[START_REF] Stone R | A long-term growth model for the British economy[END_REF], followed by others, as [START_REF] Paelinck | Etude empirique sur l'évolution de coefficients «input-output». Essai d'application de la procédure «RAS» de Cambridge au tableau interindustriel belge[END_REF], give an interpretation of the left and right multipliers, that are found when a RAS method is used to update a matrix, in terms of absorption effect and fabrication effect I begin by a presentation in conformity with Input-Output analysis but an extension apart of this field (transportation flows, demographic flows, etc.) will be presented.

Consider two matrices of technical coefficients, for two different dates t = 0 and t= 1, A evaluated at the prices of t = 1: A0 and A 1 .Then the projection A of A0 on the year t = 1 is the transformation of A0 such as this matrix gets the same margins than A 1; this is given by: A = RAS(A°, A 1) = R A0 S, where RAS( ) is the operator well known as the "RAS method".

In this case the diagonal matrix R is interpreted by the above authors as an absorption (or also substitution) effect: factors r, affect a row of A0 and reflect the modification of the outlet of a commodity. The diagonal matrix S as a fabrication (or also transformation) effect: factors Sj affect a column of A0 and reflect the modification in the so-called "degree of fabrication". A similar interpretation can be done for other field than Input-Output analysis: when you consider transportation or demographic flows, for example, in a word any matrix of exchange, a matrix Z is computed as Z = R Z° S such as Z has the same margins than another matrix Z 1 and you have also a row effect for the left diagonal matrix R and a column effect for the right diagonal matrix S 2.

I. Introduction 1

This is exposed also by [START_REF] Snower | New methods of updating input-output matrices[END_REF].

2

Note that, if Z° is the flow matrix that corresponds to A0 and A1 to Z1, then it is demonstrated [START_REF] De | Unicity of Biproportion[END_REF] that RAS(A0, A1) = RAS(Z°, A1), but both are not necessarily However, I will show that technical difficulties prevent them to be relevant of such interpretation.

II. Non identification of terms R and S

Even if this interpretation is commonly accepted, as the terms r, and Sj are not identified 3, they cannot be interpreted for themselves as a absorption effect and a fabrication effect. If all the coefficients r, are multiplied by X then all the coefficients Sj are multiplied by ^ and conversely: multiplying fabrication effects by X will divide absorption effects by A,, and conversely. This removes all signification to R and S in terms of fabrication or absorption effects. It is very simple to prove it. By commodity, the demonstration will be based on the algorithm presented by Bachem and Korte ( 1979)4:

(1) r, = m a '*-for all i, and Sj = ----for all j X S j a J X rt a°g

j= 1 /= 1
This type of algorithm has an iterative numerical solution (k is an index of iteration), for example:

1 a \ (2) r i ( k + 1) = -------------
for all i, and S j ( k + 1) = --------------for all j X Sj(k) a® -'L r i(k+ 1) aj >i <=i equal to RAS(Z°, Z1).

3

I use this term by reference with econometrics, even if nothing is stochastic here.

4

Bachem and Korte (1979) have proved that their algorithm is equivalent to the RAS algorithm.

1

(3) r) = ----for all i, and sj = ----for all j E * 0

V * o Sj a v /=1 i=l
Now, assume that all sj(0) are replaced by Sj(0) = Xsj(0). Then, r,(l) will be replaced by r,(D:

(4) r ,(1) = ! ------= *--------= T r/(l), for all i X sj{0) 4 Z ls j( 0 ) 4 j= i p l and ( 5) Remark. Note that the products r, Sj, for all (/, j), are identified, i.e., r* s* = r* s* for all (i, j ) , so it remains allowed to conduct a decomposition of change over time (Mesnard, 1990[START_REF]A biproportional filter to compare technical and allocation coefficient variations[END_REF][START_REF] Van Der | The nature of changes in the EU cost structure of production 1965-85: an RAS approach[END_REF] because this one is based on the 5 It is not the aim of this paper to discuss about the properties of this equilibrium, and more generally, of biproportional algorithms; for further information, see (Bacharach, 1970), (Bachem and Korte, 1979), (Balinski and Demange, 1989), [START_REF] De | Unicity of Biproportion[END_REF]. Remember that it is demonstrated that all algorithms used to compute a biproportion, RAS or another, are equivalent and give the same result [START_REF] De | Unicity of Biproportion[END_REF].

