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Chicken egg white protects the embryo from bacterial invaders by presenting an

assortment of antagonistic activities that combine together to both kill and inhibit growth.

The key features of the egg white anti-bacterial system are iron restriction, high pH,

antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis

is the major pathogen responsible for egg-borne infection in humans, which is partly

explained by its exceptional capacity for survival under the harsh conditions encountered

within egg white. However, at temperatures up to 42◦C, egg white exerts amuch stronger

bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism

of egg white-induced killing is only partly understood. Here, for the first time, the impact

of exposure of S. Enteritidis to egg white under bactericidal conditions (45◦C) is explored

by global-expression analysis. A large-scale (18.7% of genome) shift in transcription

is revealed suggesting major changes in specific aspects of S. Enteritidis physiology:

induction of egg white related stress-responses (envelope damage, exposure to heat

and alkalinity, and translation shutdown); shift in energy metabolism from respiration to

fermentation; and enhanced micronutrient provision (due to iron and biotin restriction).

Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent

with envelope damage resulting in cell death by lysis. A surprise was the high degree of

induction of hexonate/hexuronate utilization genes, despite no evidence indicating the

presence of these substrates in egg white.
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INTRODUCTION

Avian egg white is an intracellular fluid that serves the dual purposes of protecting the developing
embryo against invading microorganisms and providing it with a source of nutrients. Egg
white represents a hostile medium for bacterial propagation due to its harsh physicochemical
properties (alkaline pH and high viscosity), the nutritional restriction it imposes and its arsenal of
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antimicrobial molecules. Various macromolecules within egg
white exhibit antimicrobial activity (Baron et al., 2016 for
a review), including: lysozyme, which exerts a hydrolytic
activity against the cell wall of Gram-positive bacteria leading
to membrane disruption; ovotransferrin, a high-affinity iron-
chelating protein that promotes iron restriction and mediates
damage to bacterial cytoplasmic membranes; protease inhibitors
(e.g., ovomucoid, ovoinhibitor, cystatin, and ovostatin) that
inhibit proteases of pathogenic bacteria required for host
colonization; and vitamin-binding proteins (flavoprotein, avidin,
and the thiamine-binding protein) which sequester riboflavin,
biotin, and thiamine, respectively, and thus induce bacteriostasis.
In addition, some minor proteins and peptides recently revealed
by high-throughput approaches may also play a role in defense
against bacterial contamination and it is quite possible that the
various anti-bacterial factors associated with egg white interact
synergistically to enhance protection against bacterial invaders
(Baron et al., 2016).

Studies on the antimicrobial activity of egg white generally
employ Salmonella enterica serovar Enteritidis as the model
bacterium as it represents the predominant (90%) serotype
responsible for foodborne diseases (salmonellosis) resulting from
egg or egg-product consumption (EFSA BIOHAZ Panel, 2014).
Moreover, egg products (whole, yolk, or liquid egg white) are
used in the fabrication of various foodstuffs (sausages, sauces,
cakes, pasta, etc.) and it is clearly important that such egg
products are pathogen-free, especially when preparation does
not include cooking. However, the traditional heat treatment of
liquid egg white (e.g., 57◦C for just 2 min) does not result in
the total destruction of S. Enteritidis, although does preserve
the techno-functional properties of egg white (Baron, 2010). The
high occurrence of the S. Enteritidis in egg-related food-borne
disease can also be explained by the specialized ability of this
serovar to survive under the harsh conditions encountered in egg
white (Lock and Board, 1992; Clavijo et al., 2006; Guan et al.,
2006; Gantois et al., 2008b, 2009a), although the mechanisms
associated with the exceptional egg white resistance exhibited by
S. Enteritidis have yet to be entirely resolved.

Many studies have focused on identifying S. Enteritidis
factors conferring resistance to egg white. Approaches employed
include directed mutagenesis (Lu et al., 2003; Cogan et al., 2004;
Kang et al., 2006), random mutagenesis (Clavijo et al., 2006),
in vivo expression technology (IVET) (Gantois et al., 2008a)
and microarray-based transposon library screening (Raspoet
et al., 2014). Such studies have revealed genes essential for the
survival of S. Enteritidis in egg white, including those with
roles in membrane structure and function, the metabolism of
nucleic acids and amino acids, motility, the synthesis and repair
of DNA, invasion and pathogenicity. However, comparison
between such studies is complicated by the wide range of
experimental conditions and methods employed, such that
the relative contributions of individual components remains
uncertain. Nevertheless, it is generally accepted that the key anti-
bacterial influences of egg white are iron deficiency (provoking
bacteriostatisis) and bacterial-cell envelop damage (which is
bactericidal) (Kang et al., 2006). However, physico-chemical
factors, such as alkaline pH and temperature of incubation,

also play important roles in egg white antimicrobial activity.
Immediately after laying, the loss of carbon dioxide through
the pores of the eggshell leads to a rapid increase in egg white
pH, from 7.8 to 9.3 over 4–14 days, depending on temperature
(Sauveur, 1988). This increased alkalinity is important since, at
pH ≥ 8.8, egg white displays bacteriostatic and/or bactericidal
properties, whereas at pH 7.5 or 8 either weak bacterial growth
or a bacteriostatic activity are observed, respectively (Tranter and
Board, 1984; Messens et al., 2004; Kang et al., 2006).

