
HAL Id: hal-01527110
https://hal.science/hal-01527110v1

Submitted on 23 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Probabilistic Causal Message Ordering Mechanism
Achour Mostefaoui, Stéphane Weiss

To cite this version:
Achour Mostefaoui, Stéphane Weiss. A Probabilistic Causal Message Ordering Mechanism. [Research
Report] LS2N, Université de Nantes. 2017, pp.11. �hal-01527110�

https://hal.science/hal-01527110v1
https://hal.archives-ouvertes.fr


A Probabilistic Causal Message Ordering Mechanism

Achour Mostefaoui Stéphane Weiss

Abstract

Causal broadcast is a classical communication prim-
itive that has been studied for more then three
decades and several implementations have been pro-
posed. The implementation of such a primitive has a
non negligible cost either in terms of extra informa-
tion messages have to carry or in time delays needed
for the delivery of messages. It has been proved that
messages need to carry a control information the size
of which is linear with the size of the system. This
problem has gained more interest due to new appli-
cation domains such that collaborative applications
are widely used and are becoming massive and social
semantic web and linked-data the implementation of
which needs causal ordering of messages.This paper
proposes a probabilistic but efficient causal broadcast
mechanism for large systems with changing member-
ship that uses few integer timestamps.

1 Introduction

Nowadays, we are facing an increasing number of col-
laborative applications. The nature of these applica-
tions is diverse as they appear as web 2.0 applications
such as blogs, wikis or even social networks, as well
as applications for mobile devices such as foursquare,
yelp, latitude. Moreover, semantic web (web 3.0) and
now social semantic web and linked-data (web 4.0)
such as DBpedia are gaining more and more inter-
est. The common point to these applications is that
they gather the outcome of numerous users in order
to provide a service for their users. The more users
participate, the more content is created, attracting
more users. This virtuous circle tends to create very
large scale systems. However, while the content is
created by users for users, for many applications, the

underlying architecture remains centralized, leading
to scalability issues as well as privacy and censorship
threats. Stating this observation, several work envi-
sion decentralized architectures. The idea behind this
concept, is to put the users as nodes of the network,
allowing direct communication between users.

Currently, the development of such applications
is restricted by several scientific problems. Among
them, the problem of data replication has been in-
vestigated for many years, and have provided several
approaches such as appropriate replicated data struc-
tures [10, 13] and programming languages [1]. Hence
replicated data can be enriched, updated and queried.
However, the implementation of these operations has
an underlying requirement: causally ordered commu-
nication (causal order for short) [14, 15]. Informally
a causal communication primitive imposes some re-
strictions on the delivery order of sent messages. It
can be seen as an extension of the FIFO channel prop-
erty to a whole communication network. Hence, a
causal broadcast communication service imposes that
a message is delivered to a some process only if all
the messages that have been delivered in its past have
been already delivered.

Unfortunately, causal communication has a cost
that can be high either in time (message exchanges)
or in space (the size of control information carried
by messages). This cost becomes unacceptable when
we consider a very large scale network of nodes with
churn. Moreover, if the set of participating users
changes over time, one needs to offer a join/leave de-
centralized procedure that is theoretically impossible
to implement in asynchronous systems [7].

Interestingly, in a real setting, depending on the
system we consider, the probability to deliver in a
non causal order two messages the sending of which
are causally related may be quite low. For example,

1



if the time between the generation of two messages on
each peer is bigger than the transit time of a message,
most of messages will be received in the causal order
without any explicit control or synchronization. This
observation is in favor of a probabilistic mechanism.

In this paper, we propose a probabilistic causal
broadcast that provides a causal communication with
high probability at a low cost for very large systems
while allowing continuous joins and leaves. Of course
it may happen, in few situations, that causal order-
ing is not respected. The proposed solution is then
evaluated from a theoretical point of view and by
simulation.

2 Related Work

The first causal broadcast mechanism was introduced
in the ISIS system [2]. The simplest way to imple-
ment causal communication consists in piggybacking
on each messsage a process want to send the whole
set of messages it has delivered prior to this send-
ing. Of course, this is very costly and there is a need
to some kind of garbage collector. Otherwise, prior
work mainly use either a logical structure (central
node, tree, ring, etc.) or are based on the use of
timestamps. A timestamp is an integer value that
counts events (possibly not all events). A vector
clock is a vector of such counters. The first solution
based on vector clocks for a broadcast primitive has
been proposed is [12] (a solution based on a matrix of
counters has been proposed in [11] for point-to-point
communication). Vector clocks introduced simulta-
neously by [6, 9] have been proved to be the smallest
data structure that can capture exactly causality [4].
Moreover, vector clocks require to know the exact
number of sites involved in the application. As an
example, the churn (intempestive join and leave of
processes) and the high (and unknown) number of
processes make the use of vector clocks unrealistic.

