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INTRODUCTION

IN A PLANE with normalized coordinate system Oxu, we consider the small oscillations of a vibrating string with fixed ends (*l/2,0).

The free oscillations of this string are perturbed by the presence of a fixed obstacle {u = -h}, against which it rebounds following a law which insures conservation of the energy (0 c h -=c 1). At time t = 0, the string is at rest in a position u(x, 0) = uO(x) such that uo E #(I -1/2,1/2[) In case there is an obstacle, Amerio & Prouse [2, linear obstacle], then Schatzman [12, concave obstacle] studied a nonlinear version of (4), assuming that there is no longitudinal perturbation and no energy loss during the shocks. Following [START_REF] Cabannes | Mouvements presque pkriodiques d'une corde vibrante en prCsence d'un obstacle fixe, rectiligne ou ponctuel[END_REF] and setting Q = ]-l/2, 1/2[, one looks for solutions in the functional class satisfying the system u E c@+, f@2)) n W"(z3+, r.'(n))

u>-h inR+xQ SUPP@U) c {(x, t>, u(x, t> ' -h1 129

(5) at Actually, the existence and uniqueness of a solution for (S) + ( 9) is obtained in the functional class [START_REF] Bochner | A new approach to almost periodicity[END_REF]. The solution constructed satisfies the additional property:

q u 3 0 in g'(]O, + m[ X Q) ( 10 
)
which is used to get uniqueness, and is interpreted in [START_REF] Citrini | Sur le choc de deux cordes[END_REF] as equivalent to subsonic propagation of interactions.

In our case, since au/at (x, 0) = 0, we look for solutions (even as a function of t) defined on R x !i?. Our purpose is to give a precise meaning to the physical idea of 'vibrations' against the obstacle.

We prove that the solution is strongly almost-periodic as a function from R to HA(Q), generally not exactly periodic in t. We also sketch out some simple results concerning the non-harmonic Fourier series of u(x, t) with respect to t. Further computations in this direction are planned for the future.

STATEMENT OF THE RESULTS

Let us denote by (2) the system (5) + [START_REF] Dafermos | Almost periodic processes and almost periodic solutions of evolution equations, Dynamical Systems[END_REF] with ug = 0 and R' replaced by R everywhere. We recall 0 d h < 1. Remark. In contrast with the case of equation ( 4), u(f) is generally not time-periodic. More precisely, we have: THEOREM 1.2. (a) h = p/q with p, q integers, the motion is periodic with p + q as a period if p + q is even, and 2(p + q) as a period if p + q is odd. In the special case when uO(-X) = LQ(X), we have always the period p + q.

In some cases the smallest period is smaller.

(b) If h 65 Q, the motion is never periodic, except in the single case LQ(X) = 1 -21x1, where the motion has the period 1 + h.

Remark. The aim of this paper is to give complete proofs of the results announced in [START_REF] Cabannes | Mouvements presque pkriodiques d'une corde vibrante en prksence d'un obstacle rectiligne[END_REF], together with some more information.

Since u is almost-periodic with respect to f, for every A E R, the limit

1 i-t lim G 1 u(x, 0) de = ti(x, A) exists. The set Z(u) = {A E R, ti( .,A) # 0) .
1s called the set of exponents of U, and in general (cf. [START_REF] Besicovitch | Almost periodic functions[END_REF]) is denumerable.

Here, we have a more precise result. Then the velocity is reversed into U+ = -u-= +2, and the motion proceeds backwards:

Thus &/at (x, t) is discontinuous at t = t*, while ti(x, t) remains continuous with respect to t E R. The motion ti is periodic in t with period 1 + h. Conditions ( 5) and ( 6) are easy consequences of ( 15), ( 16) as soon as ( 8) is checked (to insure strong continuity inHA(Q It is obvious that d E W'."(R x Q) and moreover, almost everywhere on R X Q, we have Then ( 8) follows as an immediate consequence. Finally, a lengthy but standard computation gives the expression of 0~: for every 47 E S(R x Q), we have (17) This formula implies ( 7) and [START_REF] Dafermos | Almost periodic processes and almost periodic solutions of evolution equations, Dynamical Systems[END_REF].

b. The 'regular' case

In addition to (l)-( 3 In order to compute u(x, t), we generalize an idea used in [ll] by Reder. We define a function P: R + R in several steps.

