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Abstract –We present a theoretical and experimental study of the acoustic second-harmonic
generation by a single layer of bubbles. This simple system allows us to investigate the subtle
interplay between nonlinear effects and multiple scattering. A perturbative model is shown to give
an excellent agreement with the experimental measurements, and we demonstrate the existence
of an optimal concentration of bubbles, for which the harmonic generation is maximum. The
potential of bubble screens as efficient subwavelength acoustic nonlinear sources is discussed.

Introduction. – Wave transport in a multiple scat-
tering environment has been a subject of intense research,
demonstrating a large variety of behaviors, from the dis-
persive propagation of a coherent wave [1, 2] to the exis-
tence of a diffusive regime, sometimes leading to local-
ization [3, 4]. On the other hand, the nonlinear prop-
agation of waves also comes with many intriguing phe-
nomena, such as self-induced transparency [5] or second-
harmonic generation [6], for instance. The question arises
of how waves propagate when both strong multiple scatter-
ing and nonlinearities are present. For mechanical waves,
this question has been addressed in granular media [7, 8],
with the complication that both scattering and nonlin-
earities are strongly dependent on the contact between
the grains. Gas bubbles appear as perfect candidates
for looking at nonlinear acoustic propagation in a mul-
tiple scattering regime: they are efficient acoustic scatter-
ers, as well as strong nonlinear sources. Bubbly liquids
have already been shown to exhibit substantial acoustic
nonlinearities [9–12]. But an important limitation of the
previous studies was the lack of quantitative comparison
between the theoretical predictions and the experimental
measurements, often due to a weak knowledge of the struc-
ture of the bubbly liquids used for the experiments.

In this Letter, we use stable and well-characterized bub-
bly media to carefully study the interplay between nonlin-
earities and multiple scattering. Our experimental system
is a single layer of bubbles, organized on a square lattice
(see inset of Fig. 1). We focus on a particular nonlin-

ear mechanism: harmonic generation, i.e. how a pressure
wave at frequency f generates, due to the presence of bub-
bles, a wave at frequency 2f .

Theory. – We limit ourselves to the long wavelength
regime, which means that the wavelength is much larger
than the typical distances involved in the system, namely
the radius R of the bubbles, and the distance d between
two neighboring bubbles.

Linear regime. Excited by a monochromatic pressure
with complex amplitude P , P exp[−iωt], a bubble oscil-
lates and generates at distance r a spherical pressure field
p(r, t) = V̈ (t−r/c)/(4πr), where V (t) is the instant bubble
volume and c the sound speed in the liquid. With a linear
development of Rayleigh-Plesset equation [13], this pres-
sure field can be written p(r, t) = fsP exp[iω(r/c − t)]/r,
where the scattering function

fs(ω) =
R(

ω0

ω

)2 − 1− i(kR+ δ)
(1)

has been introduced. In Eq. (1), ω0 is the resonance an-
gular frequency of the bubble and kR+ δ the total damp-
ing constant (k = ω/c is the wavenumber in the liquid).
The damping of the bubble is due to radiative losses (the
kR term) and dissipation (the δ term), the latter being
divided into a viscous and a thermal contribution.

As they are strong scatterers, bubbles couple efficiently
one to each other: if several bubbles are present in a liq-
uid, the total pressure field experienced by one bubble is
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Fig. 1: Modulus of the linear response function Fs for a single
layer of air bubbles in water, as a function of frequency. Here
the radius of the bubbles is R = 70µm and three different lat-
tice constants are considered: d = 1, 5 and 10 mm. The inset
is a schematic view of the scattering process in the layer: each
bubble generates a spherical wave in response to the total ex-
citing pressure wave, which is the sum on the incident wave P
and the waves scattered by all the other bubbles. The contri-
butions of all these spherical fields make, in the far field, two
plane waves FsP , in the forward and backward directions.