Torres-Rojas and Ahamad presented an approach
based on plausible clocks [16]. Its aim is to trade
the quality of the detected causality (number of false
positives and false negative) among events (messages
sending events) against timestamp size. When using
a vector clock of size 1, a plausible clock boils down
to Lamport’s clocks [8] then as the timestamp size

increases, a more and more accurate causal relation
is encoded. Finally, when considering a timestamp
size equal to the total number of processes, plausible
clocks meet vector clocks. In a vector clock, the entry
j of the vector managed by a given process pi counts
the number of messages broadcast by process pj , to
the knowledge of pi. Indeed due to asynchronism,
the different processes do not have the same view
of the state of the system at a given time instant.
The approach of Torres-Rojas and Ahamad consists
in associating several processes to the same entry of
each vector clock.

The approach presented in this paper is an exten-
sion to the one of Torres-Rojas, namely each entry
is associated to several processes and moreover, to
each process are associated several entries of the vec-
tor clock. To summarize, let us consider the triplet
(a, b, c). Where a is the size of the system (number of
processes), b the size of the vector and c the number
of entries associated with each process. A Lamport
clock is (n, 1, 1) where n is the total number of users
in the system, a vector clock is (n, n, 1), a plausible
clock is (n, r, 1) and the proposed approach is (n, r, k)
(r and k being two constants n ≥ r ≥ k).

3 System Model

When we consider the application level, the differ-
ent users, nodes, processses or whatever we call them
share common information by mean of replication to
be able to tolerate chrashes and unexpected leaves
(each process manages a local copy of part of the
whole set of data). The differents processes inter-
act by mean of operations (insert / delete / update
a piece of data, make a query, etc.). The frequency
and the distribution of operations through time and
space depend on the application. At the underlying
level, an operation will entail a change in the local
state of a process and possibly the sending of mes-
sages to inform the other processes as the system is
message-passing (no shared memory).

At the abstraction level considered in this paper,
a distributed computation is a large set Π of n pro-
cesses/users (N and Π are not necessarily known to
the different processes of the system). We note pi or
pj any processes in Π. We assume that processes gen-

2



erate messages at arbitrary rates. Messages are sent
to all processes using a reliable broadcast mechanism
(broadcast sending primitive). Any process pi ∈ Π
generates three kinds of events. An event e could be
a local event, a send event or a delivery event. A lo-
cal event induces no interaction with other processes
and thus will be omitted in the rest of the paper.

Events produced by a distributed computation are
ordered by Lamport’s happened-before relation [8].

Definition 1 (Happened-before Relation [8])
We say that event e1 happened before event e2
denoted by e1 → e2 if:

• e1 occurred before e2 on the same process, or

• e1 is the send event of some message m and e2 is
the delivery event of the same message by some
process, or

• there exists an event e3 such that e1 → e3 and
e3 → e2 (transitive closure).

Let us note send(m) the sent event of a message
m and del(m) the associated delivery event. Note
that del(m) 6= rec(m) the receive event. The receive
event corresponds to the arrival of a message to the
underlying communication level of some process. The
application level of this same process is not aware of
the arrival of such message and thus has no access to
its content. The delivery of a message corresponds
to the arrival of the message at the application level
leading to the use of its content. Moreover, when
considering two messages m1 and m2, we say that
m1 → m2 if send(m1)→ send(m2).

A distributed computation respects causal order if
for any pair of messages (m1,m2) the following holds.

• send(m1)→ send(m2)⇒ del(m1)→ del(m2)

To ensure the aforementioned property an arrived
message m, event rec(m), at a destination process pi
can be possibly delayed until all the messages sent or
delivered by the sending process pj before the sending
of m have been already delivered by the receiving
process pi.

4 Probabilistic Causal Broad-
cast

Several works in the literature propose to reduce the
communication cost to increase scalability by propos-
ing probabilistic solutions. One example is the prob-
abilistic broadcast [5]. We can define a probabilistic
broadcast as following:

Definition 2 (Probabilistic Broadcast) A prob-
abilistic broadcast is a mechanism that ensures, with
a high probability, the deliverance of sent messages to
all participants.

