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1. INTRODUCTION 

IN A PLANE with normalized coordinate system Oxu, we consider the small oscillations of a 
vibrating string with fixed ends (*l/2,0). The free oscillations of this string are perturbed by 
the presence of a fixed obstacle {u = -h}, against which it rebounds following a law which 
insures conservation of the energy (0 c h -=c 1). 

At time t = 0, the string is at rest in a position u(x, 0) = uO(x) such that 

uo E #(I -1/2,1/2[) (1) 

OGU()<l on [-l/2, l/2]. (2) 

There exists a, b in ]-l/2, 1/2[, a c b such that 

u. is non-decreasing and U&X) < 1 on [--l/2, a[ 

U&X) = 1 forx E [a, b] (3) 

uo is non-increasing and U&V) < 1 on lb, l/2]. 
I 

If there was no obstacle, the motion of the string would be described by the wave equation: 

a classical approximation following d’Alembert [I] for the small (2-periodic) oscillations 
around u = 0. 

In case there is an obstacle, Amerio & Prouse [2, linear obstacle], then Schatzman [12, 
concave obstacle] studied a nonlinear version of (4), assuming that there is no longitudinal 
perturbation and no energy loss during the shocks. Following [8] and setting Q = ]-l/2, 1/2[, 
one looks for solutions in the functional class 

satisfying the system 

u E c@+, f@2)) n W”(z3+, r.‘(n)) 

u>-h inR+xQ 

SUPP@U) c {(x, t>, u(x, t> ’ -h1 

129 

(5) 

(6) 

(7) 
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130 A. HARAUX and H. CABANNES 

Condition (8), which is a strengthened version of energy conservation, must hold in the sense 
of Q’(]O, +w[ x Q). It implies that the energy integral 

remains unchanged through the motion. 
Notice that in case a shock takes place simultaneously along a set of non-zero measure in 

Q, we cannot have 

+y E C(R_, L2(Q)). 

Schatzman studied the existence and uniqueness of a solution of (S) such that 

a+u 
u(x, 0) = L&J(x), ~ (x, 0) = Q(X). 

at 

Actually, the existence and uniqueness of a solution for (S) + (9) is obtained in the functional 
class (5). The solution constructed satisfies the additional property: 

q u 3 0 in g’(]O, + m[ X Q) (10) 

which is used to get uniqueness, and is interpreted in [9] as equivalent to subsonic propagation 
of interactions. 

In our case, since au/at (x, 0) = 0, we look for solutions (even as a function of t) defined 
on R x !i?. Our purpose is to give a precise meaning to the physical idea of ‘vibrations’ against 

the obstacle. 
We prove that the solution is strongly almost-periodic as a function from R to HA(Q), 

generally not exactly periodic in t. We also sketch out some simple results concerning the 
non-harmonic Fourier series of u(x, t) with respect to t. Further computations in this direction 

are planned for the future. 

2. STATEMENT OF THE RESULTS 

Let us denote by (2) the system (5) + (10) with ug = 0 and R’ replaced by R everywhere. 
We recall 0 d h < 1. 

THEOREM 1.1. If u0 satisfies (l)-(3), the solution of (X) is such that u(t) = u(. , t) is strongly 
almost-periodic as a function from R to HA(Q). Moreover, the map UO--+ u(t) is Lipschitz- 
continuous from H&Q) to L”(R, H&Q)). 

Remark. In contrast with the case of equation (4), u(f) is generally not time-periodic. More 
precisely, we have: 

THEOREM 1.2. (a) h = p/q with p, q integers, the motion is periodic with p + q as a period if 
p + q is even, and 2(p + q) as a period if p + q is odd. In the special case when uO(-X) = 
LQ(X), we have always the period p + q. 

In some cases the smallest period is smaller. 
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Oscillations of a string vibrating against a fixed obstacle 131 

(b) If h 65 Q, the motion is never periodic, except in the single case LQ(X) = 1 - 21x1, where 
the motion has the period 1 + h. 

Remark. The aim of this paper is to give complete proofs of the results announced in [7], 
together with some more information. 

