴⊢𝐵 , (1) 
where (𝐕 𝐴⊢𝐵 ) ⋆ denotes the singular functor associated to the composite embedding 𝐕 𝐴⊢𝐵 : 𝕍 𝐴⊢𝐵 ↪ ℙ 𝐴⊢𝐵 ↪ (𝐴 ⊢ 𝐵)/ L.

The latter (ii) is the corresponding geometric realisation 𝐕 𝐴⊢𝐵 ! . We prove that the composite (1) coincides with Tsukada and Ong's interpretation of normal forms, and that 𝐕 𝐴⊢𝐵 ! (𝑋) is indeed a normal form antecedent of 𝑋, up to isomorphism. Our proof of this last fact relies on a notion of finite complex relative to 𝐴 ⊢ 𝐵, which is defined following standard algebraic topological techniques [START_REF] Hovey | of Mathematical Surveys and Monographs[END_REF]: we prove such complexes to coincide both [START_REF] Adámek | Locally Presentable and Accessible Categories[END_REF] with the 𝐓-image of normal forms and (2) with the 𝐕 ! -image of finite innocent strategies.

Related work

Tsukada and Ong's games draw inspiration from Melliès's reformulation of innocence [START_REF] Melliès | Asynchronous games 2: the true concurrency of innocence[END_REF] and our sheaf-based notion of innocent and concurrent strategies [START_REF] Hirschowitz | Full abstraction for fair testing in CCS (expanded version)[END_REF]. There are other alternative representations of plays, e.g., Boudes's thick subtrees [START_REF] Boudes | Thick subtrees, games and experiments[END_REF], specific intersection types [START_REF] Gianantonio | Innocent game semantics via intersection type assignment systems[END_REF], or resource terms [START_REF] Tsukada | Plays as resource terms via non-idempotent intersection types[END_REF]. Ours is close in spirit. A main difference lies in our emphasis on morphisms between plays, which is of course key in stating the adjunction between geometric realisation and singular functor. A further difference is that our correspondence is less tight: the embedding lands into a much larger category. In a sense, this looseness is precisely what allows us to also embed normal forms and innocent strategies (using cocompleteness).

Plan

We start in Section 2 by quickly reviewing some basic notation and a few categorical facts. We continue in Section 3 by recalling the representation theorem from [START_REF] Eberhart | Justified sequences in string diagrams: a comparison between two approaches to concurrent game semantics[END_REF] and explaining how plays map to the relevant coslice category. We continue in Section 4 by defining our functor from normal forms to the same coslice category. In Section 5, we construct the relevant singular functor and prove (Theorem 2) that it yields the correct interpretation of normal forms into innocent strategies. In Section 6, we construct the corresponding geometric realisation functor and show (Theorem 3) that it yields the expected antecedents for all finitely presentable innocent strategies. Finally, we conclude in Section 7.

should not be confused with 𝐹 ⋆ : 𝒟 → Ĉ , which we define to map any 𝑑 ∈ 𝒟 to the presheaf 𝑐 ↦ 𝒟 (𝐹 (𝑐), 𝑑). When 𝒟 is cocomplete, this 𝐹 ⋆ has a well-known left adjoint 𝐹 ! , given by mapping any 𝑋 ∈ Ĉ to ∫ 𝑐 𝑋(𝑐) ⋅ 𝐹 (𝑐). The latter is a coend, in which ⋅ denotes iterated coproduct, i.e., 𝐹 (𝑐) + … + 𝐹 (𝑐) ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 𝑋(𝑐) times . E.g., when 𝒟 is the category of sets and functions, the coend is the quotient of ∑ 𝑐 𝑋(𝑐) ⋅ 𝐹 (𝑐) by the equivalence relation generated for all 𝑓 : 𝑐 → 𝑐 ′ , 𝑥 ′ ∈ 𝑋(𝑐 ′ ) and 𝑢 ∈ 𝐹 (𝑐) by (𝑥 ′ , 𝑓 ⋅ 𝑢) ∼ (𝑥 ′ ⋅ 𝑓 , 𝑢). A particular, well-known case is Yoneda reduction: for all presheaves 𝑋 ∈ Ĉ , the canonical morphism ∫ 𝑐 𝑋(𝑐)⋅y 𝑐 → 𝑋 is an isomorphism.

Representing plays

In this section, we recall Tsukada and Ong's games and our representation theorem.

Brief review of Tsukada-Ong games

Tsukada and Ong's games are based on the standard notion of arena, of which we adopt the following innocuous simplification: Definition 1. An arena is a simple, countable forest, i.e., a directed, simple graph in which all vertices are uniquely reachable from a unique root (= vertex without a parent).

Remark 1. For size reasons, let us interpret 'countable' in the restricted sense that vertices are all natural numbers. This entails that arenas form a set.

Example 1. Anticipating a little, the considered simply-typed 𝜆-calculus will have one basic type 𝑜, and 𝔹 ≔ (𝑜 → 𝑜 → 𝑜) will be interpreted as the arena below left

𝑚 2 𝑚 1 𝑚 0 . 𝑚 2 𝑚 1 𝑚 0 𝑚 𝑚 ′ .
An example type of higher rank is (𝔹 → 𝑜) → 𝑜, which yields the arena above right.

Notation 1

In any arena, vertices will be called moves, and roots will be deemed initial. We denote by √𝐴 the set of roots of 𝐴. For any 𝐴 and 𝐵, the category ℙ 𝐴⊢𝐵 of plays has as objects all alternating, P-visible justified sequences over 𝐴 ⊸ 𝐵, as is standard in game semantics. Briefly, one first defines justified sequences as sequences of moves in 𝐴 ⊸ 𝐵 with valid pointers. Then, one defines the view of any move in any justified sequence. Preplays are then defined as alternating, P-visible justified sequences, where Pvisibility means that any P-move points into its view. Finally, plays are preplays of even length.

A peculiarity is that ℙ 𝐴⊢𝐵 , following Melliès [START_REF] Melliès | Asynchronous games 2: the true concurrency of innocence[END_REF], has more morphisms than prescribed by the prefix ordering. It in particular incorporates permutations of independent moves. Specifically, morphisms 𝑓 : 𝑃 → 𝑄 of preplays are defined as injective maps between moves preserving OP blocks: if 2𝑖 is the index of a Proponent move in 𝑃 , then 𝑓 (2𝑖) = 𝑓 (2𝑖 -1) + 

Plays as proof trees

In order to explain the design of the category 𝕃 over which our representation theorem will take presheaves, let us take a detour through a sequent calculus description of Tsukada-Ong plays. Melliès [START_REF] Melliès | Game semantics in string diagrams[END_REF] has revealed a link between plays (and strategies) in game semantics and a simple intuitionistic sequent calculus. We consider a simple non-linear variant, in which formulas are game semantical arenas. In our sequent calculus, an arena 𝐴 = ∑ 𝑖 𝑚 𝑖 .𝐴 𝑖 is understood as a logical formula much like ⋀ 𝑖 ¬𝐴 𝑖 . The rules are then a mere adaptation of Melliès's.