Unlike traditional broadcast that ensures that each
message is delivered exactly once to all recipients, a
probabilistic broadcast offers only a very high prob-
ability that all recipients will receive the message. In
addition, this message can be received several times,
requiring a mechanism to discard duplicated mes-
sages. On the contrary, probabilistic broadcast have
a greater scalability.

In this paper, we introduce two definitions: the
probabilistic causal ordering mechanism and the
probabilistic causal broadcast.

Existing mechanisms such as vector clocks are of-
ten used to provide a perfect causal ordering mech-
anism. We believe that their cost is not compatible
with large systems, and propose to use a probabilistic
causal ordering mechanism. We define it as follows:

Definition 3 (Probabilistic Causal Ordering)
A probabilistic causal ordering mechanism is a
mechanism that ensures a causal delivery with high
probability.

4.1 A Probabilistic Causal Ordering
Mechanism

In this section, we start by describing the data struc-
tures used by our causal ordering mechanism. Then,
we describe the algorithms that allow this probabil-
stic causal delivery.

4.1.1 Data structure

The main idea of the proposed solution is to associate
with each process pi a vector of integer values Vi of

3



size R < N (N being the total number of processes
in the system). This vector acts as a logical clock
that allows to timestamp a subset of the events gen-
erated by this process. This timestamping allows to
test whether an event occured before another one.
Mainly, the proposed protocol associates a logical
date with each send event and this date is attached
to the message and is called its timestamp. When a
message is received, the receiving process compares
its local logical clock with the timestamp carried by
the received message. This allows it to know whether
there exist messages sent causally before it and that
have not yet been delivered. As soon as a message
can be delivered it is given to the upper layer ap-
plication and the local clock is updated to take into
account that this message has been delivered.

We denote Vi[j] with 0 ≤ j < R the j-th entry
of the vector clock of the process pi. A vector clock
assigns exactly one entry to each process. With a
plausible clock, each process is assigned only one en-
try, but one entry is assigned to several processes.
Finally, our approachproposes to assign several en-
tries to each process, each entry being assigned to
several processes. We denote f(pi) the set of the en-
tries assigned to pi.

4.1.2 Probabilistic causal ordering delivery
mechanism

The proposed probabilistic causal ordering delivery
mechanism is an adaptation of the classical and well-
known causal delivery mechanism [2].

When a process pi wants to broadcast a message
m, it executes Algorithm 1 given below.

First, process pi increments all its assigned set of
entries f(pi) in its local vector. Then, a copy of this
local vector is attached to the message to be sent.
m.V denotes the vector timestamp attached to mes-
sage m. Finally, m is broadcast to all processes.

Input: m: message to broadcast
∀x ∈ f(pi), Vi[x] = Vi[x] + 1;
m.V = Vi;
Broadcast(m);
Algorithm 1: Broadcasting a message m by piWhen a message m broadcast by a process pj is

received by a process pi, this process executes Algo-
rithm 2 given below.

Input: m: message received by pi from pj
waitUntil((∀x ∈ f(pj), Vi[x] ≥
m.V [x]− 1) ∧ ∀k /∈ f(pj), Vi[k] ≥ m.V [k]);
∀x ∈ f(pj), Vi[x] = Vi[x] + 1;
deliver(m);

Algorithm 2: Upon reception of message m by pi

A message m received by a process pi from a pro-
cess pj is queued until it is considered as causally
ready, namely all the messages m′ sent causally be-
fore it (m′ → m) have been already delivered by pro-
cess pi to the application level. Note that:

On the one side, the f(pj) entries are at least as
high as the local vector of process pj before it gen-
erates that message: ∀x ∈ f(pj), Vi[x] ≥ m.V [x]− 1.
This means that all the messages sent by process pj
but message m are already known at process pi.

On the other side, the other entries of the vector
are at least as high as the local vector of process pj
before it generates that message: ∀k /∈ f(pj), Vi[k] ≥
m.V [k]. This means that at least all the messages
that have been delivered to process pj before it broad-
cast message m are known at process pi before pi
delivers m to its application level.

When the delivery test of a message m holds, pro-
cess pi increments the entries of its local vector that
belong to the set f(pj) of entries of its local vector be-
fore delivering the message to the application. Hence
pi has recorded the information ”m has been deliv-
ered to the pi” in its local vector.

Figure 4.1.2 shows how the proposed mechanism
works. Assume that three processes pi, pj and pk are
in the same initial state, meaning they have generated
no messages yet, and all values in their vector are
set to 0. Also, we consider here that each process
has a vector of R = 4 entries and each process is
assigned K = 2 entries. We assume that f(pi) =
{0, 1}, f(pj) = {1, 2} and f(pk) = {3, 4}.