Temperature also has a major impact on S. Enteritidis growth
in egg white. At 20 and 30◦C, many reports suggest that S.
Enteritidis is able to grow slightly in egg white. The increase
varies from one to four logarithmic units/mL depending on
the authors and incubation time (Clay and Board, 1991; Lock
and Board, 1992; Humphrey and Whitehead, 1993; Ruzicková,
1994; Baron et al., 1997; Chen et al., 2005; Murase et al., 2005).
At 37◦C, the results observed by different authors vary: several
report a maintenance or death of S. Enteritidis in egg white
(Bradshaw et al., 1990; Ruzicková, 1994; Clavijo et al., 2006; Guan
et al., 2006) whilst others indicate a slight growth (Kang et al.,
2006). Kang et al. (2006) suggest that growth, maintenance or
death of S. Enteritidis incubated at 37◦C in egg white depends
on the inoculum size. However at 42◦C, a bactericidal effect
of egg white against S. Enteritidis is systematically observed,
with destruction varying from <2 to 3.5 logarithmic units/mL,
depending on incubation time and laboratory (Guan et al., 2006;
Kang et al., 2006; Gantois et al., 2008a). The literature thus
indicates that higher temperature and alkaline pH enhance the
antibacterial activity of egg white. It is notable that temperatures
that support the bactericidal activity of egg white are close to
those encountered naturally during egg formation and that of the
hen body (42◦C); this temperature is routinely used in studies
on the bactericidal activity of egg white (Guan et al., 2006; De
Vylder et al., 2013; Raspoet et al., 2014). Indeed, the relation with
temperature and antimicrobial activity of egg white is underlined
by a patent describing a novel egg white pasteurization process
(Liot and Anza, 1996) involving incubation of liquid egg white
at moderate temperatures (best results at 42–45◦C) for 1–5
days. This method is considered superior to the less efficient,
but more traditional, “egg white pasteurization” treatment (e.g.,
57◦C for 2–5 min) since it provides a complete killing of S.
Enteritidis, preserves the techno-functional properties of the
egg white and allows subsequent storage of liquid egg white
at room temperature rather than under refrigeration (Baron,
2010). Studying the global response of S. Enteritidis to egg white
incubation at 42–45◦C would provide insight into the killing
mechanisms involved that might enable a further optimization
of the control of this pathogen in eggs and egg products.

Recently, the contribution of temperature (37–48◦C), pH
(7.8 and 9.3), inoculum size (3–8 log10 CFU) and egg white-
protein concentration (using egg white and egg white model
medium) to the antimicrobial activity of egg white was more
thoroughly investigated using factorial design analysis (Alabdeh
et al., 2011). The results provided two major conclusions: firstly,
that the key role played by egg white proteins in antimicrobial
activity depends on both temperature and pH; and secondly,
that the bactericidal activity of egg white against S. Enteritidis
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only becomes apparent at ≥42◦C. These findings thus identify
the conditions required for egg white dependent killing of
S. Enteritidis allowing further research on the mechanisms
involved. The study described here further addresses the
bactericidal activity of egg white and the corresponding response
of S. Enteritidis. We examine the global expression response of
S. Enteritidis to egg white model medium exposure for 45 min
at 45◦C and pH 9.3, and reveal major changes in transcription
that correlate well with the conditions presented by egg white.
The results provide novel insight into the environmental signals
encountered by S. Enteritis in egg white and the expression-
response that this pathogen displays in its attempt to adapt to
such exposure.

MATERIALS AND METHODS

Bacterial Strain
Salmonella Enteritidis NCTC13349 was used in this study
(kindly donated by Matthew McCusker, Center for Food
Safety and Food Borne Zoonomics, Veterinary Sciences Centre,
University College Dublin, Ireland). This strain was isolated
from an outbreak of human food poisoning in the United
Kingdom that was traced back to a poultry farm. The stock
cultures were conserved at −20◦C with 50% (v/v) glycerol.
Before use, cells were propagated twice overnight at 37◦C in
tryptone soy broth (TSB, Merck, Darmstadt, Germany) without
shaking.

Preparation of Sterile Egg White and Egg
White Model Medium
Egg white was prepared from 5 to 10 day-old eggs obtained from
conventional hen housing system. Eggshell surfaces were cleaned
with tissue paper, checked for cracks and then sterilized with 70%
alcohol; residual alcohol was removed by briefly flaming the shell.
Eggshells were then broken, under sterile conditions, and the
released egg whites were aseptically homogenized with a DI25
Basic homogenizer (Ika, Grosseron, Saint-Herblain, France) at
9,500 rpm for 1 min. The egg white pH was 9.3± 0.1.

Egg white filtrate was prepared by ultrafiltration of three
different batches of liquid egg white (from different eggs).
Ultrafiltration was performed using a pilot unit (TIA, Bollène,
France) equipped with an Osmonics membrane (5.57 m2, 10 kDa
cut-off; PW 2520F, Lenntech B.V., Delft, Netherlands). Filtration
was achieved according to Baron et al. (1997). Concentrated
egg white (retentate) was circulated back to the feedtank and
permeate (filtrate) was drained off, collected in a beaker, sterilized
by filtration (Nalgene R© filter unit, pore size <0.2µm, Osi,
Elancourt, France), and then stored at 4◦C until use. The pH (9.3
± 0.1) of the egg white filtrate remained unchanged.

Egg white model medium (EWMM) was prepared by adding
10% egg white (vol/vol) to egg white filtrate. The solution was
then homogenized with a DI25 basic homogenizer at 9,500 rpm
for 1 min following which the pH was re-confirmed (9.3 ± 0.1).
Medium sterility was monitored by inoculating tryptone soy agar
(TSA, Merck, Darmstadt, Germany) plates with 1 ml of EWMM
and then confirming lack of colony formation after overnight
incubation at 37◦C. The egg white filtrate pH was 9.3± 0.1.