Step

1. If x E [-l/2, l/2], we set / uo(x) -1 2 if -1/2GxSa ifa<xsb 1 -Uo(X) 2 if b G x s l/2. It is clear from (19) that FE C2([-l/2, l/2]).
Step 2. If t E [l/2,3/2], we define

F(t) = 1 -F(1 -t). ( 20 
) ( 21 
)
4

It is clear that FE @([l/2,3/2]). Since F"(1/2) = 0, we have FE C'([ -l/2,3/2]).

Step 3. We extend F on R by the condition

Vt E R, F(t + 2) = F(t) + 2. ( 22 
)
We introduce f(t) = F(t) -t: then f(t) is 2-periodic on R.

We claim that f and F are in C*(R), because F'( -l/2) = F'(3/2) and F"( -l/2) = F"(3/2). The first condition is a consequence of ( 21), the second one follows from F"( -112) = 0.

Some other properties of F are summarized below.

LEMMA 3.1. F is nondecreasing: R + R. In addition (21) holds for t E R, and we have also

F(t)=-l-F(-1-t),VtER.
For every x E a and t E R, we have

-lsF(x+t)+F(x-t)sl.
Proof. Formula (21) means that for every 8 E [ -l/2.3/2], we have

F(0) + F(1 -0) = 1.
Given t E R, we choose m E 2 and 0 E [-l/2,3/2] such that t = 2m + 8. Then:

F(t) + F(l -t) = F(0) + F(1 -0) = 1.
Also, for t E R, we have:

F(t) + F(-1 -t) = F(t) + F(l -t) -2 = -1.
Let x < l/2: by (21), we have

F(x + t) + F(x -t) = F(x + t) -F( -x + t + 1) + 1.
Butxc1/2+-x+t+l>x+t.

Thus we obtain: F(x + t) + F(x -t) s 1. Also, if x 2 -l/2, we write

F(x + t) + F(x -t) = F(x -t) -F(-1 -x -t) -1 a -1, sincex-t2-1-x-t. n Since -l/2 s F(x + t) + F(x -t)/2 G l/2, we introduce: u(x t)=ti F(x+O+F(x-t) F(x+t)-F(x-t)) 7 i 7 2
for (x, t) E fi x R. (

) 26 
The properties ( 5) and ( 6) are immediately checked. On the other hand, in the sense of '9'(Q x R), we obviously have

~[(~)2+(~)*}=4[F'(x+~)F.~(x+~)-~~(X-~)F~'(X-f)] a au au ax ax'at ( ) --= 2[F'(x + t) F"(X + t) -F'(x -t) F"(X -t)]
which implies [START_REF] Cabannes | Mouvements presque pkriodiques d'une corde vibrante en prCsence d'un obstacle fixe, rectiligne ou ponctuel[END_REF].

Differentiating (25) in the distribution sense, we get after reduction:

q lu(x, t) = F'(x + t) F'(x -t) 0 U[X(x, t), T(x, t)], ( 27 
)
this formula making sense because Oz.? is a measure and F' is continuous. From (27), we deduce that ( 7) and ( 10) are satisfied.

As a consequence of lemma 3.1, we have for every r E R: X(1/2, t) = l/2 and X(-1/2, t) = -l/2. Thus u(1/2, t) = 0 and u(-l/2, t) = 0, and we have u(t) EHb(S2) for all t.

To verify the initial condition, we remark that u(x, 0) =ti(F(x), 0) = @(F(x)) = 1 -2lF(x)/ and (20) implies 1 -2jF(x)I = Q(X) in a. It is easy to check that u(x, 4 -uo(x) t + 0 in C(G) as t-+ 0, which implies $ (x, 0) = 0. Combining these two remarks, we get (24), which will appear a convenient tool to treat the more general case where ua is only in Hi(Q). W

c. The general case

If u. satisfies conditions (l-3), we can still define F(t) as in the paragraph above. Then F(t) is non-decreasing, in H'(R) and f(t) = F(t) -t is 2-periodic. We compute u(x, t) by means of formula (23). To check that u(x, t) is the solution of (2) starting from (uo, 0), we can choose a sequence of initials ~0" satisfying (19) with ul; +UO in HA(Q). According to (24j, z/(x, t) will converge to u(x, t) in L"(R, H&Q)).