On that state, pi generates a first message calledm.
If we assume that f(pi) = {0, 1}, then after applying
the algorithm 1 at pi, its vector becomes [1, 1, 0, 0].
Notice that it is this vector ([1, 1, 0, 0]) that is at-
tached to m. This message is sent to all other pro-
cesses, here we represent only pj and pk. We assume
that pj receives m first: Algorithm 2 is applied and,

4



m′

pi pj pk

0 0 0 0 0 0 0 0 0 0 0 0

m
m

1 1 0 0 1 1 0 0

m′

Delayed

0 0 0 01 2 1 0

m

1 1 0 0

m′

1 2 1 0

Figure 1: Example of message delivery

pj ’s vector is updated to [1, 1, 0, 0]. Then pj generates
a new message m′. Assuming that f(pj) = {1, 2}, the
generation of m′ leads to update pj ’s vector to the
value [1, 2, 1, 0] which is piggybacked with the mes-
sage m′. As m′ is generated after m, m′ is causally
dependent of m (m → m′). Although message m′

is broadcast and will eventually reach pi, we only
represent its reception by process pk for the sake of
simplicity.

When pk receives m′, the vector pk is [0, 0, 0, 0]
while the vector attached to m′ is [1, 2, 1, 0]. The de-
livery of m′ is delayed because its delivery condition
(see Algorithm 2) is not satisfied (Vk[1] < (m.V [1]−1)
and Vk[0] < m.V [0]).

The reception of m turns pk’s vector into [1, 1, 0, 0]
which fulfills the condition for delivering m′.

This protocol cannot be perfect as it uses control
information the size of which is smaller than a vector
clock of size N that has been proved to be minimal
for ensuring causal delivery of messages. Indeed, it is
possible that if process pk receives some set of mes-
sages before receiving m′, the vector of pk could have
been updated in such a way that pk believes that
m′ is causally ready. This scenario is illustrated by
Figure 4.1.2. In addition to the previous processes,
we now consider p1 and p2 whose assigned entries
are respectively f(p1) = {0, 3} and f(p2) = {1, 3}.

pi pj p1 p2 pk

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

m
m

m1
m2

m2

1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1

m′ m1

1 2 1 0 1 1 0 2

m′

1 2 1 2

m

2 3 1 2

Figure 2: Example of possible delivery error

Processes p1 and p2 generate m1 and m2, which are
received by pk before m′.

The reception of m2 and m1 updates the vector of
pk to the value [1, 1, 0, 2]. When m′ arrives, pk eval-
uates to true the delivery condition of Algorithm 2
and delivers m′ while m has not been received yet.
This error comes from the fact that all entries of pi
are matched by the combination of the entries of p1
and p2: f(pi) ⊆ (f(p1) ∪ f(p2)). It is interesting to
notice that, as each set of entries is assigned to at
most one process, the error occurs only if we have at
least two concurrent messages, here m1 and m2. If
only one concurrent message is received, the protocol
delivers the message in causal order.

In addition, it is easy to see that the proposed pro-
tocol never delays the delivery of an arrived message
m′ at some process pi if all the messages m that have
been sent causally before m′ (i.e. m→ m′) have been
already delivered by process pi. Indeed, between two
consecutive sendings of messages, on the same pro-
cess, the increment is one for some entries and when
a message is delivered the corresponding entries are
at least incremented by 1 then if the first one is de-
livered, the second cannot be blocked as the corre-
sponding entries are augmented by at least 1. The
same happens for messages sent by different processes
as in this case the sender of the second message has

5



necessarily delivered the first message to establish the
causal dependency between the two messages.

4.1.3 Generation and distribution of the sets
of keys

The example given above gives the intuition why the
generation of the sets of keys (entries in the vector
clock) is the core of the approach, and how it heavily
affects the accuracy of the resulting protocol. In this
section, we present our approach to assign sets of keys
to processes.

Perfect distribution of keys We assume the ex-
istence of a mapping function f used to assign to
each process a set of K entries of the vector such
that, the function f returns exactly K distinct val-
ues between 0 and R−1 (R being the total number of
entries, i.e. the size of the vector clock). Moreover,
the values are equally distributed among processes.
In other words, for all subsets of s values assigned to
x processes, there exists no other subset of s values
assigned to more than x + 1 processes, or less than
x− 1 processes, for 1 ≤ s ≤ K.

