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Periodic Motions of a String Vibrating Against 
a Fixed Point-Mass Obstacle: I1 

H. Cabannes, Paris 

Communicated by H .  Neunzerf 

A string fixed at both ends A and B, can oscillate in a plane in which there is a fixed point 
obstacle, placed in the middle of the line AB. The string is initially at rest with a prescribed shape, 
symmetric with respect t o  the normal mid-plane of the segment A B .  Using results established before 
[9] we find new periodic motions. 

1 Introduction 

During the past few years several works have been devoted to the motion 
of a string vibrating in the presence of obstacles. Amerio and Prouse [l] are the 
first to have considered the problem and they have proved, for a straight line 
obstacle, the global existence of the solution. Schatzman [2] and Bamberger [3] 
have studied the case of concave obstacles. Cabannes and Haraux [4, 51 have 
studied, for straight line obstacles, the periodic or almost periodic character of 
the solution. Betro and Gotusso [6]  have made numerical computations; Citrini 
and d'Acunto [7] have considered the shock of two strings. The case of a point- 
mass obstacle has been studied by Reder [8] and Cabannes [9]. 

The present work is devoted to the investigation of periodic plane 
motions of a vibrating-string fixed at both ends A and B in the presence of a 
point mass obstacle fixed in the middle of AB. Initially, the string is at rest with a 
prescribed shape, which is symmetric about the median line normal to the 
segment AB: figure 1. The elongation (distance from the equilibrium position) 
possesses three extrema; one of there, located on the median of AB, is above the 
obstacle, the other two are below the obstacle at positions symmetric with respect 
to the median. We prove that, when the ratio of corresponding elongations is a 
rational number, the motion of the string is periodic and we compute the period; 
when the ratio is irrational the motion of the string is not periodic; it is probably 
almost periodic but this result still has to be proved. 

2 Statement of the Problem 

The equilibrium position of the string is along the segment A B  of the 
x-axis, the points A and B having as abscissae k0.5; it can oscillate in a plane 
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x - u above a fixed point mass obstacle, placed at the origin. The function 
u(x, I )  which represents the departure from the equilibrium position satisfies the 
following conditions: 

Fig. I Fig. 2 

The contact of the string with the obstacle corresponds to zero values of the 
function u(0,  t )  and persists during the intervals of time when the reaction of the 
obstacle on the string is positive, let (cf. [9] formula (7)) 

At the initial time the string is at rest with a symmetric displacement represented 
by fig. 1. One can always assume that the two equal minima have the value - 1; 
we denote by M = a(0) the maximum. It is always possible, by means of a 
change of variable defined by the formula (6), to revert to the case of a string 
initially at rest in a position u(x,O), piecewise affine, represented in fig. 2 (cf. [9], 
theorem 2). 

(6) U ( X ,  t )  = u I 2  9 2 1- F(x + t )  + F(x - t )  F(x + t )  - F(x - t )  

The new initial shape u(x,O) is composed of straight line segments, all having the 
same slope k = 2(M + 2). We define an odd, increasing function F ( y ) ,  such that 
F( y)  - y is a periodic function with period 1, by the relation, 
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(7) 4 x 1  = u(x,O) = u(F(x),o). 
If the motion of the string, initially at rest in the position u(x, 0), is periodic with 
whole number period N, then the motion of the string initially at rest in the 
position a(x )  = u(x,O) = v(F(x),O} is periodic with the same period. Moreover, 
since the initial data are even functions, the necessary and sufficient condition 
for the motion of the string to be periodic, is that the motion of the middle of the 
string is periodic. The motion of the string and the motion of the mid-point 
therefore have the same periods (cf. [9], theorem 3). 
We adopt henceforth for the function a ( x )  the function represented in figure 2. 

M +  1 fo r0  < x < - a ( x )  = M - kx 
k (8) 

k - ' 2  

a ( - x )  = a(x )  

(9) a(1 - x )  = - a ( x )  k =  2 ( M +  2).  

a ( x  + 2) = a ( x )  

3 Motion of the Middle of the String 

The motion of the middle of the string u(0 , t )  can be studied without the 
knowledge of the complete motion of the string. Before the first contact, we have 
the free oscillation 

The first contact begins at the time C,, which is the smallest positive root of the 
equationfo(t) = 0; we therefore have: 

M 
k 

(11) c, = -. 