A similar calculation shows that &"/at converges to du/dt in L"(H, L*(Q)). Thus all conditions (5) + ( 10) are checked by density.

PROOF OF THEOREM 1.1

Because of (24), it is enough to check the almost-periodicity when ~0 is 'regular', so that FE P(R).

a. As a first step, we prove that t-+ u(. , t) is almost-periodic in C(a), by using directly Bochner's criterion.

Let (t,J be any sequence of real numbers. We write:

t, = 2m, + pn Pn E [O, 21 2m, = k,(l + h) + a, on E [0, 1 + h]
where m, and k, are in 2. Thus u(x, t + tn) = 22 i F(x + t + p,.) + F(x -t -&J F(x + t + pn) -F(x -t -pn) +

2 9 2 ~ n
We may assume lim pnk = p and lim onl. =D , by extracting a subsequence of (t,J. Then, n-+m n-ta because of the uniform continuity of F and fi the sequence u(x, t +tJ converges uniformly on 0 x R to Even in the 'regular' case, it is not so easy to check because we cannot approach u in L"(R, H&Q)) by regular functions since U has discontinuous derivatives.

u*(x, t) = ti F(x + t + p) + F(x -t -p) F(x + t + p) -F(x -t -p) +

We need a technical lemma. (for all t and almost every x) b(x, t) = $(x, t) (for all x and almost every t).

The functions a, b take only the values 0, -2 and +2, their discontinuities lie on some curves of a x R.

The periodicity of fi/t allows us to draw a picture in fi X [0, 1 + h] (cf. Fig. 1). For x E [-l/2, 1/2[ and 0 < 6 < l/2 -x, we define a(x, t, 6) = l/~{ti[X(x + 6, t) -T(x + 6, t)] -ti[X(x, t), T(x + 4 t)]> -First we notice that if x 65 w, then X(x + 6, t) -X(x, t) = O(6) when S+ 0

Since ti is Lipschitzian in both variables, we conclude lim a(x, t, 6) = 0 in this case. IGo -Let w,, be the sequence of connected components of w. For every n, we have either ax/ax (x, t) > 0 in w,, or ax/ax (x, t) < 0 in w,,. Thus, in each o,, there are at most 2 values (x,,,) k E{1,2} such that (a) is discontinuous at [X(&,,, 0, Gl,k> r)]. As a consequence, if x Ew\' U {x,,,} we find n,k F; afx, t, S) = a[X, T] g.

In the same way, we obtain that except for denumerable values of x, we have As a consequence, there exists S, denumerable such that, for every x E S,:

-& [u(x, t)] = up, q g + b[X, Tl$. In the general case, we can use (24) which shows that u(x, t) is the limit in L"(R, HA(n)) of solutions associated to 'regular' initials ul;. This finishes the proof of theorem 1.1, since the statement on uo+ u(t) is actually a consequence of (24). W (a) Since F(r) -t is 2-periodic and ti(x, r) is 1 + h-periodic in r, the first assertion is an obvious consequence of formula ( 23). If UO(-x) = UO(X), then b = -a and F(t) is odd. Then F(t) -t is l-periodic, and the second assertion follows.

Actually, F(t) = t + asin 2nd is non-decreasing as soon as 2n7r(n( < 1, and corresponds to the initial datum UO(X) = 1 -21x + asin 2nxxl. In this case, F(t) -t is l/n-periodic.

If for instance h = l/n, then (n + 1)/n = 1 + h is a period for u(. , t), which is strictly or II 2 2) smaller than n + 1. For n = 2p, we get a period smaller than n + 1 = p + q. &IfI((.,r). p is eriodic with a period t, then the functions 

OGU

  exists a, b in ]-l/2, 1/2[, a c b such that u. is non-decreasing and U&X) < 1 on [--l/2, a[ U&X) = 1 forx E [a, b] (3) uo is non-increasing and U&V) < 1 on lb, l/2]. I If there was no obstacle, the motion of the string would be described by the wave equation: a classical approximation following d'Alembert [I] for the small (2-periodic) oscillations around u = 0.

  which is a strengthened version of energy conservation, must hold in the sense of Q'(]O, +w[ x Q). It implies that the energy integral remains unchanged through the motion. Notice that in case a shock takes place simultaneously along a set of non-zero measure in Q, we cannot have +y E C(R_, L2(Q)).Schatzman studied the existence and uniqueness of a solution of (S) such that a+u u(x, 0) = L&J(x), ~ (x, 0) = Q(X).