An arena sequent is a list of arenas, possibly with a distinguished arena, denoted by 𝐴 1 , …, 𝐴 𝑛 ⊢, resp. 𝐴 1 , …, 𝐴 𝑛 ⊢ 𝐴, and our sequent calculus has the following inference rules:

[Λ (Γ⊢𝐴),𝑚 ] Γ, 𝐴 ⋅ 𝑚 ⊢ Γ ⊢ 𝐴 (𝑚∈√𝐴) [@ (𝐴 1 ,…,𝐴 𝑛 ⊢),𝑘,𝑚 ] 𝐴 1 , …, 𝐴 𝑛 ⊢ 𝐴 𝑘 ⋅ 𝑚 𝐴 1 , …, 𝐴 𝑛 ⊢ ( 𝑘∈𝑛, 𝑚∈√𝐴 𝑘 ) [Sum 𝑆 ] 𝑆 … 𝑆 𝑆 .
Remark 2. The inference rules are designed to model plays rather than simplytyped terms. Indeed, the Λ (Γ⊢𝐴),𝑚 rule only handles one of the possibly many roots of 𝐴. We will however see below that the Sum rule allows to also interpret normal forms.

Notation 3 All rules are annotated with their conclusion, which will be omitted when clear from context.

Let us now interpret plays as derivations in our sequent calculus, starting with an example.

Example 4. Recall the play of Example 3, on the arena (𝔹 → 𝑜) → 𝑜 = 𝑚 ′ .𝑚.𝔹 = 𝑚 ′ .𝑚.𝑚 0 .(𝑚 1 + 𝑚 2 ). It will be interpreted as

Sum 𝑚.𝔹, 𝑚 1 + 𝑚 2 , 𝑚 1 + 𝑚 2 ⊢ ∅ @ 3,𝑚 2 𝑚.𝔹, 𝑚 1 + 𝑚 2 , 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ 𝔹 @ 1,𝑚 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹 ⊢ 𝔹 Sum 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ 𝔹 @ 1,𝑚 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹 ⊢ 𝔹 Sum 𝑚.𝔹 ⊢ 𝔹 @ 1,𝑚 𝑚.𝔹 ⊢ Λ 𝑚 ′ , ⊢ 𝑚 ′ .
𝑚.𝔹 which is essentially the typing derivation of the corresponding resource term [START_REF] Tsukada | Plays as resource terms via non-idempotent intersection types[END_REF]:

𝜆𝑓 .𝑓 [𝜆𝑎𝑏.𝑓 [𝜆𝑦𝑧.𝑧], 𝜆𝑎 ′ 𝑏 ′ .𝑓 []]
. Briefly, 𝜆𝑓 corresponds to 𝑚 ′ , calls to 𝑓 correspond to 𝑚, 𝜆𝑎𝑏 and 𝜆𝑎 ′ 𝑏 ′ correspond to 𝑚 0 , etc. A crucial point is that branches in the derivation tree precisely correspond to views of the original play. Let us notice in passing that derivations lose track of the total ordering between moves featured by plays. A final remark: the sequent 𝑚.𝔹, 𝑚 1 + 𝑚 2 , 𝑚 1 + 𝑚 2 ⊢ ∅, though syntactically similar to 𝑚.𝔹, 𝑚 1 + 𝑚 2 , 𝑚 1 + 𝑚 2 ⊢, is in fact very different, as no move may be played from it.

Example 5. A simpler example, which we will use below to illustrate the branching features of innocent strategies, corresponds to the resource term 𝜆𝑓 .𝑓 [𝜆𝑎𝑏.𝑎, 𝜆𝑎 ′ 𝑏 ′ .𝑏 ′ ]:

Sum 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ ∅ @ 2,𝑚 1 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹 ⊢ 𝔹 Sum 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ ∅ @ 2,𝑚 2 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹 ⊢ 𝔹 Sum 𝑚.𝔹 ⊢ 𝔹 @ 1,𝑚 𝑚.𝔹 ⊢ Λ 𝑚 ′ . ⊢ 𝑚 ′ .𝑚.𝔹
Let us try to figure out the general picture. Given arenas 𝐴 and 𝐵, any play 𝑝 ∈ ℙ 𝐴⊢𝐵 may be decomposed into a (possibly empty) sum1 𝑝 = ∑ 𝑖∈𝑛 𝑡 𝑖 of threads, where a thread is a non-empty play in which all moves are hereditarily justified by the first move. Now, any such thread 𝑡 starts with a move 𝑚 0 ∈ √𝐵 and continues with 𝑚 1 ∈ √𝐴 + 𝐵 ⋅ 𝑚 0 . The following is only a slight generalisation of the considerations preceding [19, Lemma 55]:

Lemma 1. Let 𝐶 𝑚 0 = 𝐴 + 𝐵 ⋅ 𝑚 0 . The category 𝕋 𝐴⊢𝐵 of threads over 𝐴, 𝐵 is isomorphic to the coproduct ∑ 𝑚 0 𝑚 1 ℙ 𝐶 𝑚 0 ⊢𝐶 𝑚 0 ⋅𝑚 1 .
Accordingly, given any 𝑝 ′ ∈ ℙ 𝐶 𝑚 0 ⊢𝐶 𝑚 0 ⋅𝑚 1 , we would like to interpret 𝑚 0 𝑚 1 𝑝 ′ recursively as below left

𝐃(𝑝 ′ ) 𝐴, 𝐵 ⋅ 𝑚 0 ⊢ 𝐶 𝑚 0 ⋅ 𝑚 1 @ 𝑘,𝑚 1 𝐴, 𝐵 ⋅ 𝑚 0 ⊢ Λ 𝑚 0 𝐴 ⊢ 𝐵 𝐃 Γ,𝐵⋅𝑚 0 ⊢𝐶⋅𝑚 1 (𝑝 ′ ) Γ, 𝐵 ⋅ 𝑚 0 ⊢ 𝐶 ⋅ 𝑚 1 @ 𝑘,𝑚 1 Γ, 𝐵 ⋅ 𝑚 0 ⊢ Λ 𝑚 0 Γ ⊢ 𝐵
where 𝑘 = 1 if 𝑚 1 ∈ √𝐴, 𝑘 = 2 otherwise, and 𝐃 denotes the map from plays to derivations that we are trying to define. However, the recursive call does not quite typecheck, because 𝐃(𝑝 ′ ) has conclusion 𝐶 𝑚 0 ⊢ 𝐶 𝑚 0 ⋅𝑚 1 instead of 𝐴, 𝐵⋅𝑚 0 ⊢ 𝐶 𝑚 0 ⋅ 𝑚 1 . So we need to generalise a bit:

Notation 4 Let !(𝐴 1 , …, 𝐴 𝑛 ⊢) = ( ∑ 𝑖∈𝑛 𝐴 𝑖 ⊢) and !(𝐴 1 , …, 𝐴 𝑛 ⊢ 𝐵) = ( ∑ 𝑖∈𝑛 𝐴 𝑖 ⊢ 𝐵).
We define, for any 𝑆 = (Γ ⊢ 𝐵) = (𝐴 1 , …, 𝐴 𝑛 ⊢ 𝐵), a map 𝐃 𝑆 mapping plays over !𝑆 to derivations over 𝑆. This time we may correctly define 𝐃 𝑆 (𝑚 0 𝑚 1 𝑝 ′ ) as above right, where

(𝑘, 𝐶) = (𝑖, 𝐴 𝑖 ) if 𝑚 1 ∈ √𝐴 𝑖 and (𝑘, 𝐶) = (𝑛 + 1, 𝐵 ⋅ 𝑚 0 ) if 𝑚 1 ∈ √𝐵 ⋅ 𝑚 0 (leaving implicit the isomorphism 𝕋 !𝑆 ≅ ∑ 𝑚 0 𝑚 1 ℙ !(Γ,𝐵⋅𝑚 0 ⊢𝐶⋅𝑚 1 ) ).
Finally, we translate 𝑝 = ∑ 𝑗 𝑡 𝑗 ∈ ℙ 𝑆 using the Sum rule:

… 𝐃 𝑆 (𝑡 𝑗 ) 𝑆 … 𝑆 ⋅
In particular, the empty play is interpreted as the nullary sum.

