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Introduction

The general transportation problem (GTP) deals with the distribution of goods from m suppliers with production capacities p = {p i } i=1,...,m to n destinations with demands q = {q i } i=1,...,n . Without loss of generality, we assume balanced production and demand: i p i = j q j . A classical approach to this problem assumes that the cost of transport remains constant, independently of the the quantity to be transported. In real problems, this is not the case. The cost may increase or decrease according the volume of the transported good. We can write the general transportation problem as follows:

min x i,j f ij (x ij ) (1) 
s.t.

j x ij = p i (2) 
i x ij = q j (3)

x ij ≥ 0. ( 4 
)
where x ij denotes the quantity of goods to be transported from the ith supplier to the jth destination, f : [m × n] × R + → R + is a continuous cost function that depends on the supplier i, the destination j and the volume x ij .

The first case of a transportation problem was formulated by Hitchcock assuming that the cost functions are linear: [START_REF] Hitchcock | The distribution of a product from several sources to numerous localities[END_REF]. Another popular model is the quadratic one:

f ij (x ij ) = c ij x ij
f ij (x ij ) = a ij x 2 ij + b ij x ij .
According to Ref. [START_REF] Adlakha | On the quadratic transportation problem[END_REF], the quadratic model is popular because it can approximate other cost functions. Despite such flexibility, the limitation of quadratic models has been well documented in the context of robust statistics, and its applications to image processing and computer vision [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF][START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF]. In our opinion, the main limitations of quadratic models are the following:

1. The impossibility of limiting the cost for large values; i.e., one has lim

x→+∞ |q ij (x ij )| = ∞.
2. The limitation of promoting sparse solutions; i.e., solutions that use a reduced number of routes.

In this work, we present an approximation scheme that allows us to define new cost functions that overcome the aforementioned limitations. We also present a primal-dual algorithm with limited memory requirements.

The GTP is relevant in modern computer science applications such as computer vision [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF], machine learning [START_REF] Baccianella | Feature selection for ordinal text classification[END_REF] and data analysis [START_REF] Levina | The earth mover's distance is the mallows distance: some insights from statistics[END_REF][START_REF] Kusner | From word embeddings to document distances[END_REF]. The Earth Mover Distance (EMD) is an interesting application of the transportation problem where the optimum cost is used as a metric between the histograms, vectors, p and q. In Ref. [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF], EMD is used as a metric for image retrieval in the context of computer vision. Recently, the EMD was proposed as a measure of reconstruction error for non-negative matrix factorisation [START_REF] Zen | Simultaneous ground metric learning and matrix factorization with earth mover's distance[END_REF]. The Word Moving Distance is the metric version for comparing documents based on the transportation problem [START_REF] Kusner | From word embeddings to document distances[END_REF]. Recent EMD applications include the quantification of biological differences in flow cytometry samples [START_REF] Orlova | [END_REF]. In addition, there is current interest in the learning of metrics for particular problems [START_REF] Cuturi | Ground metric learning[END_REF]; since our proposal is parametrised, the parameters involved can be learned.

Preliminaries

Before presenting our transportation formulation, we review an important result reported in the context of robust statistics and continuous optimisation applied to image processing [START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF]. The purpose of such work was to transform some non-linear cost functions to halfquadratic functions [START_REF] Geman | Nonlinear image recovery with half-quadratic regularization[END_REF][START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF]. A half-quadratic function is quadratic in the original variable and convex in a new auxiliary variable, where the minima of the auxiliar variable can be computed with a closed formula. The next proposition resumes the conditions imposed on the cost function f and the transformed half-quadratic function.

Proposition 1. Let f : R + → R + be a function that fulfils the following conditions: 3. f (t) ≥ 0.

1. f (t) ≥ m with f (0) = m, for t ≥ 0 and m > -∞. 2. f is continuously differentiable.
4. lim t→+∞ f (t)/(2t) = 0.

lim t→+0

+ f (t)/(2t) = M , 0 < M < +∞.
Then,

1. there exists a strictly convex and decreasing function ψ : (0, M ] → [0, β), where

β = lim t→+∞ f (t) -t 2 f (t)/(2t) such that f (t) = inf 0<ω≤M ωt 2 + ψ(ω) ; (5) 
2. the solution to inf 0<ω≤M {ωt 2 + ψ(ω)} is unique and given by

ω * = f (t)/(2t). (6) 
Proof. The proof is presented in Ref. [START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF].

Observe that our version of the half-quadratic Proposition assumes a non-negativity constraint on the primal variables.

Half-quadratic transportation problem

In this section we present a memory efficient primal-dual algorithm for solving GTP which cost functions satisfy Proposition 1.

Proposition 2. Let f ij be a cost function in [START_REF] Hitchcock | The distribution of a product from several sources to numerous localities[END_REF], such that each f satisfies Proposition 1; then, a solution to the transportation problem can be computed with Algorithm 1.