not reduced to the incident field; the contribution of the
other bubbles must be taken into account. An insight-
ful situation is given by the particular case of a single
layer of identical bubbles organized on a square lattice.
When the layer is excited by a normal incident plane wave
P exp[iω(x/c− t)], all the bubbles experience the same to-
tal pressure field (due to the translation invariance of the
system), which can be evaluated on a particular bubble,
labelled 0 (see figure 1) [14],

Ptot = P +
∑
|p|>0

∑
|q|>0

Ptotfs
ei

ωd
c

√
p2+q2

d
√
p2 + q2

. (2)

It has been shown that the discrete sum could be ap-
proximated by a continuous integral:

Ptot ≈ P + Ptot

∫ +∞

b

fs
ei

ωr
c

r

1

d2
dS,

= P

(
1− i 2πc

ωd2
fse

iωb
c

)−1
, (3)

where b = d/
√
π is a cut-off distance taking into ac-

count the positional correlations induced by the square
lattice. Then it can be shown that, at distance x from the
layer, the contributions of all the bubbles sum up into a
plane wave PFs exp[iω(x/c− t)] with a response function
Fs given by

Fs(ω) =
iKR(

ω0

ω

)2 − 1 + 2πRb
d2 − i(KR+ δ)

, (4)

where K = λ/d2 (λ = 2πc/ω is the wavelength). Eq. (4)
takes, as Eq. (1), the form of an harmonic oscillator re-
sponse function. Figure 1 shows the magnitude of Fs as
a function of frequency, for layers of different lattice con-
stants. The maximum of |Fs| is reached for a frequency
that corresponds to the resonance frequency of the individ-
ual bubbles (ω0/2π = 45 kHz for a R = 70µm air bubble
in water) when the lattice constant d is large compared
to the radius of the bubbles (small concentration). For
small values of d/R (high concentration), the peak of the
response is shifted to a higher frequency. However, the
main effect of the coupling is not on the position of the
peak but on its width and amplitude. This effect is piloted
by the KR term that appears in Eq. (4), which makes the
peak broader and higher when d decreases. In the linear
regime, the more bubbles in the layer (i.e. small d), the
stronger the response.

Nonlinear regime. In order to model nonlinear ef-
fects, the Rayleigh-Plesset equation is developed to the
second order. When a bubble is excited by two frequen-
cies, P1 exp[−iω1t] + P2 exp[−iω2t], its oscillation has a
non linear component, at frequency ω1 + ω2. As a con-
sequence, it generates at distance r a spherical pressure

field p(2)(r, t) = 2f
(2)
s P1P2 exp[i(ω1 + ω2)(r/c− t)]/r with

a non linear scattering function calculated by a perturba-
tive method:

f (2)s (ω1, ω2) =
fs(ω1)fs(ω2)fs(ω1 + ω2)

6κPgR2
A12, (5)

with A12 = (ω0/ω1)2 + (ω0/ω2)2 + ω2
0/(ω1ω2) − 3(κ +

1)ω4
0/(ω1ω2)2−3i[(ω0/ω2)2+(ω0/ω1)2+2ω2

0/(ω1ω2)]δ(ω1+
ω2), and where Pg is the pressure of the gas in the bubble
(at rest) and κ its polytropic exponent.

As in the linear case, going from the single bubble to
the layer of bubbles imposes to take mutliple scattering
into account. As depicted in the inset of Fig. 2, two types
of processes lead to the nonlinear response of the layer.
In total, one finds that when excited by two plane waves
P1 exp[iω1(x/c− t)] +P2 exp[iω2(x/c− t)], a layer of bub-

bles emits a nonlinear plane wave 2F
(2)
s P1P2 exp[i(ω1 +

ω2)(x/c−t)] with a nonlinear response function F
(2)
s given

by :

F (2)
s (ω1, ω2) = −Fs(ω1)Fs(ω2)Fs(ω1 + ω2)

6κPg

d4A12

R2λ1λ2
, (6)

where λi is the wavelength in the liquid at ωi. A simple
case of particular interest is when a single frequency ω
is exciting the layer: the incident field is P exp[iω(x/c −
t)]. The nonlinear process then corresponds to harmonic
generation: the layer emits a plane wave

p(x, t) = F (2)
s P 2 exp[i2ω(x/c− t)], (7)

with
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Fig. 2: Modulus of the nonlinear response function F
(2)
s in the

case of harmonic generation, for the same bubble layers as in
figure 1. The inset shows that the harmonic wave generated
by a single bubble is due to its nonlinear response to the total
linear field it experiences, as well as to its linear response to
the nonlinear field generated by the other bubbles. As in the
linear case, the sum of all the contributions makes, in the far
field, a plane wave F

(2)
s P 2.