Proof trees as presheaves

We have thus interpreted plays into sequent calculus derivations. The latter, being tree-like structures, are easily viewed as presheaves over a certain category: Definition 3. Let 𝕃 denote the free category on the graph with a vertex for each arena sequent, plus one for each rule Λ (Γ⊢𝐴),𝑚 and @ Γ,𝑘,𝑚 ;

for each rule 𝜌 with conclusion 𝑆 and premise 𝑆 ′ , edges

𝑆 𝑡 -→ 𝜌 𝑠 ← -𝑆 ′ .
Remark 3. In [START_REF] Eberhart | Justified sequences in string diagrams: a comparison between two approaches to concurrent game semantics[END_REF], a slightly more complicated variant of 𝕃 is presented, which allows to represent not only plays, but also interaction sequences, the basic ingredient for parallel composition. The present definition is simpler, and sufficient for our purposes.

Let us now inductively interpret derivations 𝜋 of conclusion 𝑆 into morphisms 𝑆 → ⟦𝜋⟧ in L, which will yield the desired interpretation of plays into 𝑆/ L by composition. We again start with an example. Example 6. The derivation of Example 5 will be interpreted as the presheaf 𝑈 with:

for each arena sequent 𝑆, an element of type 𝑆 for each occurrence of 𝑆 in the derivation (except that the premises and conclusion of each Sum rule are equated), for each non-Sum rule 𝜌, an element of type 𝜌 for each occurrence of 𝜌, for each 𝑟 ∈ 𝑈 (𝜌), 𝑈 (𝑡)(𝑟) is the occurrence of the conclusion of 𝜌 corresponding to 𝑟, and 𝑈 (𝑠)(𝑟) is the occurrence of the premise of 𝜌 corresponding to 𝑟.

A detailed definition of 𝑈 is in the first two parts of Figure 1. Elements are in the first part; and the action of morphisms is defined in the second part. Reading this in full detail is of course not mandatory, but having a look may be useful for setting things straight. We introduce elements following the proof bottomup and breadth-first, and proceed similarly for equations. An efficient way of representing all this data is to depict the category of elements of 𝑈 , which has as objects all pairs (𝑐, 𝑥) with 𝑥 ∈ 𝑈 (𝑐), and as morphisms (𝑐, 𝑥) → (𝑐 ′ , 𝑥 ′ ) all morphisms 𝑓 : 𝑐 → 𝑐 ′ such that 𝑥 ′ ⋅ 𝑓 = 𝑥. This category is displayed on the left in the last part of Figure 1 (displaying just 𝑥 instead of (𝑐, 𝑥) for readability). The element pointed by (𝐴 ⊢ 𝐵) is the bottom one, 𝑠 ⊢𝑚 ′ .𝑚.𝔹 .

Let us now define our interpretation in full generality, by induction on the given derivation. The Λ and @ rules are easy to interpret. Indeed, given any A more detailed presentation and a proof of the case 𝑆 = (𝐴 ⊢ 𝐵) are available in [START_REF] Eberhart | Justified sequences in string diagrams: a comparison between two approaches to concurrent game semantics[END_REF].

proof 𝜋 of 𝑆 ′ , if 𝜌 is one of Λ or @,
Example 7. The presheaf 𝑈 of Example 6 may alternatively be described as the (implicitly pointed) pushout on the right in the last part of Figure 1. where 𝛾 ′ = (𝛾, 𝑥 1 : 𝜎 1 , …, 𝑥 𝑝 : 𝜎 𝑝 ).

Representing normal forms

Remark 4. This slightly differs from Tsukada and Ong's presentation, but clearly yields the same terms. Indeed, they distinguish a particular case of the second rule when 𝑛 = 0, which they denote by 𝜆𝑥 1 …𝑥 𝑝 .⊥. The only thing that matters here is that our nullary sum will be interpreted in the same way.

Our interpretation of normal forms is given by showing that, up to the interpretation of simple types as arenas, the natural deduction rules are derivable in the sequent calculus of Section 3. Let us now consider the general case. The second rule, for 𝑅 = ∑ 𝑖∈𝑛 𝑄 𝑖 , will be interpreted straightforwardly using the Sum rule, so that 𝐓(𝑅) will roughly be the derivation below left: The set NF 𝑆 is here viewed as a discrete category, and 𝐓 is evidently injective, hence trivially an embedding.

𝐓( ∑𝑖 𝑄 𝑖 ) = … 𝐓(𝑄 𝑖 ) 𝛾 ⊢ 𝜎 … (𝑖 ∈ 𝑛) 𝛾 ⊢ 𝜎 Sum 𝐓⟨𝑅 1 ,

Game semantics as a singular functor

At this stage, for all sequents 𝑆 = (𝛾 ⊢ 𝛿), we know how to embed views and plays over !𝑔[𝑆] and normal forms over 𝑆 into the coslice category 𝑔[𝑆]/ L. We may now show how this allows us to automatically translate normal forms into innocent strategies. Let us first recall what innocent strategies are. They standardly come in two flavours, so let us disambiguate: Definition 6. The category of behaviours over (𝐴, 𝐵) is the presheaf category V𝐴⊢𝐵 . Similarly, the category of strategies over (𝐴, 𝐵) is the presheaf category P𝐴⊢𝐵 . A strategy is innocent iff it is in the essential image of right Kan extension along 𝐈 op . Now, for any sequent 𝑆 = (𝛾 ⊢ 𝛿) and compatible grouping 𝑔, simply unfolding the standard Yoneda structure on categories yields the solid part of the diagram below (leaving some dependencies on 𝑆 and 𝑔 implicit for readability):

𝕍 !𝑔[𝑆] 𝑔[𝑆]/ L NF 𝑆 V!𝑔[𝑆] V!𝑆 . y 𝐕 𝐕 ⋆ 𝜒 𝐕 𝐓 ⟦-⟧ Δ 𝜃 𝑔,𝑆 (2) 
where 𝜒 𝐕 is a left extension and absolute left lifting of y [START_REF] Street | Yoneda structures on 2-categories[END_REF]. Concretely,