Algorithm 1 Half-quadratic transportation solver.

Require: i q i = j p j and f, p, q ≥ 0; 1: function hqTP(f, p, q) 2:

Initialise λ = γ = 1, ω ij = c ij and use ωi,j = 1/ω ij 3: repeat 4: repeat 5:
Update s with (20); Update ω with (10); 1. On the half quadratic transportation problem. By [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF], the cost (1) can be rewritten as

min x ij f ij (x ij ) = min x,w ij {ω ij x 2 ij + ψ(ω ij )}. ( 7 
)
2. On the algorithm convergence. Let L denotes the Lagrangian of the half-quadratic transportation problem, then one can interchange the order of the minimisations; i.e., min x,ω max y L(x, ω, y) = min x min ω max y L(•) = min ω min x max y L(•); where we denote with y the Lagrange's multiplies vectors. This suggests an alternating minimisation scheme w.r.t. ω and (x, y). Let x k , ω k and y k be the current feasible values, then we define

ω k+1 = argmin ω L(x k , ω, y k ) ( 8 
)
to be the updated ω value. Thus, x and y are updated by solving the quadratic transportation problem:

x k+1 , y k+1 = argmin x argmax y L(x, ω k+1 , y). (9) 
We define

F (x) = ij f ij (x ij ) and F (x, ω) = ij {ω ij x 2 ij + ψ(ω ij )} and observe that F (x k ) = F (x k , ω k ) ≥ F (x k , ω k+1 ) ≥ F (x k+1 , ω k+1 ) = F (x k+1
). Then, the alternated minimisations w.r.t. ω and x produce a feasible convergent sequence {x k , x k+1 , x k+2 , . . .} that reduces the cost of the GTP:

F (x k ) ≥ F (x k+1 ) ≥ F (x k+2 ) ≥ . . ..

3.

On the alternated minimisations. From ( 6), the optimum ω in ( 8) is computed as

ω ij = f ij (x ij )/(2x ij ). ( 10 
)
for a given x. We define y equal to (λ, γ, s) where λ and γ are the Lagrange's multipliers for the equality constraints ( 12) and ( 13), respectively; and s are the Lagrange's multipliers for the non-negativity constraint. Then, the minimisation (9) corresponds to finding the vectors (x, λ, γ, s) that solve the Karush-Kuhn-Tucker conditions (KKTs) with ω fixed:

ω ij x ij -λ i -γ j -s ij = 0, (11) 
j x ij -p i = 0, ( 12 
) i x ij -q j = 0, (13) 
s ij x ij = 0, (14) 
s ij , x ij ≥ 0, (15) 
A strategy for solving the KKTs is to use an iterative Projected Gauss-Seidel scheme [START_REF] Morales | An algorithm for the fast solution of symmetric linear complementarity problems[END_REF]. Thus, from [START_REF] Cuturi | Ground metric learning[END_REF]:

x ij = ωij (λ i + γ j + s ij ) , (16) 
where we define ωij = 1/ω ij . Substituting x ij in (12), we have

j ωij (λ i + γ j + s ij ) = p i . (17) 
We solve for λ i and obtain

λ i = p i -j (γ j + s ij )ω ij j ωij . (18) 
Similarly, we substitute x ij in (13) and solve for γ j :

γ j = q j -i (λ i + s ij )ω ij i ωij . ( 19 
)
From ( 11), ( 14) and ( 15), we see two cases:

x ij = 0 and s ij = -(λ i + γ j ) ≥ 0; or x ij = ωij (λ i + γ j ) ≥ 0 and s ij = 0. Thus s ij = max{0, -(λ i + γ j )}. ( 20 
)
The complete procedure is shown in Algorithm 1.

In practice, we observed that the internal loop in Algorithm 1 requires only a few iterarations to approximate the dual variables and is not necessary to achieve convergence; in our experiments we used five iterations. The solution is the global minima or a local one by depending if the cost is or is not convex. Following, we present two particular and interesting cases of half-quadratic transportation problems.

Proposition 3 (Approximation for Linear Transportation). The linear cost can be approximated with the differential function [START_REF] Charbonnier | Deterministic edgepreserving regularization in computed imaging[END_REF]:

f ij (ij) = c ij (x 2 ij + β 2 ) 1 2 , with β ≈ 0. Thus, ω is computed with ω ij = 1 2 c ij /(x 2 ij + β 2 ) 1 2 in Algorithm 1.
Proof. It follows from

lim β→0 c ij x 2 ij + β 2 1 2 = c ij x ij ; c ij , x ij ≥ 0. ( 21 
)
Hence, the formula for ω follows directly from [START_REF] Orlova | [END_REF].