Input: setid, K, R
Output: {a1, . . . , ak}
k ← K − 1 ; r ← R− 1 ; t← Cr

k ; sav ← t;
for i = 0→ K − 1 do

while setid ≥ t do
ai ← ai + 1 ; r ← r − 1 ; sav ← t ; t← Cr

k ;
end
t← sav ;
if i < K − 1 then

ai+1 ← ai;
end
k ← k − 1 ;

end

Algorithm 3: Generating the set of entries from
setid for K > 1

Distributed key assignment algorithms Find-
ing the best solution is a difficult problem. More-
over, such an algorithm would not support dynamic-
ity. Indeed, the addition or the removal of one process
would lead to re-assign all new entries to all or part
of the processes. Therefore, to select the K values,
we propose to use a random algorithm.

Each process generates randomly a value called
setid chosen between 1 and CR

K . Then, the corre-

sponding set of values is obtained using the function
f defined below:

This algorithm ensures that no peer has twice the
same entry. Moreover, if we can ensure that all peers
have different identities, all the generated sets are
distinct, and the intersection between all the sets is
at most K − 1.

4.2 Detecting Delivery Errors

Most of the applications that require causal ordering
of messages assume that no message is wrongly deliv-
ered. The proposed approach that aims to scale, may
deliver a message before a message that causally pre-
cedes it. This would lead to inconsistencies, however,
we make the assumption that a recovery procedure
does exist (e.g., anti-antropy). This procedure may
be costly, and we must determine when it is required.

A simple solution could be to run it at an arbi-
trarily chosen period of time. However, this period
impacts the system performance: on the one hand, if
it is underestimated, we will waste time by running
unnecessary costly recovery procedure. On the other
hand, the over estimation of this period will cause
heavy changes on the application and will hurt the
usability of the system and the recovery from this
inconsistent global state.

We propose a mechanism (Algorithm 4) that allows
to detect possible delivery errors if run when receiving
a message, prior to the deliver function

Input: m: message received from pj
Output: error: true if an error has occurred
error ← true;
if (∃x ∈ f(pj), Vi[x] = m.V [x]− 1) then
error ← false;
endif

Algorithm 4: Before delivering m from pj to the
application

Before delivering a message m from a process pj ,
we check if all its entries are already higher than their
corresponding value in the message, meaning that
concurrent messages have covered all its entries. In
that case, the receiving process pi wrongly believes
that it has already received this message, and may
have delivered other messages m′ such that m→ m′.

6



If the procedure returns false, we are sure that all is
fine: no such message m′ does exist. However, if it
returns true then either there may be a causal order
violation or not. In other words, this does not mean
that m will not be delivered before some message m′′

such that m′′ → m.
Interestingly, the detection gives an alert within

the propagation time of the message from pj . As a
result, errors are detected quickly after they occur.
Unfortunately, this mechanism greatly over-estimate
the number of errors (causal order violations). In
the following section, we propose two mechanisms to
limit the number of false detections.

4.2.1 Improving the protocol

As explained above, we can have an alert within the
propagation time of the late message. As a conse-
quence, we propose the following protocol where we
assume that each process keeps a list L of the last
received messages.

Input: m: message received from process pj , L:
list of previously delivered messages

Output: error: true if an error may have
occurred

error ← false;
if (∀x ∈ f(pj), Vi[x] > m.Vi[x]) ∧ (∃mi ∈ L.∀x ∈
f(pj),mi.V [x] ≥ m.V [x]) then error = true;
endif

Algorithm 5: Before delivering m from a process
pj to the application

Algorithm 5 is similar Algorithm 4 but it checks in
the list of previously delivered messages. The main
idea is to check if a message previously delivered de-
pends on the same values for the keys f(pj) set by
the message m. If the size of L is infinite, this mech-
anism may over-estimate the number of error, but
will never under-estimate it. The list L should con-
tain all messages received for a time O(Tpropagation)
where Tpropagation depends on that actual communi-
cation network and keeps the value of the estimate
transmission delay.

It is interesting to notice that such a list may al-
ready be available. Indeed, broadcast mechanisms
based on gossip protocols, which duplicate a message
to ensure that it reaches all peers or based on an

unreliable communication protocol like UDP, keep a
short list of the moste recently received messages to
circumvent message loss and multiple deliveries of a
same message.

5 Theoretical analysis

5.1 Correctness

Lemma 1 A well-formed message is eventually de-
livered.