Incubation of S. Enteritidis in Egg White or
Egg White Model Medium
After propagation in tryptone soy broth, bacterial suspensions
were centrifuged at 5,600 × g and 15◦C for 7 min, and
cells were washed three times with egg white filtrate. The
final pellet was resuspended in the original volume of egg
white filtrate and was then inoculated into egg white or in
EWMM at a final concentration of 7.3 ± 0.2 log10 CFU/ml.
The resuspended bacteria were incubated at 30 or 45◦C for 45
min and 24 h to evaluate the bactericidal activity of egg white
and EWMM. Bacterial suspensions of S. Enteritidis (overnight
cultures centrifuged at 5,600 × g and 15◦C for 7 min, and
washed three times with fresh optimum medium, TSB) were also
incubated in TSB at pH 7.3 for 24 h at 30 and 45◦C, as a control.

For transcriptome analysis, bacterial suspensions of S.
Enteritidis prepared as above were incubated in EWMM (7.3 ±

0.2 log10 CFU/ml in aliquots of 20ml) for 7, 25, or 45min at 45◦C
before RNA extraction.

Numeration of Bacterial Cells after
Incubation
A numeration method based on miniaturization of the
conventional plate-counting technique was used according to
Baron et al. (2006) with a Tryptone soya agar (Merck, Darmstadt,
Germany) overlay procedure. After incubation at 37◦C for 20–24
h, the number of colony forming units (CFU) was recorded.
Results were compared using analysis of variance and the
average comparison test using the R 2.13.0 software (http://cran.
r-project.org/).

RNA Isolation and Synthesis of cDNA
After incubation, cells were centrifuged at 10,000 × g at 4◦C for
5 min, pellets were immediately frozen in liquid nitrogen and
stored at −80◦C. After defrosting on ice, cells were disrupted
by treatment with TE (10 mM Tris-HCl pH 7, 1 mM EDTA)
buffer, containing 20 mg/mL lysozyme, for 30 min at 37◦C
followed by mechanical lysis with zirconium beads using a
FastPrep-24 instrument (MP Biomedicals, Illkirch, France) with
two cycles of 30 s at 30 Hz interspaced with 30 s cooling
periods. Total RNA was then isolated by phenol-chloroform
extraction. The evaluation of RNA quantity and quality was
assessed spectrophotometrically by measuring the ultraviolet
absorbance profile (NanoDrop, NanoDrop Technologies, Inc.,
Rockland, Wilmington, DE, USA) at 230, 260, and 280 nm.
For the microarray experiment, additional analysis for RNA
integrity was performed using a RNA 6000 Nano LabChip
kit (2100 Bioanalyzer, Agilent Technologies, Santa Clara, CA,
USA) (Mueller et al., 2000). The RNA samples were then
DNase treated using a DNA-free kit (Ambion, Austin, TX, USA)
according to the manufacturer’s instructions. Quantification
of the RNA and any contamination by proteins was again
assessed using a NanoDrop ND-1000 and RNA integrity again
confirmed using a 2100 Bioanalyzer. The resultant total RNA
(500 ng of each sample) was reverse transcribed and labeled
using the SuperScriptTM Indirect cDNA Labeling System
(Invitrogen, Life Technologies, Courtaboeuf, France) according
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to the protocol provided by the manufacturer, except that the
hexamer solution was replaced with the pdN6 hexamer solution
(Roche Diagnostics, Meylan, France).

Microarray and Experimental Design
A DNA microarray was designed based on the only published
genome sequence for Salmonella Enteritidis strain NCTC13349
(http://www.ncbi.nlm.nih.gov/nuccore/AM933172.1). The
microarray, containing 3971 ORFs (representing 94.4% of S.
Enteritidis gene composition), was designed using Agilent’s
e-array software (https://earray.chem.agilent.com/earray/).
Note that 235 ORFs were not included due to restricted design
parameters of the e-array program. The custom oligonucleotide
microarray was manufactured by Agilent Technologies using
an 8 × 15K format and included each probe in duplicate.
Microarray hybridization and data analysis were performed by
the Pasteur Institute (Transcriptome and Epigenome Platform
PF2, Paris, France).

S. Enteritidis, exposed to egg white model medium for
7, 25, and 45 min at 45◦C, was compared to a reference
control (0 min of incubation) consisting of S. Enteritidis grown
overnight in TSB at 37◦C, washed three times in egg white
filtrate and finally resuspended in egg white filtrate at ambient
temperature. For each time point, three arrays were hybridized
with three independent biological replicates in duplicate (giving
three biological replicates and two technical replicates). Cy3
and Cy5 dye-swap design was included in order to reduce dye-
specific effects. The data have been deposited in NCBI’s Gene
Expression Omnibus and are accessible through GEO Series
accession number GSE92545 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE92545).

Data Acquisition and Preprocessing
Images of the microarrays were scanned using an Axon 4000a
scanner (Axon, Instruments, CA, USA) and intensity data were
extracted using the GenepixPro 6.1 software. Raw microarray
data were first normalized using the LOWESS (Locally Weighted
Scatter Plot Smoother) regression option in the R software suite,
version 2.10.1 (http://www.r-project.org/), to correct for dye-bias
within the array, followed by median normalization to normalize
across all arrays.

Differential Expression Analysis
Changes in gene expression upon incubation in EWMM
compared to the control were recorded as fold changes (ratio
of 7, 25, or 45–0 min). Statistical significance was estimated
with a moderated t-test using the LIMMA package (Smyth,
2004) of the R software suite (version 2.10.1). The adjustment
of raw p-values was then performed to account for multiple
comparisons, using the method of Benjamini and Yekutieli
(2001). Genes that exhibited ≥2.0 fold changes in expression
(with respect to the control) and P ≤ 0.05 were considered
as differentially regulated. Differentially expressed genes were
initially categorized by function according to the Clusters
of Orthologous Groups (http://www.ncbi.nlm.nih.gov/COG)
designations and categorization was subsequently optimized
manually.