This first contact ends at the time Do when the reaction vanishes; Do is the 
smallest root greater than C, of the equation (dfo/dt) = 0; we have therefore 

Fig. 3 
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1 + M  
k 

(12) Do = -. 

After time Do we have a new free oscillation. 
In general after the time D, which follows the end of a contact we have a new free 
oscillation in which the motion of the middle of the string f D n ( t )  is defined (cf. 
191, theorem 5 )  by the relations: 

(1 3) 
f D n ( t )  = f D n - ' ( t )  - fDn-I(Dn) forD,  < t < 1 + C, 

f D n ( t )  = -fDn-l(f) -fD"-1(D,) for 1 + C, < t < 1 + Dn-l 
(14) 

The contact which follows the detachement at  the time D, appears at the time 
t = Cn+l which is the smallest root greater than D, of the equationfDn(t) = 0, 
and this contact ends at the time f = D,+ 1 ,  which is the smallest root greater 
than C,, of the equation (d/dt)fDn(t) = 0. As fDn(Dn) = 0, we have also 
f D n ( l  + D,) = 0, and Cn+l is at most equal to 1 + D,. 
The first complete free oscillation, that which occurs after time Do, is defined by 
the functions 

('3 

We deduce that in the interval Do < t < 1 + Do, the function fDO(t) has a first 
maximum Mf = 2, a minimum m0 = 1 - M and a second maximum M! = 1 : 
Fig. 3. 
We assume that the free oscillation, which starts at  the time D,, has, for D, < f 
< 1 + D,, a first maximum MY, a minimum m" and a second maximum M;.  
The formulae (13) prove that the same situation is valid for the free oscillation 
which starts at  the time D,, 1. As this is true for n = 0, this is always true and 
from formulae (13) we have: 

f D n ( t  + 1) = - f D n ( t ) .  

fD0( t )  = a(t)  + 1 
f D O ( t )  = -a( t )  + I 

for Do < t < 1 + Co 
for 1 + CO < t < 1 + D O *  

M;" = M ; ,  M; DnDn+l = 1 + - 
k 

2 M ;  
k 
m" 

Dn+l = -- + Cn+l k 

Cn+l = - + D n  I f m " <  0 
(Fig. 5 )  

M " + l =  M; - m", 

m n f l  = -Mf - m n ,  

2 M ;  - m" 
k DnDn+l = 
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We note that the sum My - m" + M," is independent of the index n and so has 
the value M + 2. 
Moreover it follows from formulae (16) and (17) that if Mis a rational number 
( M  = p / q ,  p and q denoting two mutually prime numbers; p positive or zero, q 
strictly positive), My and M: have the following form 

(18) M y = - ,  P? M,"=- .  P," 
4 4 

4; 

Fig. 4 

The quantities p ,  and p :  are integers which can have on.; a finite number of 
values. 
To prove this result we assume first that we have M < 2, and prove that the 
following inequalities are satisfied for all values of n : 
(19) M < M ; < 2 ,  O < M , " < 2 .  
The property being true for n = 0, it is sufficient to deduce its validity for n + 1 
from that for n. This follows from relations (16) if we have m" 2 0, from rela- 
tions (17) if we have m" < 0 
1st case m" 2 o M"+' 1 = M: - m" < My < 2 

M y + l =  M + 2 - M ;  2 M 
M,"" = MT then 0 < M:" < 2 

5



60 H.Cabannes 

2nd case m" c 0 M"+' = M," - m" = 2 + M - Mi' 
M ;  varying from M to 2, MY + ' varies from M to 2 
,,"+I = - m " >  0 

M,"" = 2 + M - My < 2 
We assume then that we have M > 2, and we prove that the following inequali- 
ties are satisfied for all values of n 

(19-b) 2 < M ;  < M ,  0 < M," < M .  
The property is true for n = 0. We then have by induction 
1st case mn 2 o M"+' I = M Y  - mn < M ;  2 M 

,;+I = M + 2 - M," 2 2 
,;+I = ~ n + 1  , then 0 < < M .  

MY+' = M," - m" = 2 + M -  MY 
M Y  varying from 2 to M ,  
M;+' = - m " >  0 

M,"" = 2 + M -  M ;  - M: < M .  