Since u is almost-periodic with respect to f, for every A E R, the limit 

1 i-t 
lim G 1 u(x, 0) de = ti(x, A) 

exists. The set Z(u) = {A E R, ti( .,A) # 0) . 1s called the set of exponents of U, and in general 
(cf. [4]) is denumerable. Here, we have a more precise result. 

THEOREM 1.3. The exponents of u lie in the additive subgroup of R generated by n and 
2x11 +h = o . 
More precisely: 

(a) For general uo satisfying (l)-(3), we have 

%(U) c ZJC + zw. (11) 

(b) If u. is even, the motion of ~(0, t) can be developed as a generalized Fourier series: 

l-h 
N k=+m 

u(0, t) = lim 
N-C= 

-j- + Pzr kzg ;1pk cos((2p + 1)~ + 2kn)t 
P I 

(12) 

where the infinite sums on the right-hand side converge uniformly and the convergence with 

respect to N is uniform for t E R. 

(c) In the special case U&X) = 1 - 21x + A sin 2nxl, IAl c$ 

8(1 + h) 
4i = - (2p + 1)2x2 Jk[(@ + l)Awl fork > 0 

fork > 0 

and 

4(1 + h) 
A{ = - (2p + l)zn’Jo[(2v + WQ. 

3. SOME EXPLICIT FORMULAS 

a. Case uo(x) = 1 - 21x1 
l+h 

The solution of (.C) is easy to describe. For 0 St c t* = - 
2 ’ 

the motion is given by 

1 - 2 SUPO~I, 0 ifOGt<1/2 

0(x, t) = 
l+h (15) 

1 - 2 inf{l - Ix], t} if l/2 G t =s 2. 

: Here Jk is Bessel’s function of order k. 
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132 A. HARAUX and H. CABANNES 

At time t* = 1 + h/2, the string hits the obstacle {u = -h} along the line segment {u = -h, 
1x1 =S (1 - h)/2}, with a uniform velocity u(t*) = u- = -2. 

Then the velocity is reversed into U+ = -u- = +2, and the motion proceeds backwards: 

Thus &/at (x, t) is discontinuous at t = t*, while ti(x, t) remains continuous with respect to 

t E R. The motion ti is periodic in t with period 1 + h. 
Conditions (5) and (6) are easy consequences of (15), (16) as soon as (8) is checked (to 

insure strong continuity inHA(Q It is obvious that d E W’.“(R x Q) and moreover, almost 
everywhere on R X Q, we have 

Then (8) follows as an immediate consequence. 
Finally, a lengthy but standard computation gives the expression of 0~: for every 47 E 

S(R x Q), we have 

(17) 

This formula implies (7) and (10). 

b. The ‘regular’ case 
In addition to (l)-(3), we assume now 

uo E C2([-l/2, @I), and u{( -l/2) = ui;(1/2) = 0 

&(a) = uh(b) = u!(a) = u{(b) = 0. 
(19) 

In order to compute u(x, t), we generalize an idea used in [ll] by Reder. We define a function 
P: R + R in several steps. 

Step 1. If x E [-l/2, l/2], we set 

/ 

uo(x) - 1 
2 

if -1/2GxSa 

ifa<xsb 

1 - Uo(X) 

2 
if b G x s l/2. 

It is clear from (19) that FE C2([-l/2, l/2]). 

Step 2. If t E [l/2,3/2], we define 

F(t) = 1 - F(1 - t). 

(20) 

(21) 
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133 Oscillations of a string vibrating against a fixed obstacle 

It is clear that FE @([l/2,3/2]). Since F”(1/2) = 0, we have 

FE C’([ -l/2,3/2]). 

Step 3. We extend F on R by the condition 

Vt E R, F(t + 2) = F(t) + 2. (22) 

We introduce f(t) = F(t) - t: then f(t) is 2-periodic on R. 

We claim that f and F are in C*(R), because F’( - l/2) = F’(3/2) and F”( - l/2) = F”(3/2). 
The first condition is a consequence of (21), the second one follows from F”( - 112) = 0. 

Some other properties of F are summarized below. 

LEMMA 3.1. F is nondecreasing: R + R. In addition (21) holds for t E R, and we have also 
F(t)=-l-F(-1-t),VtER. 

For every x E a and t E R, we have 

-lsF(x+t)+F(x-t)sl. 