Confirmation of Selected Genes by
qRT-PCR Analysis
Confirmation of the transcriptomic analyses was achieved using
qRT-PCR. Primers (Table 1) for amplification of selected genes
were designed using Primer 3 (http://primer3.ut.ee/). Non-
contamination of RNA by gDNAwas confirmed by qPCR prior to
cDNA synthesis. cDNA was synthesized using the high-capacity
cDNA archieve kit (Applied Biosystems) as recommended by
the manufacturer. qRT- PCR was performed using an iCycler
iQ Real-Time PCR Detection System (Biorad). Thermal cycling
consisted of 5 min at 95◦C, followed by 45 cycles of 15 s at
95◦C, 20 s at 60◦C and 40 s at 72◦C. A melting curve analysis
(55◦C to 95◦C) was performed after the thermal profile to ensure
specificity and PCR efficiency was calculated at between 85 and
105% from the log-linear portion of the standard curves. A
total of two RNA extractions were performed using distinct S.
Enteritidis cultures grown on different batches of EWMM. Each
of the two RNA extracts thus obtained was subject to qRT-
PCR, in triplicate, for each selected gene. Standard curves were
generated to calculate the copy number of each gene in each
sample. The most stable control genes in our conditions were
determined by geNorm among five potential genes. qRT-PCR
data were normalized by geometric averaging of three internal
control genes (asmA, emrA, orf32; primers in Table 1). Gene
expression is thus provided as relative expression with respect to
the normalization factor calculated by geNorm.

RESULTS

Egg White and Egg White Model Medium
Exhibit Strong Bactericidal Activity at 45◦C,
But Are Only Bacteriostatic at 30◦C
In order to establish suitable conditions for investigating the
impact of egg white bacteriocidal activity on S. Enteritidis global
gene expression, the effects of egg white (EW) and egg white
model medium (EWMM; egg white filtrate supplemented with
10% egg white) on growth and survival of S. Enteritidis after
24 h were examined at both 30 and 45◦C, at pH 9.3 (which
corresponds to the natural pH of egg white, as achieved a few
days after laying). Pre-cultures in tryptone soya broth (TSB, pH
7.3) were washed (three times) in EW filtrate and inoculated into
EW and EWMM to give 7.3 ± 0.2 log10 CFU/ml. At 30◦C, there

TABLE 1 | Sequences of primers used for qPCR.

Gene Forward primer Reverse primer

asmA ACCGGACACGTTCAGGTAAC GGCAACAGGTTGTCCAGATT

bioB CCGAGCGTTTAATGGAGGTA TTGACGCCCTGTACAATCTG

dgoK TTCTGATTGCCTGCTCTCCA GCAATTGACTGGGGATCGAC

emrA ATCTGTGGGTGGACGCTAAC CCATATCCAGACCGACGACT

fes CGCGTTTTGGCTGTGTACTA TTCAGCCGGGTAATGACTTC

ftn GCCACATACCACTGCAAGAA CGACCTATGAGCATGAGCAG

iroB TTTGTCGGTCCACCACTGTA AGCGTCAAATACCACCAACC

orf32 CGGCTCTTTAACGCTCTGAC CCGGTGGGTTTTGATAAATG
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FIGURE 1 | S. Enteritidis survival after 24 h incubation at 30 or 45◦C in

optimum medium (TSB), egg white (EW) or in egg white model medium

(EWMM). Inoculum levels were 7.3 ± 0.2 log10 CFU/ml. Experiments were

performed in triplicate. Samples with different letters are significantly different

(p < 0.05).

was only slight growth (increases of ∼0.2 and 0.7 log10 CFU/ml,
respectively) whereas when a rich (TSB) medium was employed
good growth (increase of 2.1 log10 CFU/ml) was achieved after 24
h at 30◦C (Figure 1). These observations confirm that both EW
and EWMM impose a bacteriostatic influence on S. Enteritidis at
30◦C (Baron et al., 1997). In contrast, after incubation at 45◦C
for 24 h (Figure 1), S. Enteritidis was undetectable in either EW
or EWMM (indicating a reduction of 7.3 log10 CFU/ml), while
in TSB at 45◦C slight growth was observed (increase of 0.3 log10
CFU/ml). Thus, EW and EWMMboth exhibit strong bactericidal
activity at 45◦C, but are only bacteriostatic at 30◦C. The similarity
between the effects of EW and EWMM, as observed above, were
previously described (Baron et al., 1997; Alabdeh et al., 2011) and
validate the use of EWMM in place of EW in the gene expression
studies described below. The use of EWMM in place of EW
was necessary in order to enable easy recovery of S. Enteritidis
following exposure to EWMM, which is not possible with EW
due to its highly viscous consistency.

Egg White Exposure Induces Major
Changes in the S. Enteritidis Transcriptome
The above data show that EWMM elicites S. Enteritidis cell death
at 45◦C. Thus, incubation at 45◦C in EWMM represents suitable
conditions for examination of the response of S. Enteritidis to
the bactericidal activity of EW using a global-expression analysis
approach. For this purpose, relatively short incubation times (7,
25, and 45 min) were selected, where no major reduction in
viable cell number occurred (observed change was from 7.3 ±