2ndcase m " c  0 
M Y  + varies from M to 2 

Assembling all these results, we have: 

(20) in f (p ,2q)  < P; < S U P ( P , ~ ~ ) ,  0 < P," < S U P ( P , ~ ~ )  - 
The pair ( p : , p ; )  can only have a finite number of values and after a finite 
number of contacts and free oscillation we obtain for the couple M;, M," values 
already found: 

M f f m  = Mf , M,"+" = M," , from which we deduce 

(21) u(0, t  + On+,) = u(0,t + D,) 
which proves that the motion is periodic with the period T = D,D,,+,, a period 
which is finite because D,Di+] is always less than 312, as a result of various 
inequalities, established previously. 

4 Calculation of the Period for M = p / 4  > 2 

To compute the period of motion when M is rational, we begin by cal- 
culating the quantities M i ,  m' and M i .  To do  this we start from the case i = 0: 

~ ! = 2 ,  m o = l - M ,  M ; = I  

and we reason by induction, using either formulae (16) or formulae (17). 
We put M = p /4 ,  p and q being mutually prime integers, p positive or zero, q 
strictly positive. We first assume that p > 2q,  and we put I )  

') The notation [x ]  denotes the greatest integer smaller or equal to x, that means the 
integral part of x. 
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i 

3 sj 

3sj + 1 

3sj + 2 

In particular o - l  = - 1, atq- = p - 1. From the relation (22) we deduce 

Mi mi M i  

2 
M 

1 + 2sj - ( j  + l )M < 0 
( j  + l )M - ( 3  + 2Sj) 2 0 

M + mi 

2 + mi 

2 + mi 1 + 2 s j - j M > O  M 

if ( j  + - is not an integer ( j  + l ) M  - 1 
(23-1) oj < 

2 2 

I f  p is even, q is odd and the inequality (23-1) is always satisfied. If p is odd the 
equality (23-2) is satisfied for ( j  + 1)p  = (2m + 1)q ;  m is an integer and 
2m + 1 an oddmultipleofp. Wehavethereforem = ( p  - 1) /2andj  = q - 1, 
or m = ( 3 p  - 1)/2 and j = 3 q - 1,. . . . Also when the index j varies from 0 to 
2q the inequality (23-1) is always satisfied except if p is odd and i f j  = q - 1. The 
equality is then satisfied and we have 

q M - 1  - p - 1  -- oq-l = 
2 2 

We assume first that p is an odd integer. We denote by s), sj . . . the set of 
integers greater than uj- 1 ,  less or equal to oj; sj = 1 + oj- 1 ,  . . . 
(24) ~ , - i < ~ j < o j  ( j = O , l ,  . . .  2q) 

j varies from 0 to 2q and the absence of the upper index in the inequalities (24) 
means that sj represents any of the integers satisfying those inequalities. From 
relations (23) and (24) we deduce: 

( j  + l)M - 3 
2 

(26) sj < for sj # oj 
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i 

3 uj 
3 0 ,  + 1 

third line is positive by virtue of the inequality (27). The first line is obtained for 
so = 0, the two following lines are obtained by application either of relations 
(16), or of relations (17). Finally, if we apply the relations (16) to the third line we 
find again the first line in which s, is replaced by 1 + sj .  
For sj = aj with j # q - 1 table I-a must be replaced by table I-b, which follows, 

M ;  rn' Mi, 

2 

M 
1 + 20, - ( j  + 1 ) M <  0 
( j  + l )M - (3 + 20,) € 0 

M + rn' 

2 + rn' 

3 m q - j  1 2  0 M 

By application of relations (16) we find again the first line of table I-a, in which 
j = qands ,  = sg = 1 + a4-'. 
We can collect these conclusions together by saying that, for j varying from 0 to 
2q,  table I-a is always valid on condition that we cancel 

all the lines of rank 3 a, + 2 

and the line of rank 3 aq- + 1 = 
3 p -  1 

2 

For j  = 2 q  the first term of the sequence sj = s2* is 1 + a2q- = p .  For j = 2 q  
and sZq = p ,  i = 3sZq = 3p, we obtain as first line of table I-a: 

MiP = 2 ,  m3P = 1 - M ,  M:P = 1 .  