𝐕 ⋆ (𝑝)(𝑣) = 𝕍 !𝑔[𝑆] (𝐕(𝑣), 𝑝),
and

(𝜒 𝐕 𝑣 ) 𝑣 ′ : 𝕍 !𝑔[𝑆] (𝑣 ′ , 𝑣) → (𝑔[𝑆]/ L)(𝐕(𝑣 ′ ), 𝐕(𝑣)
) is merely 𝐕 on morphisms. This automatically yields our candidate interpretation, namely the composite 𝐕 ⋆ ∘ 𝐓. Furthermore, the arenas composing !𝑆 and !𝑔[𝑆] are isomorphic, and thus induce an isomorphism 𝜃 𝑔,𝑆 : 𝕍 !𝑔[𝑆] → 𝕍 !𝑆 between the corresponding categories of views, hence (by precomposition) an isomorphism between the corresponding presheaf categories, which we denote by Δ 𝜃 𝑔,𝑆 : V!𝑆 → V!𝑔 [𝑆] . Letting ⟦-⟧ denote Tsukada and Ong's interpretation, we obtain the dashed arrows in [START_REF] Boudes | Thick subtrees, games and experiments[END_REF]. We have: Example 9. Recall the play 𝑈 of Figure 1 (and Examples 5 and 6). From the description of 𝑈 as a pushout, we see that it has three views: 𝑚 ′ 𝑚, 𝑚 ′ 𝑚𝑚 0 𝑚 1 , and 𝑚 ′ 𝑚𝑚 0 𝑚 2 . The intuitive difference between 𝑅 and 𝑅 ′ is that 𝑅 feeds 𝑓 with a non-deterministic argument, so calls to it from 𝑓 may play either like 𝜆𝑎𝑏.𝑎 or 𝜆𝑎 ′ 𝑏 ′ .𝑏 ′ . This is not the case in 𝑅 ′ , which non-deterministically chooses between two functions, the first of which calls its argument 𝑓 on 𝜆𝑎𝑏.𝑎 whilst the second calls it on 𝜆𝑎 ′ 𝑏 ′ .𝑏 ′ .

This shows up already on 𝑚 ′ 𝑚, since 𝐕 ⋆ (𝐓(𝑅))(𝑚 ′ 𝑚) ≅ 1 and 𝐕 ⋆ (𝐓(𝑅 ′ ))(𝑚 ′ 𝑚) ≅ 2. And it further leads 𝑅 ′ to reject some plays accepted by 𝑅. E.g., denoting by ∏ 𝐈 (𝑆) the (innocent) strategy associated to any behaviour 𝑆, we in particular have

∏ 𝐈 (𝐕 ⋆ (𝐓(𝑅)))(𝑈 ) ≅ 𝐕 ⋆ (𝐓(𝑅))(𝑚 ′ 𝑚𝑚 0 𝑚 1 ) × 𝐕 ⋆ (𝐓(𝑅))(𝑚 ′ 𝑚) 𝐕 ⋆ (𝐓(𝑅))(𝑚 ′ 𝑚𝑚 0 𝑚 2 ) ≅ 1 × 1 1 ≅ 1, but ∏ 𝐈 (𝐕 ⋆ (𝐓(𝑅 ′ )))(𝑈 ) ≅ 𝐕 ⋆ (𝐓(𝑅 ′ ))(𝑚 ′ 𝑚𝑚 0 𝑚 1 ) × 𝐕 ⋆ (𝐓(𝑅 ′ ))(𝑚 ′ 𝑚) 𝐕 ⋆ (𝐓(𝑅 ′ ))(𝑚 ′ 𝑚𝑚 0 𝑚 2 ) ≅ 1 × 2 1 ≅ 0,
where 1 × 2 1 denotes the pullback of 1 2 1,

1 2
which is indeed empty.

Let us return to the theorem. 

Proof (Proof sketch

∫ 𝑣 ′ 𝑋(𝑣 ′ ) ⋅ (𝑔[𝑆]/ L)(𝐕(𝑣), 𝐕(𝑣 ′ )) → (𝑔[𝑆]/ L)(𝐕(𝑣), 𝐕 ! (𝑋))
is an isomorphism.

Proof (Proof sketch). Let 𝐕 ! (𝑋) = (𝑔[𝑆]

𝑡 -→ 𝑅) and consider the binary relation ≺ on the elements of 𝑅 defined by 𝑥 ≺ 𝑦 iff 𝑥 = 𝑦 ⋅ 𝑡 or 𝑥 ⋅ 𝑠 = 𝑦. Let now ≤ denote the reflexive transitive closure of ≺, which forms a partial order. For any arena sequent 𝑆 ′ = (𝛾 ′ ⊢ 𝜎 ′ ) and 𝑥 ∈ 𝑅(𝑆 ′ ), the elements below 𝑥 determine a view 𝑣 𝑥 , an element 𝑦 𝑥 ∈ 𝑋(𝑣 𝑥 ), and an inclusion 𝑖 𝑥 : 𝐕(𝑣 𝑥 ) ↪ (𝑋(𝑣 𝑥 ) ⋅ 𝐕(𝑣 𝑥 )) ↪ 𝐕 ! (𝑋). Now, consider any map 𝑓 : 𝐕(𝑣) → 𝐕 ! (𝑋). Letting 𝑥 denote the image of the top element of 𝐕(𝑣), we obtain that 𝑣 = 𝑣 𝑥 and 𝑖 𝑥 = 𝑓 , so 𝑓 factors as 𝐕(𝑣) ≅ 𝐕(𝑣 𝑥 ) 𝑖 𝑥 𝐕 ! (𝑋). One then verifies that this provides a unique antecedent to 𝑓 .

It remains to show that 𝐕 ! (𝑋) is indeed the image of a normal form. For this, the following notion will be helpful: Definition 8. For any 𝑋 ∈ L, a finite complex (relative to 𝑋) is a finite composite 𝑋 → 𝑌 of pushouts of maps of the form 𝑆 → 𝐕(𝑚 0 𝑚 1 ), for all arena sequents 𝑆 and 𝑚 0 𝑚 1 ∈ 𝕍 !𝑆 :

the identity id 𝑋 is a finite complex relative to 𝑋; and for all finite complexes 𝑓 : 𝑋 → 𝑌 and 𝑚 0 𝑚 1 ∈ 𝕍 !𝑆 , the bottom row of 𝑆 𝐕(𝑚 0 𝑚 1 ) 𝑋 𝑌 𝑍 𝑓 is again a finite complex.

The term 'complex' refers to a standard construction in cofibrantly generated factorisation systems [START_REF] Hovey | of Mathematical Surveys and Monographs[END_REF]. Intuitively, for any arena sequent 𝑆, finite complexes relative to 𝑆 are obtained from 𝑆 by grafting finitely many OP blocks. The following should thus seem natural: Proof (Proof sketch). That any normal form is mapped by 𝐓 to a finite complex follows by induction from the very definition of 𝐓. Conversely, we also proceed by induction on the length of the given complex. The only non-trivial point is that when we add one composite, we need to find the occurrence in the corresponding term where to graft the corresponding OP block.

A handy property of finite complexes is: Lemma 4. Finite relative complexes are stable under pushout.