0.2 log10 to 7.1 ± 0.3 log10 CFU/ml at 0–45 min, respectively),
which corresponds to the early phase of EWMM-induced lethal-
cell damage. It should be noted that continued exposure resulted
in progressive cell death (at a rate of ∼1 log10 CFU/ml every
3 h; data not shown) leading to no detectable cells after 24
h of incubation (Figure 1). Expression effects were determined
using a Salmonellamicroarray representing 94.4% of the genome
(∼3,971 genes). For each incubation time in EWMM, expression
was compared to that of the control (t = 0: S. Enteritidis grown

overnight at 37◦C in TSB and then washed three times in egg
white filtrate). Genes with a statistically significant ≥ twofold
change in expression (P ≤ 0.05) were considered as differentially
regulated. Thus, at 7, 25, and 45 min, 13.4% (288 induced and
277 repressed), 15.3% (304 induced and 362 repressed) and 18.7%
(318 induced and 468 repressed) of genes were differentially
regulated, respectively. This indicates that a high proportion of
the genome was subject to expression alteration and that there
was an increasing degree of change with time upon exposure to
EWMM at 45◦C. Examination of the expression data showed
that the differentially-regulated genes can be classified into 11
major functional groups (Tables 2–11), and that these can be
further organized into three broad functional categories: nutrient
deprivation; cell damage/stress; and shift in energy metabolism
and catabolism.

Nutrient Deprivation
Induction of Genes Involved in Biotin Biosynthesis
The genes of the bioABCDF operon, encoding the biotin
biosynthesis components, were strongly up-regulated following
7–45 min exposure to EWMM at 45◦C; expression was between
6.75- and 25.41-fold increased at 45 min (Table 2). This
induction matches the poor biotin availability in egg white
resulting from the presence of avidin, a powerful biotin-chelation
protein (Banks et al., 1986), There was also a 4.75- to 5.81-
fold increase in expression of the biotin-related accBC operon
at 45 min. The accB gene encodes the Biotin Carboxyl Carrier
Protein which is the direct recipient of biotin following synthesis
and forms part of acetyl-CoA carboxylase that catalyzes the
first step in fatty acid biosynthesis (Cronan, 1996; Streit and
Entcheva, 2003; Beckett, 2007). Coordinated induction of accBC
is necessary for stimulation of the synthesis of biotin (Abdel-
Hamid and Cronan, 2007).

Induction of Genes Involved in Iron-Restriction

Response
A substantial expression effect was observed for genes involved in
the response to iron starvation, with 49 genes in this functional
category exhibiting significant expression changes. The overall
differential expression of iron-starvation genes steadily increased
over the time period of egg white exposure (0–45 min,
Table 3), suggesting a sustained iron-restriction effect over
this time. Under iron restriction, bacteria typically synthesize
and secrete high-affinity ferric chelators, called siderophores,
which solubilize exogenous iron, making it available for uptake
(Neilands, 1995). Salmonella produces two types of cathecholate
siderophore, enterobactin and salmochelin, but it can also pirate
hydroxamate siderophores generated by competing microbes.
The uptake of ferri-siderophore complexes involves specific
outer-membrane (OM) receptors, an OM energy-transducing
system and a periplasmic-binding protein dependent ATP-
binding cassette inner-membrane permease (Andrews et al.,
2003). The ferric uptake regulator (Fur) acts as the master
regulator of iron homeostasis in the Enterobacteriaceae,
controlling the iron-uptake machinery according to iron regime.

Exposure of Salmonella to EWMM at 45◦C stimulated a
strong expression of the entABCDEFHS gene cluster (4.13- to
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TABLE 2 | Biotin biosynthesis and utilization.

Gene Function Fold change

7 min 25 min 45 min

BIOTIN BIOSYNTHESIS

bioA Adenosylmethionine-8-amino-7-oxononanoate transaminase 4.32 6.01 6.65

bioB Biotin synthetase 12.31 19.50 23.39

bioC Biotin biosynthesis protein BioC 5.89 13.22 16.55

bioD Dithiobiotin synthetase 6.51 14.23 19.76

bioF 8-amino-7-oxononanoate synthase 9.75 19.11 25.41

FATTY ACID METABOLISM

accB Acetyl-CoA carboxylase biotin carboxyl carrier protein subunit n.s. 3.31 4.75

accC Acetyl-CoA carboxylase biotin carboxylase subunit n.s. 3.43 5.81

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated (light gray) genes. (n.s., non-significant), fold changes with p > 0.05.

7.81-fold at 45 min) which encodes the proteins involved in
biosynthesis and export of enterobactin, the major siderophore
of Salmonella. The genes involved in ferric-enterobactin uptake
and utilization (fepABCDG, fes, and cirA) were likewise strongly
induced (4.01- to 7.18-fold at 45 min) as were the genes involved
in ferric-hydroxamate uptake (fhuABCD and fhuE, 1.77 to 4.57
fold at 45 min) and ferric-hydroxamate utilization (fhuF, tenfold
at 45 min). The iro genes, required for conversion of enterobactin
to salmochelin as well as uptake and utilization of ferric-
salmochelin, were also significantly induced (1.59- to 4.11-fold
at 45 min) but to a lesser extent than the afore mentioned iron-
uptake genes. The energy-transducing TonB-ExbB-ExbD system
was also up-regulated (2.77- to 4.95-fold at 45 min). The Fe-Fur
induced ftnA gene (encoding ferritin A, an iron-storage protein)
was suitably repressed, an effect that increased from 7 to 45 min
(0.19-fold at 45 min).

All the above genes are Fe-Fur regulated (Bjarnason et al.,
2003; McHugh et al., 2003). The combined induction of the iron-
acquisition genes and repression of the iron-storage gene strongly
suggest that exposure of Salmonella to EWMM induces a Fe-
Fur controlled homeostatic reaction in response to the prevailing
iron-restriction conditions of the medium.