THEOREM 1 . 1 .

 11 If u0 satisfies (l)-(3), the solution of (X) is such that u(t) = u(. , t) is strongly almost-periodic as a function from R to HA(Q). Moreover, the map UO--+ u(t) is Lipschitzcontinuous from H&Q) to L"(R, H&Q)).

THEOREM 1 . 3 .

 13 The exponents of u lie in the additive subgroup of R generated by n and 2x11 +h = o . More precisely: (a) For general uo satisfying (l)-(3), we have %(U) c ZJC + zw. (11) (b) If u. is even, the motion of ~(0, t) can be developed as a generalized Fourier series: where the infinite sums on the right-hand side converge uniformly and the convergence with respect to N is uniform for t E R. (c) In the special case U&X) = 1 -21x + A sin 2nxl, IAl c$ 8(1 + h) 4i = -(2p + 1)2x2 Jk[(@ + l)Awl fork > 0 fork > 0 and 4(1 + h) A{ = -(2p + l)zn'Jo[(2v + WQ.

  uo(x) = 1 -21x1 l+h The solution of (.C) is easy to describe. For 0 St c t* = -inf{l -Ix], t} if l/2 G t =s 2.: Here Jk is Bessel's function of order k.

3

  At time t* = 1 + h/2, the string hits the obstacle {u = -h} along the line segment {u = -h, 1x1 =S (1 -h)/2}, with a uniform velocity u(t*) = u-= -2.

  ), we assume now uo E C2([-l/2, @I), and u{( -l/2) = ui;(1/2) = 0 &(a) = uh(b) = u!(a) = u{(b) = 0. (19)

2 1 LEMMA 3 5 Proof.

 2135 .2. u is the solution of (C) with initial conditions ;:g 14.2 4 -u'(. 3 t> (H'(Q) c Clhl for uo, 246 'regular' satisfying (l-3).(uo, 0), and we have -U&(52) Let us introduce for convenience x = F(x + t) + F(x -t) , T= F(x + t) -F(x -t) ), we get immediately that au/at and &/dx are in La(Q X R) and moreover: (25) (3'+ M2 = 2[P(x + t) + P(x -t)] '1 au au -$--$=P(x+t)-P(x-r) I *.

Finally, we can

  see that the mapping u. +f is Lipschitzian from H;(Q) to Hl([O, 21). Since 6 E W1,"(Q x R), the mapping: f-+ u(. , t) is Lipschitz-continuous from H'([O, 21) to L"(R, H'(Q)).

  Precompactness of the range of u in HA(Q) Thanks to conservation of energy, u(t) is bounded in HA(Q), thus weakly almost-periodic in HA(Q). According to [lo], Theorem 2.11, the strong almost-periodicity is equivalent to precompactness of the range in H&R).

LEMMA 4 . 1 .Fig. 1 .

 411 Fig. 1.

/ 3 (

 3 x, t, 6) = l/W[X(x, 9, w + 4f)l -6 [X(x, 0, m, 411 Also, for t fixed, we introduce two open sets w= {x+1/2, +1/2[.3x,4 +o} o'= xE]-l/2,+1/2[.~~(x,r)+O. 1 I

  St., =Sk . Then, for x 65 U Sk, we have =X(x, tk) and ?-k(x)=T(x, tk) .Finally, let 1 X,(x) = X(x, P) T&x) = IQ, ,4 + o By a very similar argument as above, we find S, denumerable in ]-1/2,1/2[ such that C3T = a[&, Tp.al t$ + W,, Tp,ol --$ But, except for x E S* denumerable, this is precisely equal to i_@x [u*(x, O)]. Finally, (29) holds with S =S* J,,, U Sk . H PROPOSITION 4.1. Proof. Let (tJ o such that By lemma: au/ax kEN The range of u(t) is precompact in HA(R) ['regular' case]. be an arbitrary sequence of reals. There exists a subsequence (t,J, p and u(x, tn,J + u*(x, 0) in C(0). (x, a) -Gl u*/ax (x, 0) a.e. in S2. Since &/dx(x, tnk) remains Hence, U(X, t,,J +u*(x, 0) bounded in L" (R) by (30), Lebesgue's theorem implies I* 1% (x, a) -g (x, 0) / 2 dx kys 0. in H&Q). n 9 End of the proof of Theorem 1.1. In the regular case, theorem 1.1 is now an obvious consequence of (a), proposition 4.1 and [lo, theorem 2.11, p. 481, applied with Y=C= C(a) and Z =Hh(R).