Proof 1 We prove the liveness by induction.
H0: Any message generated on the initial state will

be eventually delivered.
In the initial state, all entries of the local vector are

0. Therefore, the vector of a message mi
0 generated

by pi on the initial state contains zeros for all entries
except the all f(pi) entries which are 1.

∀x /∈ f(pi),m
i
0.V [x] = 0 ∧ ∀x ∈ f(pi),m

i
0.V [x] = 1

A vector cannot have values below 0, hence we can
prove that any message generated on the initial state
can be delivered on any process pj.

∀x, j Vj [x] ≥ 0⇒ (∀i, j (∀x /∈ f(pi))Vj [x] ≥ mi
0.V [x]∧

∀x ∈ f(pi)Vj [x] ≥ (mi
0.V [x]− 1))

H1: We assume a set S of messages that are even-
tually delivered on all processes. A message m gen-
erated on any process pi after the delivery of S will
be eventually delivered on all processes.

The delivery of all messages in S implies that the
local vector pi is defined by ∀x, Vi[x] =

∑
{j|x∈f(j)} nj

where nj is the number of messages generated by pj
in the set S. Notice that the order of delivery have
no impact on the obtained vector.

We make the assumption that S is eventually deliv-
ered on all processes, hence it is obvious that eventu-
ally all processes will have a local vector which entries
are greater or equal to Vi before the generation of m.
A direct consequence of this observation is that m will
be eventually delivered:

∀x, j (Vj [x] ≥ Vi[x])⇒
∀i, j, (∀x /∈ f(pi))Vj [x] ≥ mi.V [x]∧
∀x ∈ f(pi) (Vj [x] ≥ (mi.V [x]− 1))

7



We prove that any message generated after a set of
eventually delivered messages is also eventually de-
livered (see H1). As any message generated on the
initial state is eventually delivered (see H0), we con-
clude that any message is eventually delivered.

Corollary 1 A message causally ready is never de-
layed.

5.2 Complexity Analysis

In this section, we evaluate the complexity of our
algorithms. The first algorithm is in charge of the
creation of a message to be sent. The K entries as-
signed to a process that wants to send a message are
incremented. Then, the R entries of the vector are
attached to the message to be sent. Thus, Algorithm
1 has a complexity of O(R). Similarly, the Algorithm
2 that evaluates the delivery condition of an arrived
message has to go through the R entries of the vector
leading to a complexity of O(R).

The third algorithm assigns K entries to a site from
its unique identifier. The first loop in the algorithm
is done at most K times. The embedded loop will be
done at most R times independently from the first
loop, meaning that the R entries in the loop are split
over the K entries of the for loop. The algorithm
needs to compute R+ 1 combinations denoted as Cr

k

each of them having a complexity of O(K). As a
consequence, the overall complexity of the third al-
gorithm is O(RK).

5.3 Error Analysis

In this section, we evaluate the error rate of our prob-
abilistic causal ordering mechanism depending on the
estimation of the system load and the different pa-
rameters of our approach (N,R and K).

Let us first say that the higher R the better is
the resulting protocol (better in the sense less mes-
sages that violate causal ordering). At the extreme,
if R = 1 we have a linear clock similar to Lamport’s
clock. At the other extreme, R = N we get the
perfect and optimal (no causal order violation and
delivery at the earliest) solution to causal ordering.
Concerning K, it is easy to see that the situation

is less clear. Indeed, if K is too small; at the ex-
treme K = 1 we get the plausible clocks of Torres
and Ahamad, and we are sure that if two process are
assigned the same entry they will interfere at each
message sending. At the other extreme K = R the
protocol boils down to the use of a Lamport’s clock
merging all processes within one single entry. Hence
the intuition of the proposed approach is that there
is some value of K to determine that lies between 1
and R that is optimal. The aim of this theoretical
analysis and the simulations presented in the coming
sections is to determine the best value for K and to
evaluate the impact of K on the error rate.

First, we need to compute the probability that a
message m is delivered before a message m′ that pre-
cedes it causally (m′ → m). As explained in Section
4.1.2 if such messages m and m′ are received by some
process pi with m received first, then m can be de-
livered before m′ with a probability that we note Pnc

the probability that a message m bypasses a mes-
sage m′ sent causally before it. Depending on the
system we consider, this probability may be quite
low. Therefore, we have to consider this probabil-
ity to dimension precisely the size of the vector and
the number of entries each process chooses. A nec-
essary condition, though not sufficient, to wrongly
delivered a message is that this message is received
after a preceding message, and the entries of the de-
layed messages have been all matched by concurrent
messages. Let us note Perror the probability that all
the K entries of the missing message are covered by
a set of concurrent messages (see the example given
in Section 4.1.2). Consequently, the probability P of
wrongly delivering a message is bounded by the prob-
ability that a delayed message has its entry matched
concurrently P ≤ Pnc ∗ Perror.