F (2)
s (ω) = − [Fs(ω)]2Fs(2ω)

2κPg(KR)2

[
ω2
0

ω2
− (κ+ 1)

ω4
0

ω4

]
, (8)

where the imaginary part of A12 has been neglected.
The result of this equation is plotted in Fig. 2 for the same
layers of bubbles considered in the linear case. For the two
dilute layers (d = 5 and 10 mm) two peaks are apparent
at ω0/2 and ω0, which is expected because Eq. (8) shows
that the harmonic response depends on both Fs(2ω) (max-
imum for ω = ω0/2) and Fs(ω) (maximum for ω = ω0).
For d = 1 mm, however, the nonlinear response is different.
A striking difference between the linear and the nonlinear
cases is that the strongest response is not given by small
values of d. As obvious in Fig. 2, at the resonance fre-
quency, the nonlinear response is not favored by the con-
centrated d = 1 mm case; it is higher for the intermediate
d = 5 mm case. It means that, contrary to the linear case,
the nonlinear response does not depend monotonously on
the concentration of bubbles in the layer: there is an op-
timal concentration.

The optimal distance between bubbles can be found by
analysing Eq. (8). At resonance, Fs(ω0) = KR/(KR+ δ)
and Fs(2ω0) ≈ −iKR/3 (see equation (4)), so equation (8)
reduces to

F (2)
s (ω0) =

i

3Pg
× KR

(KR+ δ)2
, (9)

which reaches a maximum value

F (2)
s,max '

i

12Pgδ
for KR = δ → d =

√
λR

δ
. (10)

32 cm
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d
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cell

screen

transducer

Fig. 3: Sketch of the experimental setup. A transducer emits
an acoustic signal which is transmitted through the layer of
bubbles, and measured by an hydrophone. A thin wall cell
filled with a yield-stress fluid is used to trap the bubbles. The
cell is placed close to a screen with a 5 cm-diameter aperture
to limit spurious signals coming from the edges.

For R = 70µm air bubbles in water, at resonance one
has λ = 3.3 cm and δ = 0.08 (mainly due to thermal
losses), Eq. (10) predicts a maximum of 0.01 kPa−1 for
d = 5.4 mm, in good agreement with figure 2.

The physical origin of this optimal concentration of bub-
bles comes from the interplay between nonlinearity and
multiple scattering. On one hand, generation of harmonic
is favored by a large number of nonlinear sources, i.e. a
small d. On the other hand, the total pressure field on each
bubble of the layer decreases when d decreases, making the
nonlinear sources less efficient. This effect can be appre-
ciated by looking closer to equation (3), which shows how
the incident field P is modified by the presence of other
bubbles. At resonance fs = iR/(kR + δ), and the total
pressure field is

Ptot ' P
d2(kR+ δ)

d2(kR+ δ) + λR
, (11)

which decreases for decreasing values of d. For the opti-
mal concentration, for instance, the total pressure is only
half of the incoming pressure. In summary, many bubbles
make many nonlinear sources, but too many bubbles make
the sources less efficient, which explain the existence of an
optimal lattice constant d.