  are also r-periodic, independently of E, cr', /.I for -t G (Y < /I d 8. As a consequence of (26)) F'*(x + 0) dx dB. Now it is obvious that I for every I E [0, l], the function rr+/ dk 4 = J, ' P2( o) da is r-periodic. Now we distinguish two possible cases: 1st case: r E Q. Since F' is 2-periodic, we must have function of I, it is immediate to deduce /-r+l ^ q(f, t) = q(l) for I E [0, 11. Since q is a continuous J FtL( a) da = k21, k b 0. r Then at every Lebesgue's point of F'2, we must have F'*(t) = k2. Since F' 2 0 a.e., this allows us to conclude that F' = k a.e. As a consequence of (22), we must have k = 1. Also by (21), F(1/2) = l/2. Thus F(t) = t, and uo(x) = 1 -21 F(x) ( implies U,,(X) = 1 -2/x].

1 F 2

 12 2nd case: t = p/q E Q\{O} Then 2qr = 2p is also a period for u(. . t). On the other hand, by (23), we have:U(X, f + 2p) = ti (x + t) + F(x -t) F(x + t) -F(x -t) + 2p2 ' Choosing t = 0 and x = a for instance, we get ~(a, 2p) =G(O, 2p) = li(O,O) = 1 The only possibility is 2p = m(l + h), m E z\(O). Thus h = 2p/m -1 E Q.

I 1 (

 1 Let cc) =274 + h, we can write 11 as a Fourier series in t: z qx, t) = PT" up(x) c&J wt) Since az$'6't l L"(fi x R) , this series is uniformly convergent on a x R. The coefficients aP are C' functions on fi = [-l/2, +1/2] and can be computed easily. Thus we have: 4x9 4 = ,Vl& P$" a,[X(x, t)l cos[peW, t)] uniformly on G x R and we just need to examine the exponents of each term a,[X(x, 4 cos[Pwqx, 01.By a density argument, it is sufficient to do this in the 'regular' case. Then F(t) -r = f(t) is a C' function, periodic with period 2, and we get a first development:a,[X(x, t)] = ,i, W%(X) cos knt, with (for instance)As a second step, we may write:cos[pwT(x, t)] = cospw[t + i(f(x + t) -f(x -t))] = cospwt~(x, t)sinpwty(x, t).The functions /3 and y are in C'(S? x R) and thus: p(x, t) = x [fig(x) cos knt + S%(x) sin kxt] y(x, t) = x [y:(x) cos knt + E{(X) sin knt] with k$o (lpi/-+ IYPklm + I&l-+ I&pkl-> < + m. Thus the Cauchy product of the two series defining u,[X(x, t)] and cos[pwT(x, t)] is absolutely 11 convergent in C(a), and after reduction, we are left with a development of the type: a&X] cos[pwt] = kFz[Ak(x) cos(pwt + knt) + pk(x) sin(pwt + knt)] which is strongly almost-periodic in C(Q) with exponents contained in (PO} + 2~ in the L2(Q) sense. Thus the exponents of u(. , t) in the sense of L'(Q) are in Zw + Zn, and of course it is the same set of exponents than in Hi(O). (b) In case u. is even and we takex = 0, some simplifications occur in the previous computations. We have l-h ao(O> = yya,(O) = -4(1 + h) sin2(p/2)n p%2 We also obtain cos(pwf(t)) = kzo p"k cos(2ki-4 sin(pc@f)) = k.. a: sin(2knt) with ppk = 2 l1 cos(pof(t)) cos(2k~rt) dt, j3; = /'cos(pwf(t)) dt 0 Ypk = 2 sin(pwf(t)) sin(2kzt) dt, 0 and we deduce easily ~(0, f) = lim N-m q -4( 1-t h) ~.\lt) 1, where ON(l) = P.1 (2p :l)2ji &AR cos{[(2p + 1)~ + 2kn]t} and Case uo(x) = 1 -2/x + Asin27rxl Then f(t) = A. sin 2nt, and the condition F' 2 0 is equivalent to IAl S1/2n.