The probability that a message is replaced by a set
combination of previous messages is computed fol-
lowing the same scheme as the false positive error of
a bloom filter [3].

The probability that one entry is incremented is
1/R. So the probability that it is not incremented
is: 1 − 1/R and that it is not set by X messages is
(1 − 1/R)k∗X . Then the probability that one entry
is incremented by X messages is 1 − (1 − 1/R)k∗X .
Finally the probability of an error delivery is (1−(1−

8



1/R)k∗X)k.

We need to find the value K that minimizes the
probability of an error. We can easily show that (1−
(1− 1/R)k∗X)K is minimal when Kmin = ln(2) ∗ R

X .

5.4 Experiments

In this section, we detail the model used to run our
simulation. In the first part, we show that the es-
timation of the optimal value of K is sound. Then,
in a second part, the experiments are run using this
optimal value. We, therefore, show the behavior of
the mechanism based on the size of the vector. In a
third part, we show the accuracy of the estimation of
the probability of an error occurrence.

Methodology: In order to evaluate our proposal,
we have developed a simple event-based simulator.
Each process generates messages according to a Pois-
son distribution of parameter λ. Each message has its
own propagation time d described as a random value
which follows a Gaussian distribution N(µ, σ2) law.
Each process receives a message whose propagation
time is according to a N(d, σ2

m).

In the average, each node generates a message each
second The message propagation time d follows a
normal distribution law N(100, 20) and the skew be-
tween a message reception on all nodes follows also a
normal distribution law N(d, 20).

5.4.1 Detecting delivery errors

One of the challenges to evaluate the proposed ap-
proach is to measure the error rate. When a message
is said to be “causally ready” by our mechanism, we
need to verify that it is really causally ready, there-
fore, in our simulator we also need to implement a
perfect causal broadcast. This additional mechanism
should have the lowest cost possible as it limits the
simulator scalability. To detect an error, we must
know all the messages the sending of which happened-
before a given message. A simple solution would be
to attached a set of messages to each sent message.
Obviously, this would limit drastically the scalabil-
ity of the simulator. Therefore, we use a mechanism
based on vector clocks. Unfortunately, a vector clock
cannot capture wrongly delivered messages.

Indeed, when a non-causally ready message arrives,
the causal ordering mechanism delays it, while in our
case, it may be delivered to the application.

To deal with this case, we update the local vector
clock by taking the maximum of the local vectors and
the wrongly delivered messages. Therefore, missing
messages will be dropped by the perfect causal de-
livery mechanism. Detecting precisely if the missing
messages are causally ready is costly, instead we pro-
pose two metrics. The first one, εmin, simply assumes
that all missing messages are delivered in a causal
order, while the second one εmax assume that all of
them are delivered in a non-causal order. Finally, we
have two bounds on the error rate: the lower bound
εmin and the upper bound εmax.

5.4.2 Choosing the optimal number of keys

The first step in validating our approach is to verify
that we choose the best value for the parameter K.
Therefore, we ran several experiments by changing
only the value of K and then compare the value that
minimizes it with the theoretical optimal value.

Figure 3 shows the error rate for respectively 500,
1000, 1500 and 2000 peers. In this experiment, the
average number of messages received by a process is
constant (200 messages/second) and, the number of
exchanged messages is more than a hundred million.

As our simulation considers an average message
propagation time of 100ms, the average number of
messages that are received concurrently is 20. We
use 100-entry vectors, hence, the optimal number of
keys is theoretically ln(2) ∗ 100/20 ≈ 3.5 and the ex-
perimental results show that the value for K that
minimizes the error rate for this configuration is 4.

5.4.3 Impact of the different parameters

In this section, we assume these system parameters:

• Number of nodes: N = 1000
• Each node generates a message every 5 seconds

in the average (λ = 5000)
• The vector has 100 entries (R = 100)
• Each node has 4 entries (K = 4)

As a real system may behave differently from the
estimation, we are now interested in the impact on
the error rate when we vary only one parameter.