The Fur-mediated response of Salmonella was not limited
to adjustment in iron uptake and storage capacity. The Fe-
Fur repressed sufABCDS operon, encoding an alternative Fe-
S cluster biosynthetic pathway employed during redox stress
and iron starvation in E. coli (Outten et al., 2004), was
also induced (3.77- to 9.35-fold at 45 min). In addition, the
nrdHIEF genes specifying an alternative, Fe-Fur repressed, Mn-
dependent ribonucleotide reductase (Martin and Imlay, 2011),
were induced 5.18- to 15.4-fold at 45 min. The expression of
the sodA and sodB genes, involved in the response to superoxide
(redox-cycling agents) stress, was also significantly affected
by EWMM exposure. SodA is a Mn-dependent superoxide
dismutase whereas SodB is Fe-dependent. Both are Fe-Fur
controlled, but in a reciprocal fashion—sodA is Fe-Fur repressed
whilst sodB is Fe-Fur (via RfrA and RfrB) induced (Troxell
et al., 2011). Upon exposure to EWMM, sodA was induced
(3.05-fold at 45 min) and sodB was repressed (0.14-fold
at 45 min). A similar pattern of expression was observed

by Dubrac and Touati (2000, 2002) and McHugh et al.
(2003).

The sitABCD operon, encoding a manganese-uptake system
active in alkaline conditions (Kehres et al., 2002), was also
induced (4.71- to 9.54-fold at 45 min) in EWMM. This system
is known to be induced by low iron in response to Fur, but also
by low Mn2+ in response to MntR (Ikeda et al., 2005). It has
the capacity to import ferrous iron, but has strong preference
for Mn2+ over Fe2+ (Kehres et al., 2002). Mn2+ uptake in E.
coli only occurs when iron is depleted, probably to prevent
interference ofMn2+ with cellular iron distribution (Anjem et al.,
2009; Andrews, 2011). A similar effect would be anticipated
for Salmonella. The Fur- and MntR-controlled mntH gene, also
involved inMn2+ and Fe2+ uptake (with a preference for Mn2+),
was also induced but in lesser extent (up to 2.1-fold at 45 min).
The greater induction response of sitABCD than that of mntH
may be related to the distinct pH preferences of their encoded
products; MntH exhibits optimal Mn2+ transport under acidic
conditions whereas SitABCD has preference for alkaline pH
(Kehres et al., 2002).

The ydiE gene was also induced by EWMM. This gene
encodes a protein of unclear function and is related to the heme-
utilization component, HemP ofYersinia enterolitica (Stojiljkovic
and Hantke, 1992; Panina et al., 2001). The ydiE gene is Fe-Fur
repressed in S. Typhimurium (Lutz and Bujard, 1997; Bjarnason
et al., 2003), and its induction in EWMM is consistent with Fe-
Fur repression in S. Enteritidis. The Fe-Fur repressed yqjH and
bfd genes are considered to be involved in iron mobilization
(Miethke et al., 2011; Yao et al., 2012). Appropriately, both
were induced by EWMM (Table 3). Interestingly, there was
no significant change in the expression of the feoABC operon,
encoding the anaerobic, high-affinity ferrous-iron transporter.
This may reflect the requirement for anoxic conditions for strong
feo induction (Kammler et al., 1993).

In summary, the microarray data indicate a major iron-
starvation response for S. Enteritidis.

Repression of Genes Involved in Virulence
Fifteen genes among the ∼30 genes located within Salmonella
Pathogenicity Island 1 (SPI1) were significantly down regulated

Frontiers in Microbiology | www.frontiersin.org 6 May 2017 | Volume 8 | Article 829

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Baron et al. Salmonella Enteritidis Egg White Exposure

TABLE 3 | Iron starvation genes.

Gene Function Fold change

7 min 25 min 45 min

IRON ACQUISITION ENTEROBACTIN BIOSYNTHESIS

entA 2,3-dihydroxybenzoate-2,3-dehydrogenase n.s. 4.35 4.96

entB Isochorismatase 2.81 5.70 6.43

entC Isochorismate synthase EntC 3.07 5.59 7.22

entD Phosphopantetheinyltransferase component of enterobactin synthase multienzyme complex n.s. 4.00 7.81

entE Enterobactin synthase subunit E 2.60 5.35 5.83

entF Enterobactin synthase subunit F n.s. 4.40 5.67

entH Thioesterase (ybdB) n.s. 3.75 4.49

entS Enterobactin exporter (ybdA) 2.63 3.02 4.13

FERRIC-ENTEROBACTIN UPTAKE

cirA Colicin I outer membrane receptor and translocator; ferric iron-catecholate transporter 2.76 3.71 4.01