Proof. Formula (21) means that for every 8 E [ -l/2.3/2], we have 

F(0) + F(1 - 0) = 1. 

Given t E R, we choose m E 2 and 0 E [-l/2,3/2] such that t = 2m + 8. Then: 

F(t) + F(l -t) = F(0) + F(1 - 0) = 1. 

Also, for t E R, we have: 

F(t) + F(-1 - t) = F(t) + F(l - t) - 2 = -1. 

Let x < l/2: by (21), we have 

F(x + t) + F(x - t) = F(x + t) - F( -x + t + 1) + 1. 

Butxc1/2+-x+t+l>x+t. 
Thus we obtain: F(x + t) + F(x - t) s 1. 
Also, if x 2 -l/2, we write 

F(x + t) + F(x - t) = F(x - t) - F(-1 -x - t) - 1 a -1, 

sincex-t2-1-x-t. n 
Since -l/2 s F(x + t) + F(x - t)/2 G l/2, we introduce: 

u(x t)=ti F(x+O+F(x-t) F(x+t)-F(x-t)) 
7 

i 7 2 

for (x, t) E fi x R. 

2 1 

LEMMA 3.2. u is the solution of (C) with initial conditions 

;:g 14.2 4 - u’(. 3 t> (H’(Q) c Clhl 

for uo, 246 ‘regular’ satisfying (l-3). 

(uo, 0), and we have 

- U&(52) 

(23) 

(24) 

5



134 A. HARAUX and H. CABANNES 

Proof. Let us introduce for convenience 

x = F(x + t) + F(x - t) 
, T= 

F(x + t) - F(x - t) 

2 2 

Then, in the sense of 9’(Q X R), we have 

all au F'(x + t) + F'(x - t) 
-= - 

ax ax' 

+d"" F'(x + t) - F'(x - t) 

2 l3T' 2 

. dU ati F'(x + t) - F'(x -t) +ai" F'(x + t) + F'(x -t) 

dt=z 2 dT' 2 

Using (18), we get immediately that au/at and &/dx are in La(Q X R) and moreover: 

(25) 

(3’+ M2 = 2[P(x + t) + P(x - t)] 
‘1 

au au 
-$--$=P(x+t)-P(x-r) I 

*. (26) 

The properties (5) and (6) are immediately checked. On the other hand, in the sense of 
‘9’(Q x R), we obviously have 

~[(~)2+(~)*}=4[F’(x+~)F.~(x+~)-~~(X-~)F~’(X-f)] 
a au au 
ax ax’at ( ) -- = 2[F’(x + t) F”(X + t) - F’(x - t) F”(X - t)] 

which implies (8). 
Differentiating (25) in the distribution sense, we get after reduction: 

q lu(x, t) = F’(x + t) F’(x - t) 0 U[X(x, t), T(x, t)], (27) 

this formula making sense because Oz.? is a measure and F’ is continuous. From (27), we 
deduce that (7) and (10) are satisfied. 

As a consequence of lemma 3.1, we have for every r E R: X(1/2, t) = l/2 and 
X(-1/2, t) = -l/2. 
Thus u(1/2, t) = 0 and u(- l/2, t) = 0, and we have u(t) EHb(S2) for all t. 

To verify the initial condition, we remark that u(x, 0) =ti(F(x), 0) = @(F(x)) = 
1 - 2lF(x)/ and (20) implies 1 -2jF(x)I = Q(X) in a. 
It is easy to check that 

u(x, 4 - uo(x) 
t 

+ 0 in C(G) as t-+ 0, which implies $ (x, 0) = 0. 

Finally, we can see that the mapping u. +f is Lipschitzian from H;(Q) to Hl([O, 21). Since 

6 E W1,“(Q x R), the mapping: 

f-+ u(. , t) is Lipschitz-continuous from H’([O, 21) to L"(R, H'(Q)). 

Combining these two remarks, we get (24), which will appear a convenient tool to treat the 
more general case where ua is only in Hi(Q). W 
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Oscillations of a string vibrating against a fixed obstacle 135 

c. The general case 
If u. satisfies conditions (l-3), we can still define F(t) as in the paragraph above. Then 

F(t) is non-decreasing, in H’(R) and f(t) = F(t) - t is 2-periodic. 
We compute u(x, t) by means of formula (23). To check that u(x, t) is the solution of (2) 

starting from (uo, 0), we can choose a sequence of initials ~0” satisfying (19) with ul; +UO in 
HA(Q). According to (24j, z/(x, t) will converge to u(x, t) in L”(R, H&Q)). A similar 
calculation shows that &“/at converges to du/dt in L”(H, L*(Q)). 
Thus all conditions (5) + (10) are checked by density. 