Sj( 1) = -j-^------= A , 5y ( 

6

A similar property can be found with other methods as soon as they are based on an iterative algorithm; for example, the bicausative method (Mesnard, 2000).

computation of the product R A0 S to be compared to A 1, or R Z° S to be compared to Z 1, and not on the particular interpretation of R or S. ■

III. About a tentative of correction

Van der Linden and Dietzenbacher have proposed to normalize the substitution effect vector because the substitution effect is equal to zero for the whole economy (van der Linden and Dietzenbacher, 1995, p. 129, formula 13):

(6) x ! x) i l Z iXj i ,
where xj is the output of sector j at year 1; that is:

(7) X r* x 4 sj x} = X X 4 s j X1 or X X ay xj = X X a\ sj x) ' j i j i j i j
The idea is interesting and clever because it seems to remove the unique level of underidentification, but some arguments can be introduce against it. First, this normalization is based on a certain interpretation of r terms: this interpretation is economic, not mathematical.

If you choose another economic interpretation of the r terms, you have another formula and you cannot justify the normalization as it is.

Second, the normalization does not remove all degrees of freedom that cause non-identification. To understand it, you have to see that r and s terms are not independent, but linked by formula (1). For example, in formula (6) the terms s* have to be replaced by their expression in formula ( 1), what gives a relation between the r* only, but not linear: the terms r* completely disappear from the right member of formula ( 6) what becomes:

The left member of this expression simplifies as a constant, when the right member is hyperbolic (see the simple example in Annex 1). As it includes now the definition of the r terms, normally this expression would define exactly these terms (i.e., r* = est, for all i), but it is not the case (i.e., r* =f (rj, ..., r*_,) for example): if the r terms are « in a «-dimension space, it leaves n-1 degrees of freedom. Normalization fails to fix completely the r terms and non-identification stays.

Remark. This is caused by the fact that there are more than one degree of non identification. When non-identification was exposed above, all s terms were assumed to be multiplied by the same constant X, what implied that all the r terms were divided by the same constant X. However, it is not the general case. In the general case, each Sj term could be multiplied by its own value of Xj so there are m degrees of non-identification (or n degrees, if the initialization begins by the r,), what increases the difficulty of the problem. ■

Third, even if it is admitted that the normalization of substitution effects leads to a solution and allows to remove the non-identification, it could bring some additional difficulties because if the global substitution effect is zero, the formula shows that some terms could be positive and some negative! When r or s terms are not positive, the interpretation of fabrication effects becomes difficult and you could obtain negative terms in the product matrix R A S when you accept negative terms inside matrices R or S, what cannot be correctly interpreted 1. So, 7

Remember that the properties of convergence of the RAS method (Bacharach, 1970) (Mesnard 1994) are granted only if all terms of the A matrix are positive. If all s terms are positive, all r terms are positive, so if you choose all fabrication effects to be positive, you positivity has to be added as two additional constraints: r, > 0 for all i and s* > 0 for all j (or even r* e 9l+ and S j e 9t+).