fepA Outer membrane receptor FepA 2.78 4.49 7.18

fepB Iron-enterobactin transporter periplasmic binding protein 4.38 5.03 6.05

fepC Iron-enterobactin transporter ATP-binding protein 3.23 3.95 5.63

fepD Iron-enterobactin transporter membrane protein 2.97 3.60 4.52

fepG Iron-enterobactin transporter permease 2.37 3.09 4.40

FERRIC HYDROXAMATE UPTAKE

fhuA Ferrichrome outer membrane transporter 3.65 3.86 4.57

fhuB Iron-hydroxamate transporter permease subunit n.s. n.s. 1.77

fhuC Iron-hydroxamate transporter ATP-binding subunit n.s. 2.36 3.25

fhuD Iron-hydroxamate transporter substrate-binding subunit n.s. 2.33 3.35

fhuE Ferric-rhodotorulic acid outer membrane transporter 3.39 3.92 3.75

fhuF Ferric-iron reductase protein 6.04 7.43 10.13

SALMOCHELINS BIOSYNTHESIS AND FERRIC SALMOCHELIN UPTAKE

iroB Glycosyltransferase n.s. 2.82 4.11

iroC ABC transporter protein n.s. 2.04 2.75

iroD Ferric enterochelin esterase n.s. 1.64 2.30

iroE Hydrolase n.s. n.s. 1.59

iroN Outer membrane receptor IroN n.s. 2.25 2.47

TonB-ExbB-ExbD ENERGY TRANSDUCTION SYSTEM

exbB Biopolymer transport protein ExbB 2.86 2.98 3.19

exbD Biopolymer transport protein ExbD 2.42 2.56 2.77

tonB Transport protein TonB 4.06 4.47 4.95

HYDROLYSIS OF ENTEROBACTIN AND FERRIC ENTEROBACTIN

fes Enterobactin/ferric enterobactin esterase 7.08 10.01 11.91

IRON STORAGE/RELEASE

bfd Bfr-associated ferredoxin 2.32 2.37 2.09

ftnA Ferritin (ftn) n.s. 0.37 0.19

yqjH Feric-siderophore reductase 2.72 2.04 2.02

Fe-S CLUSTER ASSEMBLY DURING IRON STARVATION

sufA Iron-sulfur cluster assembly scaffold protein 3.66 6.30 8.54

sufB Cysteine desulfurase activator complex subunit SufB 3.23 6.49 9.35

sufC Cysteine desulfurase ATPase component n.s. 3.67 5.22

sufD Cysteine desulfurase activator complex subunit SufD n.s. 3.03 4.53

sufS Bifunctional cysteine desulfurase/selenocysteine lyase n.s. 2.55 3.77

REPLACEMENT OF IRON ENZYMES WITH IRON-INDEPENDENT ALTERNATIVES DURING IRON STARVATION

nrdE Ribonucleotide-diphosphate reductase subunit alpha 9.14 19.30 15.40

nrdF Ribonucleotide-diphosphate reductase subunit beta 6.15 15.12 11.74

nrdH Glutaredoxin-like protein 3.72 6.23 5.18

(Continued)
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TABLE 3 | Continued

Gene Function Fold change

7 min 25 min 45 min

nrdI Ribonucleotide reductase stimulatory protein 5.92 12.01 9.04

sodA Superoxide dismutase 2.53 3.48 3.05

sodB Superoxide dismutase 0.39 0.23 0.14

MANGANESE UPTAKE

mntH Fe/Mn transporter; NRAMP family 1.70 2.09 2.12

sitA Fe/Mn transport protein, periplasmic-binding protein 5.31 7.19 9.54

sitB Fe/Mn transport protein, ATP-binding component 4.32 6.03 8.51

sitC Fe/Mn transport protein, inner membrane component 3.42 4.94 6.93

sitD Fe/Mn transport protein, inner membrane component 2.27 3.47 4.71

IRON UPTAKE FROM HEME

ydiE Hemin uptake protein HemP 4.35 4.47 3.73

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated (light gray) genes. (n.s.), fold changes with p > 0.05.

during the 45 min exposure to EWMM at 45◦C (from 0.07- to
0.48-fold at 45 min; Table 4). SPI1 encodes a type III secretion
system (T3SS) required for invasion of host gut epithelial cells
in the early stages of infection. SPI1 expression is modulated
by several environmental signals (Jones, 2005), which ensures
its availability for invasion of epithelial cells when Salmonella
reaches the distal small intestine. SPI1 is induced by iron in a
Fur-dependent fashion (Teixidó et al., 2011) suggesting that the
down regulation of the SPI1 genes observed here is due to the
low iron concentration of egg white and consequent regulation
change mediated by Fur.

Cell Damage/Stress
Induction of Genes Involved in the Envelope-Stress

Response, Mediated by CpxAR, OmpR/EnvZ and

PspF Regulators
A strong up-regulation of genes specifying proteins involved in
various aspects of cell-envelop integrity was observed (Table 5).
The induction of the spy gene increased with time of incubation
giving a 22.18-fold increase at 45 min. The spy gene encodes
a periplasmic chaperone protein that is induced by spheroplast
formation, indole or zinc exposure as well as by misfolded
envelope proteins (Hagenmaier et al., 1997; Yamamoto et al.,
2008). Its expression is regulated by the two components
systems, BaeSR and CpxAR (Raffa and Raivio, 2002), that
mediate response to a variety of environmental stresses including
suboptimal pH and factors perturbing the bacterial envelope
(Raivio et al., 2013). Another CpxAR-regulated gene, htrA (degP),
was also strongly induced (7.79-fold at 45 min). degP encodes
a periplasmic, membrane-associated serine endoprotease that
degrades abnormal proteins in the periplasm, preventing build-
up of aggregated proteins.

The tolABQR and ybgC genes were also induced, but to
lesser extents (2.15- to 3.80-fold at 45 min). These genes encode
components of the YbgC-YbgF-TolQ-R-A-B-Pal Cell Envelope
Complex, also known as the Tol-Pal system (although ybgF and
pal were not significantly induced). The genes of the Tol-Pal
system are, like degP and spy, CpxAR induced (Bury-Moné et al.,

2009). The Tol-Pal system has a role in the maintenance of cell-
envelope integrity (Lazzaroni et al., 1999; Cascales et al., 2000)
and mutants (tolA or pal) exhibit an extra-cytoplasmic stress
response characterized by a dramatic increase in the transcription
of htrA (Vines et al., 2005). Two other CpxAR-regulated genes
(yncJ and yjfN), encoding envelope proteins, were also induced
in EWMM at 45◦C (Table 5) and these may play roles associated
with membrane integrity (Raivio et al., 2013).