9



Figure 3: Number of errors for different value of K
(Theoretical best value is 3.5)
Impact of λ on the error rate The error rate
depends on the number of processes that send mes-
sages. Therefore, to determine the optimal size of the
vector, and the number of keys, we need to estimate
the number of “active” processes during an average
message propagation time. Figure 4 shows the vari-
ation of the error rate according to different values
of the average delay between two messages generated
by each process.

Figure 4: Error rate for different values of λ

The Figure shows that the error rate is stable
around the estimate value (λ = 5000), but it increases
quickly when λ is lower than 3000.

Impact of N on the error rate Figure 5 shows
the impact of the number of nodes. The error rate
increases quickly as soon as the number of nodes is
higher than the estimation (N = 1000). As a result,
1000 should be considered as the maximum number
of nodes in this case (λ,R,K,N).

Figure 6 shows the impact of the number of nodes

Figure 5: Error rate for different values of N

when the number of received messages is constant.
In this experiment, the estimated number of nodes is
1000. We can see that the error rate remains constant
when the number of nodes increases. Also it increases
when the number of nodes decreases. This can be
explained by the constant message rate, when the
number of nodes decreases, the message rate of each
node increases.

The previous experiments show that indeed, it is
not λ, N by themselves that direct impact the error
rate but the “concurrency”. We mean by concurrency
the mean number of messages that are broadcast dur-
ing the transit time of some message (latency of the
network).

Figure 6: Error rate for different values of N , but
with a constant number of received messages

10



6 Conclusion

In this paper we presented a new approach that al-
lows to heavily reduce the cost of causal broadcast
communication primitive. This reduction of the cost
leads to a small rate of errors. The errors being the
cases when a message is delivered while there are
causally related messages that need to be delivered
that are not yet delivered.

We have shown that the approach is theoretically
sound. The main parameterK optimizes the protocol
and may vary from 1 and R the two extreme already
existing cases. The second contribution of the paper
is an alert mechanism that allows to check the bad
cases. In case there is no alert, we are sure there is
no error.

References

[1] P. Alvaro, N. Conway, J.M. Hellerstein, and W.R.
Marczak. Consistency analysis in bloom: a CALM
and collected approach. In Proc. of CIDR-11,, pages
249–260, 2011.

[2] K.P. Birman and T.A. Joseph. Reliable communica-
tion in the presence of failures. ACM Trans. Comput.
Syst., 5:47–76, January 1987.

[3] Burton H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422–426, 1970.

[4] B. Charron-Bost. Concerning the size of logical
clocks in distributed systems. Inf. Process. Lett.,
39:11–16, July 1991.

[5] P.T. Eugster, R. Guerraoui, S.B. Handurukande,
P. Kouznetsov, and A.M. Kermarrec. Lightweight
probabilistic broadcast. In DSN, pages 443–452,
2001.

[6] C. Fidge. Logical time in distributed computing sys-
tems. Computer, 24(8):28–33, August 1991.

[7] M.J. Fischer, N.A. Lynch, and M. Paterson. Im-
possibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, 1985.

[8] Leslie Lamport. Time, clocks, and the ordering of
events in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[9] Friedemann Mattern. Virtual time and global states
of distributed systems. In Proc. of the International
Workshop on Parallel and Distributed Algorithms,
pages 215–226, 1989.

[10] G. Oster, P. Urso, P. Molli, and A. Imine. Data
consistency for p2p collaborative editing. In CSCW,
pages 259–268, 2006.

[11] Michel Raynal, André Schiper, and Sam Toueg. The
causal ordering abstraction and a simple way to im-
plement it. Inf. Process. Lett., 39(6):343–350, 1991.

[12] A. Schiper, J. Eggli, and A. Sandoz. A new algo-
rithm to implement causal ordering. In Distributed
Algorithms, volume 392 of Lecture Notes in Com-
puter Science, pages 219–232. 1989.

[13] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero,
and Marek Zawirski. Conflict-free replicated data
types. In SSS, pages 386–400, 2011.

[14] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen.
Achieving convergence, causality preservation, and
intention preservation in real-time cooperative edit-
ing systems. ACM Trans. Comput.-Hum. Interact.,
5(1):63–108, 1998.

[15] D.B. Terry, A.J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B.B. Welch. Session guarantees for
weakly consistent replicated data. In Proc. of PDIS-
94), Austin, Texas, September 28-30, pages 140–149,
1994.

[16] Francisco J. Torres-Rojas and Mustaque Ahamad.
Plausible clocks: constant size logical clocks for dis-
tributed systems. Distrib. Comput., 12(4):179–195,
1999.

11