4. PROOF OF THEOREM 1.1 

Because of (24), it is enough to check the almost-periodicity when ~0 is ‘regular’, so that 

FE P(R). 

a. As a first step, we prove that t-+ u(. , t) is almost-periodic in C(a), by using directly 
Bochner’s criterion. 

Let (t,J be any sequence of real numbers. We write: 

t, = 2m, + pn Pn E [O, 21 

2m, = k,(l + h) + a, on E [0, 1 + h] 

where m, and k, are in 2. Thus 

u(x, t + tn) = 22 
i 

F(x + t + p,.) + F(x - t - &J F(x + t + pn) - F(x - t - pn) + 

2 
9 

2 

~ 
n 

We may assume lim pnk = p and lim onl. =D , by extracting a subsequence of (t,J. Then, 
n-+m n-ta 

because of the uniform continuity of F and fi the sequence u(x, t +tJ converges uniformly 
on 0 x R to 

u*(x, t) = ti 
F(x + t + p) + F(x - t - p) F(x + t + p) - F(x - t - p) + 

2 
> 

2 

~ 
(28) 

b. Precompactness of the range of u in HA(Q) 
Thanks to conservation of energy, u(t) is bounded in HA(Q), thus weakly almost-periodic 

in HA(Q). According to [lo], Theorem 2.11, the strong almost-periodicity is equivalent to 
precompactness of the range in H&R). Even in the ‘regular’ case, it is not so easy to check 
because we cannot approach u in L”(R, H&Q)) by regular functions since U has discontinuous 
derivatives. We need a technical lemma. 

LEMMA 4.1. With the notations of (a), there exists a denumerable set S C [ - 112, l/2] such that 

xESjit_g(x,t.,) =%(x,0). 

Proof. Let us use the notations 

(29) 

X(x, t) = 
F(x + t) + F(x - t) 

T(x, t) = 
F(x + t) - F(x - t) 

2 ’ 2 

7



136 A. HARALJX and H. CABANNES 

t’ 

I+h 

‘$t h 

I 
Fig. 1. 

a(x, t) = E (x, t) (for all t and almost every x) 

b(x, t) = $(x, t) (for all x and almost every t). 

The functions a, b take only the values 0, -2 and +2, their discontinuities lie on some curves 

of a x R. 
The periodicity of fi/t allows us to draw a picture in fi X [0, 1 + h] (cf. Fig. 1). For x E 

[-l/2, 1/2[ and 0 < 6 < l/2 - x, we define 

a(x, t, 6) = l/~{ti[X(x + 6, t) - T(x + 6, t)] - ti[X(x, t), T(x + 4 t)]> 

/3(x, t, 6) = l/W[X(x, 9, w + 4f)l - 6 [X(x, 0, m, 411 

Also, for t fixed, we introduce two open sets 

w= {x+1/2, +1/2[.3x,4 +o} 

o’= xE]-l/2,+1/2[.~~(x,r)+O. 
1 I 

-First we notice that if x 65 w, then 

X(x + 6, t) - X(x, t) = O(6) when S+ 0 

Since ti is Lipschitzian in both variables, we conclude 

lim a(x, t, 6) = 0 in this case. 
IGo 
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Oscillations of a string vibrating against a fixed obstacle 137 

-Let w,, be the sequence of connected components of w. 
For every n, we have either ax/ax (x, t) > 0 in w,, or ax/ax (x, t) < 0 in w,,. Thus, in each 
o,, there are at most 2 values (x,,,) k E{1,2} such that (a) is discontinuous at 

[X(&,,, 0, Gl,k> r)]. As a consequence, if x Ew\’ U {x,,,} we find 
n,k 

F; afx, t, S) = a[X, T] g. 