We have thus shown that the motion is periodic, but in addition, we have 
determined the value of the period T = DoD3,. To calculate this period it is 
enough to calculate the length of intervals DiDi+' ;  this length is given in the 
following table: 

i with k = 2(M + 2) 

3s: I 
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i I DiDi+ I with k = 2(M + 2) 

3 aj 

3aj + 1 
2 

I + -  1 k 

( j  + l ) M  + 3 - 26, 

3 + uj - (i - 1)M 
k 

k 
2 
k 

1 I + -  3a,-, 
2 

1 + -  
k 

The number of groups of intervals of the first type is ( c r 2 q - 1  - 2q)  + 1 = p 
- 2q.  The number of groups of intervals of the second type is 2 9  - 1 (from cro 
to cr2q-  1 ,  except aq- ,). There is one interval of the third type. We have there- 
fore: 

3p2 + 3pq - 892 

P + 2q  
( 2 8 )  T = DoD3, = 

When p is even the equality (23-2) is never satisfied and the table I-a is valid with 
the suppression only of the lines of rank 3aj + 2. F o r j  = q and sj = sq = 1 
+ og-l = p / 2 ,  we obtain for the first line of the table I-a (i = 3 ~ 1 2 ) :  

M:pR = 2 ,  m3PI2 = 1 - M ,  M:PI2 = 1 . 
The period of the motion is then DoD3p,2 or D3p/2D3p, that is, half of the value 
given by the formula (26). 

5 Calculation of the Period for M = p / q  < 2 

When p is less than 29,  we put: 
r 7 

(29) crj = LTJ 2 j +  1 

In particular we have cr- l  < - 1 ,  crp- 1 = [ 2 q  - :] , ap = [ 2 q  + :] . From 
the relation (29) we deduce: 

( j  = o , ~ , .  . . I .  

2 j +  1 is not an integer if - 2 j - t  1 
(30-1) oj < - 

A4 M 

2 j  + 1 if -is 2 j +  1 an integer . (30-2) ~j = - 
M M 

If p is even, q is odd and the inequality (30-1) is always satisfied. If p is odd the 
equality (30-2) is satisfied for ( 2 j  + 1)q = m p ;  m is integer and multiple of q. 
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We have therefore m = 4 a n d j  = ( p  - 1)/2, or m = 3 4 and j = (3p - 1)/2, 
. . . . Also when the index j varies from 0 to p the inequality (30-1) is always 
satisfied, except if p is odd and j = ( p  - 1)/2. The equality (30-2) is then 
satisfied and we have a(,,- 1),2 = 4. 
We assume first that p is odd. We denote by sj , s j  . . . the set of integers greater 
than a,- I ,  less than or equal to a,; sj = 1 + a,-l, . . . 
(31) < s, < a, (j  = 0, .  . . p )  

j varies from 0 to p ,  and the absence of the upper index in the inequalities (31) 
means that s, represents any one of the integers satisfying those inequalities. 
From relations (30) and (31) we deduce: 

1 - 2j  P - 1  f o r j #  - 
M 2 

(32) sj < aj < - < 1 + a, 

2 j -  1 
M 

(33) s;< - for s, # a, 

2 j +  1 
M 

(34) 0;- 1 < - < s;. 

These different inequalities allow us to construct the table of values of M i ,  mi 
and M i .  For sj f a, this table 11-a is the following: 

i I MI mi . M(2 

3sj - 1 

3 sj 

3sj + 1 

M 
2 

s ~ M  - (1 + 2 j )  < 0 
1 + 2 j  - (1 + sj)M 2 0 

2 + mi 
M + mi 

M +  mi S,M - ( 2 j  - 1) > 0 2 

The value of m i  on the first line is negative by virtue of inequalities (32); that on 
the second line is positive or zero by virtue of inequality (33) which can be written 
2 j  - 1 > Msj ,  which implies 2 j  + 1 > M(1 + s,) because Mis  less than 2. The 
value of m i  on the third line is positive by virtue of inequality (34). The second 
line is obtained from the values for so = 0, the third is obtained by applying the 
formulae (16); and if we then applied the formulae (16) to this third line, we 
obtain the first line in which sj is replaced by 1 + s,. The formulae (17) allows us 
then to obtain the second line. 
For sj = aj with j # ( p  - 1)/2 the table 11-a must be replaced by the following 
table 11-b: 

i I Mi mi M i  

3uj - 1 

3 Uj  

M 
2 

UjM - (1 + 2 j )  < 0 2 + mi 
M +  mi 1 + 2 j  - (1 + uj )M < 0 

The value of mi on the second line is negative by virtue of the last inequality (32). 
If we applied the relations (17) to this second line we find the first line of the table 
11-a in which j is replaced b y j  + 1 and s, has s,+ = 1 + a,. 
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i 