Proof. We proceed by induction on the length of one of the given complexes. For the induction step, consider any finite complex 𝑓 : 𝑋 → 𝑌 relative to 𝑋, pushout 𝑔: 𝑌 → 𝑍 of a generating map 𝑆 → 𝐕(𝑚 0 𝑚 1 ), and any map ℎ: 𝑋 → 𝑋 ′ . We need to show that the bottom row of is a finite complex relative to 𝑋 ′ . But by induction hypothesis 𝑓 ′ is, and by the pushout lemma, 𝑔 ′ is a pushout of 𝑆 → 𝐕(𝑚 0 𝑚 1 ), hence the result.

Because finite colimits reduce to pushouts and initial object, and because the forgetful functor 𝑋/ L → L creates pushouts, we have: Corollary 1. Finite complexes relative to 𝑋, with relative complexes as morphisms between them, form a subcategory of 𝑋/ L which is closed under finite colimits.

We may finally prove that 𝐕 ! (𝑋) is the image of a normal form: 𝐕 ! , being a left adjoint, preserves colimits, so 𝐕 ! (𝑋) is a finite colimit of objects of the form 𝐕(𝑣), which clearly are finite complexes. So 𝐕 ! (𝑋) is a finite colimit of finite complexes, hence itself a finite complex by Corollary 1, hence isomorphic to the image of a normal form by Lemma 3.

Based on the embedding of plays into a coslice of a presheaf category, we have recovered (1) the interpretation of normal forms as innocent strategies as a singular functor and (2) definability as the corresponding geometric realisation. We find intriguing that the whole coslice may in fact be assigned an interpretation into innocent strategies, thus wildly generalising the interpretation of normal forms. E.g., this flexibility might be useful to handle recursive definitions, interpreting them as cyclic presheaves. On such generalised terms 𝑀, geometric realisation will however not return something isomorphic to 𝑀 in general, only some sort of unfolding [START_REF] Eberhart | Presheaves for Processes and Unfoldings[END_REF].

As mentioned in the introduction, a fundamental aspect of game semantics which is not treated here is composition of strategies, in particular associativity, and stability of innocent strategies. In ongoing work, we use presheafbased techniques, in particular the exact squares of Guitart [START_REF] Guitart | Relations et carrés exacts[END_REF], to give alternative, streamlined proofs of these results.

Definition 5 .

 5 For all sequents 𝑆 = (𝛾 ⊢ 𝜎), let 𝐓 = 𝐓 𝑖𝑑 |𝛾| ,𝑆 ⟨-⟩: NF 𝑆 → 𝑆/ L.

Theorem 2 .

 2 For any sequent 𝑆 = (𝛾 ⊢ 𝛿) with grouping 𝑔 and normal form 𝛾 ⊢ ⃗ 𝑅 : 𝛿, we have 𝐕 ⋆ (𝐓( ⃗ 𝑅)) ≅ Δ 𝜃 𝑔,𝑆 ⟦ ⃗ 𝑅⟧, where ⟦ ⃗ 𝑅⟧ = ⟨⟦𝑅 1 ⟧, …, ⟦𝑅 𝑘 ⟧⟩. Concretely, this means that Δ 𝜃 𝑔,𝑆 (⟦ ⃗ 𝑅⟧)(𝑣) = ⟦ ⃗ 𝑅⟧(𝜃 𝑔,𝑆 (𝑣)) ≅ (𝑔[𝑆]/ L)(𝐕(𝑣), 𝐓( ⃗ 𝑅)) for all 𝑣.

Lemma 3 .

 3 The essential image of 𝐓: NF 𝑆 → 𝑔[𝑆]/ L has as objects all finite complexes relative to 𝑔[𝑆].

  If 𝐴 is an arena and 𝑚 is a move in 𝐴, then 𝐴 /𝑚 is the forest strictly below 𝑚, and 𝐴 ⋅ 𝑚 denotes 𝐴 /𝑚 when 𝑚 ∈ √𝐴. Any forest 𝐴 is a coproduct of trees, so that 𝐴 ≅ ∑ 𝑚∈√𝐴 𝑇 𝑚 where each 𝑇 𝑚 is a tree. For any arena 𝐴 and 𝑚 ∉ 𝐴, we denote by 𝑚.𝐴 the unique tree 𝑇 such that √𝑇 = {𝑚} and 𝑇 ⋅ 𝑚 = 𝐴. In the sequel, we often leave ⟦-⟧ implicit, i.e., 𝜏 sometimes implicitly denotes ⟦𝜏⟧. Let us moreover observe that any type has the shape 𝜏 1 → … → 𝜏 𝑛 → 𝑜, and that this is interpreted (up to isomorphism of forests) as 𝑚 𝑜 .(∑ 𝑖 ⟦𝜏 𝑖 ⟧). Thus, 𝜏 ⋅ 𝑚 𝑜 = ∑ 𝑖 ⟦𝜏 𝑖 ⟧. Such sums of interpretations of types will occur frequently in the sequel, and we adopt the convention of denoting by 𝑚 𝑖 the root of the 𝑖th term of the sum. The next step is to define categories of plays. Let us fix arenas 𝐴 and 𝐵, and let 𝐴 ⊸ 𝐵 denote the empty arena ∅ if 𝐵 = ∅, and otherwise the simple graph obtained by adding to 𝐴 + 𝐵 an edge 𝑏 → 𝑎 for all 𝑏 ∈ √𝐵 and 𝑎 ∈ √𝐴. The notion of ownership straightforwardly extends to 𝐴 ⊸ 𝐵: it is left unchanged in 𝐵 but reversed in 𝐴.

	Thus, any forest may be written as 𝐴 = ∑ 𝑚∈√𝐴 𝑚.(𝐴⋅𝑚). The ownership of any vertex
	𝑚 ∈ 𝐴 is O (for Opponent) if the length of the unique path from a root to 𝑚 is even,
	and P (for Proponent) otherwise. So, e.g., all roots have ownership O.
	Example 2. The arenas of Example 1 may be denoted by 𝑚 0 .(𝑚 1 +𝑚 2 ) and 𝑚 ′ .𝑚.𝑚 0 .(𝑚 1 +
	𝑚 2 ), respectively.		
	More generally, we will consider a simply-typed 𝜆-calculus with one base
	type 𝑜, whose types are inductively interpreted as arenas:
	⟦𝑜⟧ = 𝑚 𝑜 .∅	⟦𝜎 → 𝜏⟧ = ∑	𝑞.(⟦𝜎⟧ + ⟦𝜏⟧ ⋅ 𝑞).
		𝑞∈√⟦𝜏⟧	
	Notation 2		