Four, the normalization condition does not take into account the fact that the equilibrium value of r and s terms must be found only iteratively: the condition has to be set not only for the formula at equilibrium but also for the formula at each step of the iterative computation of r and s terms:

(9) 5 > ,(* + l) X a\ Sj(k) Xj = £ X <4 Sj(k) x) * J i J
C l where S j ( k ) can be replaced by S j ( k ) = ----------, knowing that r and 5 terms are calculated £ n(k) a\

7=1

by the iterative formula (2), under two additional constraints of positivity, r,(£) > 0 for all i and k, and sj{k) > 0 for all j and k:

'L a l r i(k+ l) (10) T a lj xj -n------------= £ a\j xj -------- 1 E «J r,(k) J X aj r,(k) t= 1 i= 1
The left member is no more a constant as in formula ( 8) and the result is not so simple because ri(k+ 1) is not equal to /*/(£). Then, to be rigorous, one has to demonstrate that there is a path -that respect the above constraints at each step k -from the initialization to the equilibrium values of r and ^ terms 8. Even when it is assumed for a particular matrix, A, that the solution exists, it has to be demonstrated that this solution can be reached without passing by some negative values of the terms r,(£) or S j ( k ) , or it is necessary to impose the two additional constraints r^k) e 9?+ and Sj(k) e Knowing an acceptable solution, it could seem have all substitution effects all positive also.

attractive to find a correct initialization of the process that corresponds to this rule. However, it is impossible to do this because the problem is transcendent9.

Remark. In formual (10), if the terms r,(k) are considered by approximation as constant by respect to the terms r t{ k + 1), the above relation becomes linear at each step by respect to ther,(A:+l).

Five, last but not least, the r and s terms are found as Lagrange multipliers of an optimization process as the minimization of the quantity of information (see Annex 2):

A (11) min X X ¿y lo g ^J, ' • J a a under, (12) 
X ¿y = a), for all / and X ay = a 1 ,.-for all j.

The Lagrangian is: I = X X ay l o g + X Xt J J au ' '

X ay-a).

. J + X M -y j X ày -a\j maximization gives:

(13) --= 0 « atj = exp-(l + X() a« exp-|xy, for all i j d ay

Combined into the constraints, this gives:

i (14) exp-(l + Xi) = --7-1 -------for all i 2j ay exp-n,

Its

There is a parallel with the computation of a general equilibrium: one has to demonstrate, knowing the initial conditions, that the equilibrium exists and that it can be reached by a feasible path, with no negative outputs. 

IV. Conclusion

In the RAS method commonly used in Input-Output analysis, but also in other fields where exchange matrices are used (transportation flows, demographic flows, etc.), factors R and S have no signification at all by themselves because they are not identified. The interesting tentative of correction consisting into a normalization of substitution effects, following the argument that the total substitution effect is zero (van der Linden and Dietzenbacher, 1995), raises some important difficulties that prevent to consider it as acceptable. So, even if the RAS method and biproportional methods can be credited of some technical qualities 10 and even if RAS and biproportion can be seen as a simple generalization of "naive" approaches (as the 10 As the non negativity of the projected matrix, or as the characteristic of the projected matrix to be the closer to the initial matrix in terms of information theory or entropy. comparison of technical coefficient matrices), their economic interpretation remains difficult except if they are used to conduct an analysis of change over time.

V. Annexes

A. Annex 1

1. Computation of the constraints r terms at equilibrium 0.4 0.1 0.2 ,A! = 0.9 _ 0.3 0 1 0.5 0.8

In the normalization expression, - 

20 + 0.2 r\ 0.2 r\ + 0.1 r*2 t 20 + 0.2 20 + 0.1 r*2 0.2 r x +U.1 r2 0.2 r x +u.i r2 +0 3 ------^------ ' 0.1 r\ +0.3

Iterative computation of the constraints r terms

The normalization expression is: • Kullback and Liebler minimization of information [START_REF] Liebler | On information and sufficiency[END_REF], [START_REF] Kullback | Information, Theory and Statistics[END_REF], [START_REF] Snickars | A Minimum Information Principle. Theory and Practice[END_REF]: min X X Zy l°g-f • < ■ J zu

• The minimization of interactions of [START_REF] Watanabe | Knowing and guessing. A quantitative study of inference and information[END_REF] and [START_REF] Guiasu | An entropic measure of connection and interdependence between the subsystems of a given large system[END_REF], etc.