Experiments. – Controlled and stable samples were
obtained by injecting bubbles in a yield-stress fluid [14]. In
this kind of fluid, one can move a capillary to inject bub-
bles at any desired positions, the bubbles being trapped in
the fluid if the yield stress is large enough to compensate
the buoyant force. A single layer of bubbles was injected
in a thin-wall cell, which was then placed in a large wa-
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Fig. 4: Examples of acquired signals for a P = 60 kPa incident amplitude: (a) reference signal, (b) signal through the layer of
bubbles (here R = 70µm and d = 3.5 mm), (c) nonlinear component obtained by pulse inversion (see text). (d): Amplitude of
the Fourier transforms of the different signal, and amplitude of the nonlinear signal as a function of the incoming pressure P
(inset).

ter tank for measurement of the acoustic transmission, as
schematized in figure 3. Because the resonance frequency
of the bubbles was particularly low, special care was given
to diffraction. Indeed, for the smallest bubbles we were
able to inject (R = 70µm), the resonance frequency was
of the order of 40 kHz, which is lower than the range of fre-
quencies used for conventional ultrasonic techniques. At
this frequency, the wavelength in water is 3.75 cm. We
used a large transducer (SY-80, Hz Sonic Ltd, 15 cm in
diameter) to limit beam spreading, and a screen with a
5 cm-diameter aperture to make sure that no signal was
leaking around the sample. To accurately separate the di-
rect signal transmitted by the bubble screen from the mul-
tiple echoes in the tank, we used a short pulse signal rather
than a continuous emission. The transducer was excited
by a gaussian voltage pulse V cos(2πfct)exp[−(2πσt)2/2]
with a central frequency fc = 42 kHz, a frequency width
σ = 5 kHz, and an amplitude V up to 150 V, provided by a
power amplifier. To determine the pressure excitation un-
dergone by the bubbles, the pressure level was measured
close to the aperture of the screen, in the absence of the
bubble sample. A linear dependence was found between
the voltage and the pressure, with a maximum pressure of
P = 60 kPa.

Typical measurements are shown in figure 4. We note
SR(t) the reference signal, acquired 6 cm away from the
screen (see Fig. 4a). When a layer of bubbles is placed
in the acoustic field, the amplitude is reduced and non-
linear features appear in the last part of the signal (see
Fig. 4b). To better appreciate the nonlinear component
of the signal, we used a pulse inversion technique: trans-
mitted signals with opposite voltages were acquired and
the average signal SNL(t) was calculated, thus eliminat-
ing the linear contributions. As can be seen in Fig. 4c,
there is indeed harmonic generation by the layer of bub-

bles: the frequency of the nonlinear pulse is twice that
of the incoming signal. Note that this pulse arrives with
a substantial delay. The amplitude of the nonlinear re-
sponse, PNL, was checked to vary quadratically with the
applied pressure, as shown in the inset of Fig. 4d.
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Fig. 5: Amplitude and phase of the linear transmission as a
function of frequency, for a layer of bubbles with R = 70µ m
and d = 5 mm. Symbols are the experimental measurements,
solid lines the theoretical prediction (1 + Fs).

Linear results. Fig. 5 compares the amplitude and
phase of the measured linear transmission with the theo-
retical prediction 1 + Fs. The good agreement indicates
that the sources of dissipation for the oscillations of the
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Fig. 6: Comparison between the spectrum (amplitude and
phase) of the measured harmonic signal (black crosses) and
three different theoretical estimates. Amplitudes were normal-
ized by the square of the incoming signal. In blue, the non-
linear response function F

(2)
S (f/2) (see Eq. (8)). Note that for

a better comparison, the amplitude of F
(2)
s has been divided

by a factor 2. In green dashed lines, the broadband aspect of
the experiment is taken into account (see Eq. (12)). In red,
diffraction effects are also incorporated.

bubbles are correctly evaluated. The gas we used for in-
jecting bubbles was nitrogen saturated with vapor of per-
fluorohexane to reduce the solubility of the bubbles. The
thermal properties of the gas mixture were calculated [15]:
γ = 1.12 for the ratio of specific heats, and D = 2.5 mm2/s
for the thermal diffusivity. With these values, the thermal
damping rate [16] was estimated at δthe = 0.010 (smaller
than for bubbles of pure air). For the viscous losses [17],
rheological measurements up to a frequency of 100 Hz were
extrapolated to estimate a viscosity of 24 mPa.s at 40 kHz,
giving a viscous damping rate of δvis = 0.078.