  We now have the object part of our representation: the composite 𝐏 𝑆 : ℙ !𝑆 → Derivations S → 𝑆/ L, for all arena sequents 𝑆. For any play 𝑝 ∈ ℙ !𝑆 , there is a bijection between the moves of 𝑝 and the elements of 𝐏 𝑆 (𝑝) of type Λ and @. Given a morphism 𝑓 : 𝑝 → 𝑞, this directly induces a candidate morphism 𝐏 𝑆 (𝑓 ): 𝐏 𝑆 (𝑝) → 𝐏 𝑆 (𝑞) on such elements. Clearly, there is at most one extension of this candidate to all elements that qualifies as a proper morphism. Indeed, for all elements 𝑥 ∈ 𝐏 𝑆 (𝑝)(𝑆), there exists some Λ or @ element 𝑦 ∈ 𝐏 𝑆 (𝑝)(𝜌) and map 𝜕 ∈ {𝑠, 𝑡} such that 𝑥 = 𝑦 ⋅ 𝜕; naturality thus imposes Presheaf for the derivation of Example 5It remains to verify that for any other 𝑦 ′ and 𝜕 ′ such that 𝑥 = 𝑦 ′ ⋅ 𝜕 ′ , we have 𝑦 ⋅ 𝜕 = 𝑦 ′ ⋅ 𝜕 ′ , which indeed holds. This ends the definition of 𝐏 𝑆 , and we may at last state:

	we interpret ⋁ 𝑖 ⟦𝜋 ⟦𝜋 1 ⟧ 𝜋 𝑆 ′ 𝑆 𝜌 as the bottom row below ⟦𝜋⟧ 𝜌 • ⟦𝜋⟧ ∑ 𝑖∈𝑛 𝑆 ∑ 𝑖∈𝑛 ⟦𝜋 𝑖 ⟧ 𝑆 𝑆 … ⟦𝜋 𝑛 ⟧ 𝑆 𝑆 Sum as the bottom row above right. 𝑈 (⊢ 𝑚 ′ .𝑚.𝔹) = {𝑠 ⊢𝑚 ′ .𝑚.𝔹 } 𝑆 ′ 𝜌 𝑈 (Λ 𝑚 ′ ) = {𝑥 𝑚 ′ } 𝑈 (𝑚.𝔹 ⊢) = {𝑠 𝑚.𝔹⊢ } 𝑈 (@ (𝑚.𝔹⊢),1,𝑚 ) = {𝑥 𝑚 } left 𝑆 𝑈 (𝑚.𝔹 ⊢ 𝔹) = {𝑠 𝑚.𝔹⊢𝔹 } 𝑈 (Λ (𝑚.𝔹⊢𝔹),𝑚 0 ) = {𝑥 1 𝑚 0 , 𝑥 2 𝑚 0 } 𝑈 (𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢) = {𝑠 1 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢ , 𝑠 2 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢ } 𝑈 (@ (𝑚.𝔹,𝑚 1 +𝑚 2 ⊢),2,𝑚 1 ) = {𝑥 𝑚 1 } 𝑈 (@ (𝑚.𝔹,𝑚 1 +𝑚 2 ⊢),2,𝑚 2 ) = {𝑥 𝑚 2 } 𝑈 (𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ ∅) = {𝑠 1 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢∅ , 𝑠 2 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢∅ } 𝑥 𝑚 ′ ⋅ 𝑡 = 𝑠 ⊢𝑚 ′ .𝑚.𝔹 𝑥 𝑚 ′ ⋅ 𝑠 = 𝑠 𝑚.𝔹⊢ = 𝑥 𝑚 ⋅ 𝑡 𝑥 𝑚 ⋅ 𝑠 = 𝑠 𝑚.𝔹⊢𝔹 = 𝑥 1 𝑚 0 ⋅ 𝑡 = 𝑥 2 𝑚 0 ⋅ 𝑡 𝑥 1 𝑚 0 ⋅ 𝑠 = 𝑠 1 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢ = 𝑥 𝑚 1 ⋅ 𝑡 𝑥 2 𝑚 0 ⋅ 𝑠 = 𝑠 2 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢ = 𝑥 𝑚 2 ⋅ 𝑡 𝑥 𝑚 1 ⋅ 𝑠 = 𝑠 1 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢∅ 𝑥 𝑚 2 ⋅ 𝑠 = 𝑠 2 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢∅ 𝑠 1 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢∅ 𝑠 2 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢∅ 𝑥 𝑚 1 𝑥 𝑚 2 𝑠 1 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢ 𝑠 2 𝑚.𝔹,𝑚 1 +𝑚 2 ⊢ 𝑥 1 𝑚 0 𝑠 𝑚.𝔹⊢𝔹 𝑥 2 𝑚 0 𝑥 𝑚 𝑠 𝑚.𝔹⊢ 𝑥 𝑚 ′ 𝑠 ⊢𝑚 ′ .𝑚.𝔹 𝑠 𝑡 𝑠 𝑡 𝑠 𝑡 𝑠 𝑡 𝑠 𝑡 𝑠 𝑡 𝐕(𝑚 ′ 𝑚) 𝐕(𝑚 ′ 𝑚𝑚 0 𝑚 2 ) 𝐕(𝑚 ′ 𝑚𝑚 0 𝑚 1 ) 𝑈 the category of Tsukada-Ong plays over !𝑆 into a coslice of L under 𝑆. The composite Fig. 1. Theorem 1 ([5]). For all arena sequents 𝑆, there is an embedding 𝐏 𝑆 : ℙ !𝑆 → 𝑆/ L of embedding 𝐕 𝑆 defined by 𝕍 !𝑆 𝐈 !𝑆 -→ ℙ !𝑆 𝐕 𝑆 -→ 𝑆/ L is full.
	𝐏 𝑆 (𝑓 )(𝑥) = 𝐏 𝑆 (𝑓 )(𝑦 ⋅ 𝜕) = 𝐏 𝑆 (𝑓 )(𝑦) ⋅ 𝜕.

𝑖 ⟧,

where the marked square is as pushout in L. Similarly, given proofs 𝜋 1 , …, 𝜋 𝑛 of 𝑆, we interpret

  2. Let us start with an example.Example 8. Recall the play (and resource term) of Example 5, 𝜆𝑓 .𝑓 [𝜆𝑎𝑏.𝑎, 𝜆𝑎 ′ 𝑏 ′ .𝑏 ′ ] of type (𝔹 → 𝑜) → 𝑜. Turning the multiset of arguments into a sum, we obtain the normal form 𝑅 ≔ 𝜆𝑓 .𝑓 (𝜆𝑎𝑏.𝑎 + 𝜆𝑎 ′ 𝑏 ′ .𝑏 ′ ), which is interpreted as the exact same derivation. This differs from what we would obtain by lifting the sum, i.e., from 𝑅 ′ ≔ (𝜆𝑓 .𝑓 (𝜆𝑎𝑏.𝑎)) + (𝜆𝑓 .𝑓 (𝜆𝑎 ′ 𝑏 ′ .𝑏 ′ )):

	Sum 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ ∅ @ 2,𝑚 1 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹 ⊢ 𝔹 @ 1,𝑚 𝑚.𝔹 ⊢ Λ 𝑚 ′ . ⊢ 𝑚 ′ .𝑚.𝔹 ⊢ 𝑚 ′ .𝑚.𝔹	Sum 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ ∅ @ 2,𝑚 2 𝑚.𝔹, 𝑚 1 + 𝑚 2 ⊢ Λ 𝑚 0 𝑚.𝔹 ⊢ 𝔹 @ 1,𝑚 𝑚.𝔹 ⊢ Λ 𝑚 ′ ⊢ 𝑚 ′ .𝑚.𝔹 Sum.
	What these derivations become when interpreted into presheaves should be
	clear.	