Stone's empirical method RAS respects the conditions. Historically, it was developed by Stone but the concept of biproportion was first formalized by Bacharach (1970).

The following algorithm is also correct (Bachem and Korte, 1979):

(20)

r, = 7=1 for all i z.i sj = - X Ui 4
for all j

¿=1

Several algorithms respect the two conditions of a biproportion. And it is demonstrated [START_REF] De | Unicity of Biproportion[END_REF]) that all algorithms that respect the conditions of a biproportion lead necessarily to the same mathematical results 11. Bacharach (1970) gives a demonstration of the uniqueness of the solution of RAS. As a biproportion can be deduced the minimization of an information function,

A min I = X X Zjj log ^ under X zy = z\j and X zy = z\.

z ij i J Z i j i J
and as this function, SR, of the n x m terms zy is continuous, derivable, on its compact interval of variation, the function -I is convex and it has a unique maximum on its interval of variation. Ai't-Sahalia, Balinski and Demange (1988) have also established that the

11

Even if there can be some differences for computation speed and for the effect of successive rounds on the precision of computation, as studied by Bachem and Korte.

matrix that minimizes the information criteria is unique n. In conclusion, the computation of a biproportion is a "safe" operation, even it cannot be computed analytically.

Other methods to compute a biproportion

A Also, there exists other methods to found a matrix Z, the nearest to a matrix Z° that respects the margins of another matrix Z 1 (i.e. under constraints of margins: X zy = X z\ and 7 7

Z z y = Z Zff):

j j
• the minimization of the quadratic deviation (Frobenius norm of the difference matrix):

min > i j V J
• the minimization of the absolute differences: min X X \zy ~z \ \, what is not continuously i y derivable,

• the minimization of the Holder norm at the power p: min X X \zv -4 \ p , knowing that Balinski and Demange (1989) have studied the axioms of biproportion in real numbers and in integers; see also (Ai't-Sahalia, Balinski and Demange, 1988). This is applied to voting problems; see also [START_REF] Michel | Apportionment[END_REF] and Balinski and Gonzalez (1996). See also [START_REF] Toh Mun-Heng | The RAS Approach in Updating Input-Output Matrices: An Instrumental Variable Interpretation and Analysis of Structural Change[END_REF].

\ zÿ ~zij • Neyman's % 2 ' ■ X X -t . -• i j z ÿ
But generally these methods lead to various problems:

• non-linearities or non-differentiabilities in the found system as for Neyman or absolute differences, A

• or negative terms in Z as for the minimization of the Frobenius norm. Negative terms are impossible to explain in an input-output context: if Z° has no negative terms, how to justify in an economic view point, the existence of some negative terms inside the projected matrix Z? 
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  * is replaced by r) = r* and s* by s* = X s*. Similar results are found by reverting the role of the r and s terms. The same result holds for any exchange matrices, Z° and Z 1 instead of A0 and A 1. So, r and s terms are not identified6.
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This was demonstrated(Bacharach, 1970) in the case without on the r or s terms.

Replacing the terms s in the normalization expression gives: i n 0.1 n ( * + l ) + 0.3r2(;fc+l) ^0.

B. Annex 2 1. Remind about the computation of a biproportion

A Consider two non-negative matrices Z ° and Z 1. The result of a biproportion, Z = K(Z°, Z 1), is equal to RZ° S, where R and S are diagonal matrices. A biproportion must respect two conditions:

1) Z must have the same row and column margins than Z 1:

The R and S terms are there to guarantee the respect of this condition.

A 2) Z is the matrix the nearest to Z° following a certain criterion.

This criterion can be:

• The maximization of entropy [START_REF] Wilson | Entropy in Urban and Regional Modeling[END_REF]: max -X X Zjj logZy , under the constraint ' J c = X X ^ Cy where C is the total cost and c,y is a cost, that can be considered as