Nonlinear results. Fig. 6 shows the spectrum of
the measured nonlinear signal S̃NL(f) (symbols), nor-
malized by the integral of the incoming signal squared
(P/PR)2

∫
|S̃R(f)|2df . For a quasi monochromatic exper-

iment, one could expect this quantity to give directly the

nonlinear response function F
(2)
s (f/2) (see Eq. (7)). How-

ever, as clearly visible in Fig. 6, neither the amplitude
nor the phase of the nonlinear response function are close
to the measurements. There are two reasons for this dis-
crepancy. First, the experiments are not monochromatic,
which means that the broadband incoming signal contains
many couples of frequencies (f1,f2) that generate the mea-
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Fig. 7: Maximum of the nonlinear spectrum as a function of the
distance between the bubbles, measured experimentally (sym-
bols) and predicted by the model (red line).

sured 2f signal. One should then rather consider

S̃NL(f) =
P 2

P 2
R

∫
S̃R(u)S̃R(f − u)F (2)

s (u, f − u)du. (12)

Destructive interferences between the different contri-
butions make the total nonlinear response substantially

weaker than F
(2)
s (f/2), as can be observed in Fig. 6

(dashed lines). With Eq. (12), the model prediction is
closer to the measurements, but the amplitude is still
largely overestimated. It comes from the second reason:
diffraction. For the linear response, the diffraction over
the 6 cm that separate the screen from the hydrophone is
identical for the reference and the sample measurements,
and thus diffraction terms disappear when considering the
ratio of these two signals. In the nonlinear case, how-
ever, the harmonic signal is not diffracted with the same
pattern. Knowing the shape of the beam at the screen
aperture (well approximated by a 1.3 cm-radius gaussian
beam), we can use a Rayleigh-Sommerfeld integral [18] to
calculate the effect of diffraction at 80 kHz. The correc-
tion mainly affects the amplitude, which is reduced by a
factor 0.38, and it yields an excellent agreement with the
experimental data, as can be seen in Fig. 6. The large
phase shift of the nonlinear response is responsible of the
delay observed in the time domain.

Harmonic generation measurements can be repeated
with bubble screens of different concentrations. Fig-
ure 7 presents the maximum of the nonlinear spectrum
as a function of the lattice parameter d. As predicted
by the model, there is an optimal concentration, around
d = 4 mm.

Conclusion. – Careful experiments with stable and
well-characterized samples of bubble screens have allowed
us to validate a perturbation method for calculating the
harmonic generation of such structures. The interplay be-
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tween multiple scattering and nonlinearity has been clearly
identified, and we showed that an optimal concentration
of bubbles exists, for which the decrease of the total excit-
ing pressure due to multiple scattering is balanced by the
number of nonlinear sources.

These experimental results make bubble screens valu-
able candidates for new sub-wavelength nonlinear sources.

Note that the theoretical maximal value of F
(2)
s =

8 MPa−1 (see Fig. 6) should be accessible experimentally
with a monochromatic excitation and a larger sample to
reduce diffraction. With such a screen, a 60 kPa inci-
dent wave at 42 kHz would give a nonlinear signal with
a 0.008× 602 = 30 kPa amplitude. Even better nonlinear
performance can be expected if one manages to reduce the
damping rate of the bubbles (see Eq. (10)), by reducing
the viscosity of the medium for example. One could imag-
ine to use such a system for the design of subwavelength
acoustic “diodes” [19], blocking the acoustic energy in one
direction and letting it flow in the other direction. A first
screen would be optimized for being a strong nonlinear
source (f → 2f), while the second one would be optimized
to block (linearly) frequency f and transmit frequency 2f .

Further optimization of the nonlinear effects can be con-
sidered by applying our simple model to more complex
screens. For instance, adding a second size of bubbles in
the screen could have an interesting effect, especially if the
size is chosen in such a way that they resonate at 2f .
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