  Now, we would like to derive the rule for 𝑄 = 𝜆𝑥 1 …𝑥 𝑝 .𝑦𝑅 1 …𝑅 𝑘 by something like the derivation above right (assuming 𝑦 has type 𝜏 1 → … → 𝜏 𝑘 → 𝑜). There is one little glitch, however: we expect to make a recursive call on 𝛾, 𝑥 1 : 𝜎 1 , …, 𝑥 𝑝 :𝜎 𝑝 ⊢ ⟨𝑅 1 , …, 𝑅 𝑘 ⟩:𝜏 1 , …, 𝜏 𝑘 , but the context we get is 𝛾, ∑ 𝑖∈𝑝 𝜎 𝑖 ⊢ ∑ 𝑗∈𝑘 𝜏 𝑗 : some arenas are grouped together, according to the 𝜆-abstraction that introduced them. We thus need an additional parameter. Definition 4. A grouping of a typing context 𝛾 = (𝑥 1 : 𝜎 1 , …, 𝑥 𝑛 : 𝜎 𝑛 ) consists of a natural number 𝐾 ∈ ℕ and a monotone map 𝑔: 𝑛 → 𝐾. Given such a 𝑔, the grouped context 𝑔[𝛾] is the list of arenas of length 𝐾 whose 𝑖th element is ∑ 𝑙∈𝑔 -1 (𝑖) ⟦𝜎 𝑙 ⟧ (where the sum is ordered according to 𝛾). We generalise the notation 𝑔[𝛾] to sequents by posing 𝑔[𝛾 ⊢ 𝜏 1 , …, 𝜏 𝑘 ] = (𝑔[𝛾] ⊢ ∑ 𝑗∈𝑘 𝜏 𝑗 ). Similarly, for any sequent 𝑆, !𝑆 denotes !id |𝑆| [𝑆],i.e., we apply ! to the ungrouped arena sequent corresponding to 𝑆.We thus define for all sequents 𝑆 = (𝛾 ⊢ 𝛿) and groupings 𝑔 a map 𝐓 𝑔,𝑆 : NF 𝑆 → 𝑔[𝑆]/ L. First, 𝐓 𝑔,𝑆 ⟨𝑅 1 , …, 𝑅 𝑘 ⟩ should map any tuple ⟨𝑅 1 , …, 𝑅 𝑘 ⟩ with 𝛾 ⊢ 𝑅 𝑗 : 𝜏 𝑗 for all 𝑗 ∈ 𝑘 to some derivation of 𝑔[𝛾] ⊢ ∑ 𝑗∈𝑘 ⟦𝜏 𝑗 ⟧. We straightforwardly let: 𝑅 𝑗 as ∑ 𝑙∈𝑛 𝑗 𝑄 𝑗 𝑙 , with 𝛾 ⊢ 𝑅 𝑗 : 𝜏 𝑗 and 𝜏 = (𝛼 1 → … → 𝛼 𝑝 𝑗 → 𝑜), for all 𝑗 ∈ 𝑘. We cannot directly use 𝐓(𝑄 𝑗 𝑙 ) in the recursive call, however, as this would have conclusion 𝑔[𝛾] ⊢ 𝜏 𝑗 instead of 𝑔[𝛾] ⊢ ∑ 𝑗∈𝑘 𝜏 𝑗 . We thus define an intermediate interpretation, 𝐓 + , mapping normal forms 𝛾 ⊢ 𝑄 : 𝜎 to derivations of 𝑔[𝛾], 𝜎 ⋅ 𝑚 𝑜 ⊢, by: 𝐓 + 𝑔,𝑆 (𝜆𝑥 1 …𝑥 𝑝 .𝑦𝑅 1 …𝑅 𝑘 ) = 𝐓 𝑔+!,(𝛾,𝑥 1 :𝜎 1 ,…,𝑥 𝑝 :𝜎 𝑝 ⊢𝜏 1 ,…,𝜏 𝑘 ) ⟨𝑅 1 , …, 𝑅 𝑘 ⟩ 𝑘 𝑦 is unique such that 𝑦 ∈ 𝑔 -1 (𝑘 𝑦 ), and 𝑖 𝑦 is the index of 𝑦 therein. Concretely, letting 𝛾 ′ ≔ (𝛾, 𝑥 1 : 𝜎 1 , …, 𝑥 𝑝 : 𝜎 𝑝 ) = (𝑧 1 : 𝛼 1 , …, 𝑧 𝑁 : 𝛼 𝑁 ) and Γ ≔ (𝑔[𝛾], ∑ 𝑖∈𝑝 𝜎 𝑖 ), the 𝑘 𝑦 th arena in Γ is ∑ 𝑙∈(𝑔+!) -1 (𝑘 𝑦 ) 𝛼 𝑙 , and (∑ 𝑙∈(𝑔+!) -1 (𝑘 𝑦 ) 𝛼 𝑙 ) ⋅ 𝑚 𝑖 𝑦 = 𝛼 𝑦 ⋅ 𝑚 𝑜 , which must have the form ∑ 𝑗∈𝑘 𝜏 𝑗 .

			𝐓 + 𝑔,𝑆 (𝑄	𝑗 𝑙 )		
	𝐓 𝑔,𝑆 ⟨𝑅 1 , …, 𝑅 𝑘 ⟩ =	…	𝑔[𝛾], 𝜏 𝑗 ⋅ 𝑚 𝑜 ⊢ 𝑔[𝛾] ⊢ ∑ 𝑗∈𝑘 𝜏 𝑗 𝑔[𝛾] ⊢ ∑ Λ 𝑚 𝑗 𝑗∈𝑘	… 𝜏 𝑗		(𝑗 ∈ 𝑘, 𝑙 ∈ 𝑛 𝑗 )	Sum,
	where we decompose each 𝑔[𝛾], ∑ 𝑖∈𝑝 𝑔[𝛾], ∑ 𝜎 𝑖 ⊢ ∑ 𝑗∈𝑘 𝑖∈𝑝 𝜎 𝑖 ⊢	𝜏 𝑗	…, 𝑅 𝑘 ⟩ @ 𝑘 𝑦 ,𝑚 𝑖 𝑦	,
					𝛾, ∑𝑖∈𝑝 𝛾, ∑𝑖∈𝑝 𝜎 𝑖 ⊢ ∑𝑗∈𝑘 𝜎 𝑖 ⊢ 𝛾 ⊢ 𝑚 𝑜 .( ∑𝑖∈𝑝 𝜎 𝑖 )	𝜏 𝑗	@ Λ 𝑚 𝑜 .

where 𝑔+! : 𝑛 + 𝑝 → 𝐾 + 1 is obtained by coproduct, We thus have defined maps 𝐓 𝑔,𝑆 : NF 𝑆 → 𝑔[𝑆]/ L, for all sequents 𝑆 and groupings 𝑔: |𝑆| → 𝐾.