In the same way, we obtain that except for denumerable values of x, we have 

As a consequence, there exists S, denumerable such that, for every x E S,: 

-& [u(x, t)] = up, q g + b[X, Tl$. (30) 

Let St., =Sk . Then, for x 65 U Sk, we have 
kEN 

Vk E N, ; [u(X, tk)] = a[Xk(x), Tk(X)] % + b[Xk(X), Tk(X)] $j 

where X&) =X(x, tk) and ?-k(x) =T(x, tk) . Finally, let 

1 
X,(x) = X(x, P) 

T&x) = IQ, ,4 + o 

By a very similar argument as above, we find S, denumerable in ]-1/2,1/2[ such that 

C3T 
= a[&, Tp.al t$ + W,, Tp,ol --$ 

But, except for x E S* denumerable, this is precisely equal to i_@x [u*(x, O)]. Finally, (29) 
holds with S =S* J,,, U Sk . H 

PROPOSITION 4.1. 

Proof. Let (tJ 
o such that 

By lemma: au/ax 

kEN 

The range of u(t) is precompact in HA(R) [‘regular’ case]. 
be an arbitrary sequence of reals. There exists a subsequence (t,J, p and 

u(x, tn,J + u*(x, 0) in C(0). 

(x, a) -Gl u*/ax (x, 0) a.e. in S2. 

Since &/dx(x, tnk) remains 

Hence, U(X, t,,J +u*(x, 0) 

bounded in L” (R) by (30), Lebesgue’s theorem implies 

I* 1% (x, a) - g (x, 0) / 2 dx kys 0. 

in H&Q). n 

9



138 A. HARALJX and H. CABANNES 

End of the proof of Theorem 1.1. In the regular case, theorem 1.1 is now an obvious 
consequence of (a), proposition 4.1 and [lo, theorem 2.11, p. 481, applied with Y=C= 
C(a) and Z =Hh(R). 

In the general case, we can use (24) which shows that u(x, t) is the limit in L”(R, HA(n)) 
of solutions associated to ‘regular’ initials ul;. This finishes the proof of theorem 1.1, since 

the statement on uo+ u(t) is actually a consequence of (24). W 

5. PROOF OF THEOREM 1.2 

(a) Since F(r) - t is 2-periodic and ti(x, r) is 1 + h-periodic in r, the first assertion is an obvious 
consequence of formula (23). 

If UO(-x) = UO(X), then b = -a and F(t) is odd. Then F(t) - t is l-periodic, and the second 
assertion follows. 

Actually, F(t) = t + asin 2nd is non-decreasing as soon as 2n7r(n( < 1, and corresponds to 
the initial datum UO(X) = 1 - 21x + asin 2nxxl. In this case, F(t) - t is l/n-periodic. 

If for instance h = l/n, then (n + 1)/n = 1 + h is a period for u(. , t), which is strictly 
or II 2 2) smaller than n + 1. For n = 2p, we get a period smaller than n + 1 = p + q. 

&IfI((.,r). p is eriodic with a period t, then the functions 

are also r-periodic, independently of E, cr’, /.I for -t G (Y < /I d 8. As a consequence of (26)) 

F’*(x + 0) dx dB. 

Now it is obvious that 

I 
B 

I 
r*P 

F’Z(x + t) dx = Ff2(u) da. 
a f-i? 

Thus for every I E [0, l], the function 

rr+/ 
dk 4 = J, ’ P2( o) da is r-periodic. 

Now we distinguish two possible cases: 

1st case: r E Q. 
Since F’ is 2-periodic, we must have 

function of I, it is immediate to deduce 

/-r+l ^ 

q(f, t) = q(l) for I E [0, 11. Since q is a continuous 

J FtL( a) da = k21, k b 0. 
r 

Then at every Lebesgue’s point of F’2, we must have F’*(t) = k2. Since F’ 2 0 a.e., this allows 
us to conclude that F’ = k a.e. As a consequence of (22), we must have k = 1. Also by (21), 
F(1/2) = l/2. 

Thus F(t) = t, and uo(x) = 1 - 21 F(x) ( implies U,,(X) = 1 - 2/x]. 

10



Oscillations of a string vibrating against a fixed obstacle 139 

2nd case: t = p/q E Q\{O} 
Then 2qr = 2p is also a period for u(. . t). 