For sj = = q we must replace the table 11-b by the following table 11-c: 

DiDi+ 1 with k = 2(M + 2) 

3sj  - 1 

3 sj 

3sj + 1 

3uj - 1 

3 uj 

1 + 2 j  - (sj - 2 ) M  
k 

2 
1 + -  

k 
M 

3 + -  I k 
(1 + S j )  - 2 ( j  - 1) 

1 +  

1 + 2 j  - (uj - 2)M 
k 

3 - 2 j  + ( 1  + oj) 
k 

k 

M 
1 + -  

k 

M 
1 + -  

k 
M 

1 + -  
k 

The number of groups of intervals of the first type is (ap- - p )  + (2 q - ap- ,) 
= 2 q  - p .  The number of groups of intervals of the second type i s p  - 1 (from 
a. to ap- except a(p- 1)/3. There is one interval of the third type. We have also 
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12q2 + 3 p q  - 2p2 

P + 29  
( 3 5 )  T = DOD6, = 

When p is even the equality (30-2) is never satisfied and the table 11-a is valid by 
cancelling only the lines of rank 3oj. We have 

and for j = p / 2  the set sj contains the value sj = sPl2 = q. If M < 1 we have 
q = Sp/2 < if M > 1 we have q = sPl2 = up/2. So, using the tables 11-a, or 
the tables 11-b we obtain: 

M : P  = 2 ,  

The period of motion is D0D(3p/2) or D3p,2D3p, that means the half of the value 
given by the formula ( 3 5 ) .  

m3p = 1 - M ,  M:P = 1 .  

6 Study of the Cases M = 2 and M Irrational 

When the ratio M of initial maxima displacements (transverse departure 
from equilibrium) has the value 2, we have for all i: 

M f = 2 ,  , i =  - 1 ,  M i =  1 '. 
The period of the motion is T = DiDi+ = 518. This value is equal to the fourth 
of the value given by any one of the formulae (28) or (35 ) .  
We assume now that Mis  irrational. To fix ideas, we assume it is greater than 2; 
the case where it would be smaller than 2 is similar. The equality (23-2) is never 
satisfied and the tables I-a and I-b are always valid. If the motion were periodic 
we would find the value M, = 2 at an infinite number of times; this is possible 
only if i = 3 s j  or i = 3 aj .  The corresponding mi are of the form l i  + piM where 
L i  and pi are integers; the l i  are all different; they are the consecutive odd 
integers. Therefore if the motion were periodic we would have l i  + p i M  = A,+,,, 
+ pii+,,$4, which means that Mis  rational. 
The motion of the string is therefore not periodic when M is irrational. As we 
have said in the introduction it is probable that the motion is almost periodic. We 
hope that a reader will be able to prove this conjecture. 

7 Conclusion 

We have studied the case of a string initially at rest in a position 
represented by Fig. 2. The maxima displacements are reached for x = 0 and for 
x = fa; their ratio M = u(O,O)/u(O,a) has been assumed rational: M = p / q .  
We have then proved that the motion is periodic and we have computed the 
periods: formulae (28) and ( 3 5 ) .  The transformation (6),  which conserves the 
integral periods, allows us to pass from the case of figure 2 ,  to the case of Fig. 1, 

12



Periodic Motions of a String Vibrating Against a Fixed Point-Mass Obstacle: I 1  67 

the ratio of maxima displacements being the same. Also when the string is 
initially at rest in a position represented on the Fig. 1 ,  with M = p/q (p and q 
integers), the motion of the string is periodic and the period has as value: 

T = 1 2 q 2 +  3pq  - 2p2 ifp < 2 q  

T =  3p2  + 3 p q -  8 q 2  i f p 2  2 q .  
When M is irrational, the motion is not periodic. 
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