Proposition 4 (Approximation for L 0 Transportation). The cost function of the form

f ij (x ij ) = c ij [1 -δ(x ij )], for c ij , x ij > 0 (where δ(t)
is the Kroneker's delta) can be approximated with the half-quadratic function:

fij (x ij ) = c ij x 2 ij /(β 2 + x 2 ij ) (22) 
with β ≈ 0. Thus,

ω ij = c ij β 2 /(β 2 + x 2 ij ) 2 .
Proof. It follows from lim

β→0 t 2 β 2 + t 2 = 1 -δ(t) = 0 for t = 0, 1 for t ∈ R\{0}. (23) 
The formula for ω follows directly from [START_REF] Orlova | [END_REF].

Figure 1 plots the half-quadratic functions that approximate the L 1 and L 0 norms.

Relationship with the quadratic transportation problem

Proposition 5 (Simple Quadratic Transport (SQT)). The SQT problem is defined by the cost function

f ij (ij) = c ij x 2 ij ; thus, ω ij = c ij .
Proof. It follows directly from [START_REF] Orlova | [END_REF].

Proposition 6 (Simple Quadratic Transportation Algorithm). In the case of the QT problem, the Algorithm 1 is reduced to the dual Algorithm 2.

Algorithm 2 Simple quadratic transportation solver.

Require:

i q i = j p j and c, p, q ≥ 0; 1: function qTP(c, p, q) 2:

Initialise λ = γ = 1 and use ωi,j = 1/c ij 3:

repeat 4:
Update s with (20); return [x, λ, γ]; 10: end function Proof. From Proposition 5, we note that ω is constant, and that the computations of λ, γ and s are independent of x.

Dorigo and Tobler discussed the relationship between the QTP and the push-pull migration laws implemented in Algorithm 2 [START_REF] Dorigo | Push-pull migration laws[END_REF].

Proposition 7 (Quadratic Transportation (QT)). The QT is defined by a cost function of the form

f ij (ij) = a ij x 2 ij + b ij x ij .
Thus, the dual algorithm is derived with ω = c ij and using the condition

ω ij x ij -λ i -γ j -s ij = b ij (24) 
instead of [START_REF] Cuturi | Ground metric learning[END_REF].

Proof. It follows directly from the KKTs.

Remark. An alternative to Proposition 7 is given by the half-quadratic approximation

a ij x 2 ij + b ij x ij ≈ a ij x 2 ij + 2b ij (x 2 ij + β 2 ) 1 2 , with β ≈ 0; thus, ω ij = a ij + 1 2 b ij /(x 2 ij + β 2 ) 1 2
. This approximation is presented with the sole aim of illustrating the potential of our approach. It is clear that the dual algorithm derived according to Proposition 7 is more accurate, faster and requires less memory to be implemented.

Discussion and Conclusions

The transportation problem is the base of the Earth Mover Distance which has become a relevant metric to for compare distributions in applications to data analysis and computer vision. The presented technique can motivate the design of new algorithms in those areas.

In order to demonstrate the versatility of our proposal, we generate two random vectors p and q (depicted in Figure 2); we compute the optimum transported volumes x with three cost function models: the quadratic (c ij x 2 ij ), the approximation L 1 (c ij x 2 ij + β 2 , with Figure 2: Randomly generated levels of production, p, and demand, q.

β 2 = 1 × 10 -3 ) and the approximation L 0 (c ij x 2 ij /(β 2 + x 2 ij ), with β 2 = 1 × 10 -1 ). In all the cases, we use c ij = |i -j| + 1. Figure 3 depicts the computed x values. One can observe that the quadratic cost function promotes dense solutions; i.e., there are many x's with small values. On the other hand, one can observe the sparseness of the solution is induced with the use of the approximated L 1 -norm. Such sparsity is emphasised with the approximated L 0 -norm.

We have presented a model to approximate solutions to the general transportation problems by approximating the transportation cost functions with half-quadratic functions. The approach guarantees convergence using an alternated minimisation scheme. In the case of a non-convex cost function f the convergence is guaranteed to a local minimum. Although we present a minimisation algorithm with reduced memory requirements, our scheme accepts other efficient solvers for the quadratic transportation subproblem; such as those reported in Refs. [START_REF] Adlakha | On the quadratic transportation problem[END_REF][START_REF] Megiddo | Linear time algorithms for some separable quadratic programming problems[END_REF][START_REF] Cosares | Strongly polynomial algorithms for the quadratic transportation problem with a fixed number of sources[END_REF]. 
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 1 Figure 1: Plots of half-quadratic cost functions (for x ≥ 0): the L1-norm approximation x 2 + β 2 and the L0-norm approximation x 2 /(x 2 + β 2 ).

  return [x, λ, γ]; 13: end function Proof.

Figure 3 :

 3 Figure 3: Computed transport values x (in grayscale) corresponding to (a) quadratic cost, (b) half-quadratic L 1 -approximation and (c) half-quadratic L 0 -approximation. The solution computed with the non-convex cost function (L 0 -approximation) depicted in panel (c) is sparser.