On the other hand, by (23), we have: 

U(X, f + 2p) = ti 
1 

F(x + t) + F(x - t) F(x + t) - F(x - t) + 2p 

2 ’ 2 

Choosing t = 0 and x = a for instance, we get ~(a, 2p) =G(O, 2p) = li(O,O) = 1 The only 

possibility is 2p = m(l + h), m E z\(O). 
Thus h = 2p/m - 1 E Q. 

6. THE EXPONENTS OF u(t). (PROOF OF THEOREM 1.3) 

(a) Let cc) =274 + h, we can write 11 as a Fourier series in t: 

z 

qx, t) = PT” up(x) c&J wt) 

Since az$‘6’t l L”(fi x R) , this series is uniformly convergent on a x R. The coefficients aP 
are C’ functions on fi = [-l/2, +1/2] and can be computed easily. Thus we have: 

4x9 4 = ,Vl& P$” a,[X(x, t)l cos[peW, t)] 

uniformly on G x R and we just need to examine the exponents of each term 

a,[X(x, 4 cos[Pwqx, 01. 

By a density argument, it is sufficient to do this in the ‘regular’ case. Then F(t) - r = f(t) is 
a C’ function, periodic with period 2, and we get a first development: 

a,[X(x, t)] = ,i, W%(X) cos knt, with (for instance) 

As a second step, we may write: 

cos[pwT(x, t)] = cospw[t + i(f(x + t) -f(x - t))] = cospwt~(x, t) - sinpwty(x, t). 

The functions /3 and y are in C’(S? x R) and thus: 

p(x, t) = x [fig(x) cos knt + S%(x) sin kxt] 

y(x, t) = x [y:(x) cos knt + E{(X) sin knt] 

with 

k$o (lpi/- + IYPklm + I&l- + I&pkl-> < + m. 

Thus the Cauchy product of the two series defining u,[X(x, t)] and cos[pwT(x, t)] is absolutely 

11



140 A. HARAUX and H. CABANNES 

convergent in C(a), and after reduction, we are left with a development of the type: 

a&X] cos[pwt] = kFz[Ak(x) cos(pwt + knt) + pk(x) sin(pwt + knt)] 

which is strongly almost-periodic in C(Q) with exponents contained in (PO} + 2~ in the L2(Q) 
sense. Thus the exponents of u(. , t) in the sense of L’(Q) are in Zw + Zn, and of course it 
is the same set of exponents than in Hi(O). 

(b) In case u. is even and we takex = 0, some simplifications occur in the previous computations. 
We have 

l-h 
ao(O> = yy- 

a,(O) = -4(1 + h) 
sin2(p/2)n 

p%2 

We also obtain 

cos(pwf(t)) = kzo p”k cos(2ki-4 

sin(pc@f)) = k.. a: sin(2knt) 

with 

ppk = 2 l1 cos(pof(t)) cos(2k~rt) dt, j3; = /‘cos(pwf(t)) dt 
0 

I 
1 

(Ypk = 2 sin(pwf(t)) sin(2kzt) dt, 
0 

and we deduce easily 

~(0, f) = lim 
N-m 

q - 4( 1-t h) ~.\lt) 1, where 

ON(l) = P.1 (2p :l)2ji &AR cos{[(2p + 1)~ + 2kn]t} 

and 
+,,p+1+ ,y+1, ifk>O 

A”k = p;P+’ ifk=O 

:(P,,, 
2p+l_ &2p+l 

lkl ) 
ifk<O. 

(30) 

(31) 

(32) 

(33) 

(c) Case uo(x) = 1 - 2/x + Asin27rxl 
Then f(t) = A. sin 2nt, and the condition F’ 2 0 is equivalent to IAl S1/2n. 

12



Oscillations of a string vibrating against a fixed obstacle 141 

Setting cp = $(2p + l)Ao, we obtain 

A$ = 2Jk[(2p + l)h] = 2 ,zO (;;;;$;,+” ifk>O 

A; = &,[(2p + l)Aw] = rFO (-:;F)2r 

A”k = 2(-1)‘-4&2~ + 1+-d = 2(-l)k rzO 
(-1)‘(Cp)2’+‘k’ 

r,(,. + ,k, ,) 
ifk < 0 

ifk=O 
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