  ). We proceed by induction. Let us start by recalling the following characterisation of ⟦ ⃗ 𝑅⟧: let us assume 𝛾 ⊢ ⟨𝑅 1 , …, 𝑅 𝑘 ⟩ : 𝜎 1 , …, 𝜎 𝑘 , with 𝑅 𝑗 = ∑ 𝑙∈𝑛 𝑗 𝑄 𝑗,𝑙 for all 𝑗 ∈ 𝑘, and 𝑄 𝑗,𝑙 = 𝜆𝑥 1 : 𝜎 where 𝑚 𝑦 𝑗,𝑙 denotes the move corresponding to 𝑦 in ! (𝛾 ⊢ 𝜎 1 , …, 𝜎) and 𝑚 𝑗 𝑚 𝑦 𝑗,𝑙 ▹𝑆 is defined in[START_REF] Tsukada | Innocent strategies are sheaves over plays -deterministic, non-deterministic and probabilistic innocence[END_REF]. Roughly, 𝑚 𝑗 𝑚 𝑦 𝑗,𝑙 ▹𝑆 denotes the strategy playing 𝑚 𝑗 𝑚 𝑦 𝑗,𝑙 and then 𝑆. We thus haveΔ 𝜃 𝑔,𝑆 ⟦ ⃗ 𝑅⟧ = ∑ 𝑗∈𝑘 ∑ 𝑙∈𝑛 𝑗 (𝑚 𝑗 𝑚 𝑖 𝑦 𝑗,𝑙 ,𝑘 𝑦 𝑗,𝑙 ▹⟨Δ 𝜃 𝑔+!,𝑆 𝑗,𝑙 ⟦𝑅 where 𝑖 𝑦 𝑗,𝑙 denotes the unique index in 𝐾 such that 𝑔(𝑦 𝑗,𝑙 ) = 𝑖 𝑦 𝑗,𝑙 , and 𝑘 𝑦 𝑗,𝑙 denotes the index of 𝑦 𝑗,𝑙 in 𝑔 -1 (𝑖 𝑦 𝑗,𝑙 ). But by induction hypothesis and definition of 𝐕 ⋆ and 𝐓, this is isomorphic to 𝐕 ⋆ (𝐓( ⃗ 𝑅)). As is well-known, this is well defined because 𝑔[𝑆]/ L is cocomplete, and we have 𝐕 ! (𝑋) ≅ ∫ 𝑣 𝑋(𝑣) ⋅ 𝐕(𝑣). Furthermore, 𝐕 ! is left adjoint to 𝐕 ⋆ . Our second main result is: For any 𝑋 ∈ V!𝑔[𝑆] 𝑓 , i.e., any finitely presentable presheaf on 𝕍 !𝑔[𝑆] , Example 10. Recall the normal forms 𝑅 and 𝑅 ′ of Example 8. By the standard characterisation of left Kan extensions as colimits, 𝐕 ! (𝑅) and 𝐕 ! (𝑅 ′ ) respectively correspond to the pushouts below:

	𝐕 ! (𝑚 ′ 𝑚)	𝐕 ! (𝑚 ′ 𝑚𝑚 0 𝑚 2 )	𝐕 ! (∅)	𝐕 ! (𝑚 ′ 𝑚𝑚 0 𝑚 2 )
	𝐕 ! (𝑚 ′ 𝑚𝑚 0 𝑚 1 )	𝐕 ! (𝑅)	𝐕 ! (𝑚 ′ 𝑚𝑚 0 𝑚 1 )	𝐕 ! (𝑅 ′ )
	which indeed are 𝑅 and 𝑅 ′ .		
	Returning to the theorem, the second point is relatively easy. Indeed, for all
	𝑗 1 …𝑥 𝑝 𝑗 : 𝜎 𝐕 ⋆ (𝐕 ! (𝑋))(𝑣) ≅ (𝑔[𝑆]/ L)(𝐕(𝑣), 𝐕 ! (𝑋)) ≅ (𝑔[𝑆]/ L)(𝐕(𝑣), ∫ 𝑣 ′ 𝑋(𝑣 ′ ) ⋅ 𝐕(𝑣 ′ )) 𝑗 𝑝 𝑗 .𝑦 𝑗,𝑙 𝑅 𝑗,𝑙 1 …𝑅 ≅ ∫ 𝑣 ′ 𝑋(𝑣 ′ ) ⋅ (𝑔[𝑆]/ L)(𝐕(𝑣), 𝐕(𝑣 ′ )) 𝑗 ∈ 𝑘 and 𝑙 ∈ 𝑛 𝑗 . Then, letting 𝛾 𝑗 = (𝑥 1 : 𝜎 𝑣 ∈ 𝕍 , 𝑗 1 , …, 𝑥 𝑝 𝑗 : 𝜎 𝑗 𝜏 𝑗,𝑙 𝑘 𝑗,𝑙 → 𝑜, and 𝑆 𝑗,𝑙 = (𝛾, 𝛾 𝑗 ⊢ 𝜏 𝑗,𝑙 1 , …, 𝜏 𝑘 𝑗,𝑙 ) we have 𝑗,𝑙 𝑝 𝑗 ), (𝛾, 𝛾 𝑗 )(𝑦 𝑗,𝑙 ) = 𝜏 𝑗,𝑙 𝑗,𝑙 𝑘 𝑗,𝑙 for all 1 → … → ≅ 𝑋(𝑣).
		⟦ ⃗ 𝑅⟧ = ∑ 𝑗∈𝑘 ∑ 𝑙∈𝑛 𝑗 (𝑚 𝑗 𝑚 𝑦 𝑗,𝑙 ▹⟨⟦𝑅	𝑗,𝑙 1 ⟧, …, ⟦𝑅	𝑗,𝑙 𝑘 𝑗,𝑙 ⟧⟩),
				𝑗,𝑙 1 ⟧, …, Δ 𝜃 𝑔+!,𝑆 𝑗,𝑙 ⟦𝑅	𝑗,𝑙 𝑘 𝑗,𝑙 ⟧⟩),
	6 Definability as geometric realisation
	Theorem 3. 𝐕 ! (𝑋) is the 𝐓-image of a normal form ⃗ 𝑅, and furthermore 𝐕 ⋆ (𝐕 ! (𝑋)) ≅ 𝑋, so that in particular 𝐕 ⋆ (𝐓( ⃗ 𝑅)) ≅ 𝑋.

Let us now consider definability. For 𝑆 = (𝛾 ⊢ 𝛿), given any 𝑋 ∈ V!𝑔[𝑆] , we thus seek a normal form 𝛾 ⊢ ⃗ 𝑅 : 𝛿 such that ⟦ ⃗ 𝑅⟧ ≅ 𝑋. Our candidate relies on: Definition 7. The geometric realisation functor 𝐕 ! : V!𝑔[𝑆] → (𝑔[𝑆]/ L) is defined (up to unique commuting isomorphism) as the left Kan extension of 𝐕 along y. The last isomorphism holds by Yoneda reduction and full faithfulness of 𝐕; and the penultimate one by: Lemma 2. For any sequent 𝑆, 𝑣 ∈ 𝕍 !𝑔[𝑆] , and 𝑋 ∈ V!𝑔[𝑆] , the canonical map

This is not quite a coproduct in ℙ 𝐴⊢𝐵 , but in a category with more morphisms.