An induction of genes involved in cell permeability was
also apparent with several porin-encoding genes exhibiting
differential expression in response to EWMM exposure: ompC,
ompX and ompS were up-regulated (2.53-, 2.19-, and 2.11-
fold, respectively, at 45 min; Table 5); whereas ompF and nmpC
(named also ompD, the major porin of Salmonella) were down-
regulated (0.33- and 0.32-fold, respectively, at 45 min; Table 5).
Porins enable the diffusion of solutes through the OM and their
regulation is controlled through their association with distinct
sets of regulons (e.g., CpxAR, RpoE/σE, and OmpR/EnvZ) in
response to a wide variety of environmental conditions such as
pH, osmolarity, temperature, toxins and growth phase (Pratt and
Silhavy, 1996; Table 5). The expression effects observed here are
consistent with CpxAR control either by direct CpxAR-mediated
up- and down-regulation of ompC and ompF, respectively, or
by indirect control through other transcription factors such as
OmpR/EnvZ (Batchelor et al., 2005; Dorel et al., 2006; Lin et al.,
2012).

The CpxAR- and BaeSR-controlled acrD gene was induced
(3.60-fold at 45 min) in EWMM (Table 5). This gene specifies a
multidrug-efflux system that removes antimicrobial compounds
(e.g., aminoglycosides) from the bacterial cell. In contrast, the
mdtABC operon specifying another drug-efflux pump that is
also controlled by CpxAR and BaeSR, was not affected. This
observation is consistent with previous studies showing increased
expression of acrD, but not mdtABCD, under conditions that
activated CpxAR but not BaeSR (Rosenberg et al., 2000; Price and
Raivio, 2009). This suggests that the acrD induction seen here is
CpxAR, not BaeSR, dependent. The emrD gene also encodes a
multidrug efflux pump that was induced in EWMM (3.34-fold
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TABLE 4 | SPI1 genes.

Gene Function Fold change

7 min 25 min 45 min

hilD AraC-family transcriptional

regulator (SPI1)

0.36 0.20 0.16

invA EscV/YscV/HrcV family type

III secretion system export

apparatus protein

0.34 0.25 0.17

invB Surface presentation of

antigens protein SpaK

n.s. 0.37 0.26

invE Cell invasion protein (SPI1) 0.23 0.19 0.18

invG Secretin EscC/YscC/HrcC

family type III secretion

system outer membrane

ring

0.28 0.22 0.21

invH Invasion lipoprotein InvH 0.12 0.07 0.07

invI Surface presentation of

antigens protein SpaM

n.s. n.s. 0.30

orgA Oxygen-regulated invasion

protein OrgB

n.s. 0.30 0.23

prgH Pathogenicity 1 island

effector protein (SPI1)

0.30 0.22 0.19

prgI EscF/YscF/HrpA family type

III secretion system needle

major subunit

0.32 0.24 0.19

prgK EscJ/YscJ/HrcJ family type

III secretion inner membrane

ring protein

0.50 0.39 0.27

sicA CesD/SycD/LcrH family

type III secretion system

chaperone

n.s. n.s. 0.28

sipB Cell invasion protein SipB 0.67 n.s. 0.48

spaP EscR/YscR/HrcR family

type III secretion system

export apparatus protein

0.63 0.55 0.46

sprB Transcriptional regulator 0.46 0.31 0.25

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes. (n.s.), fold changes with p > 0.05.

at 45 min, Table 5). This gene may be involved in adaptation
to energy-shock induced by exposure to uncouplers of oxidative
phosphorylation (Naroditskaya et al., 1993).

Seven genes encoding peptidoglycan hydrolases involved
in metabolism and turn-over of cell-wall peptidoglycan were
also induced. These include the dacC and dacD, encoding the
DD-carboxypeptidases PBP6 and PBP6b, and amiC encoding
a MurNAc-L-Ala amidase (Table 5). The mltA, mltD, emtA,
and yfhD genes encoding lytic endotransglycosylases were also
induced. The amiC and dacC genes are positively regulated by
CpxAR and it is suggested that their up-regulation induces a
remodeling of the peptidoglycan in response to environmental
challenge (Weatherspoon-Griffin et al., 2011; Raivio et al., 2013).

The pspADEG genes were also induced in EWMM with
the strongest induction observed at 7 min and weakest at
45 min (Table 5). These are “phage-shock protein” genes
(pspABCDEFG) that are induced in response to various
membrane-altering stresses and are required for survival at high

pH (in E. coli; Weiner and Model, 1994). It is suggested that
dissipation of the proton-motive force (pmf) acts as the inducing
signal for psp expression (Darwin, 2005; Jovanovic et al., 2006).

In summary, the above indicate a major induction of
membrane-stress related genes in cells exposed to EWMM at
45◦C. This effect is consistent with significant CpxAR- and PspF-
dependent gene activation.

Induction of Genes Related to the Heat-Shock

Response
Incubation of S. Enteritidis in EWMM at 45◦C caused up
regulation of genes (groEL, groES, grpE, SEN1800 and htpG)
encoding heat-shock proteins (3.32- to 16.68-fold induced at
45 min, Table 6). The time-dependent expression data indicate
that maximum expression was achieved rapidly (at 7–25 min),
following which expression declined (at 45 min). This pattern
is distinct from that seen for most of the other groups of
differentially regulated genes highlighted here, but has been
observed previously, in E. coli, in response to sudden temperature
up-shift (30–42◦C) (Arsène et al., 2000; Guisbert et al., 2008)
where it is considered to reflect the need for a rapid adaptation to
temperature up-shift. Heat-shock expression is largely controlled
by the alternative sigma factor, RpoH, and provides protection
against heat by stabilizing stress-denatured proteins (Rouvière
et al., 1995).

Induction of Genes Involved in a Translation Stress

Response
The relBE genes, encoding the RelE cytotoxin and RelB antitoxin,
were induced in EWMM (3.47- and 3.26-fold for relE and
relB, respectively, at 45 min). Overexpression of RelE is known
to inhibit translation and cell growth (Gerdes et al., 2005).
The RelBE system is thought to act as a ppGpp-independent
stress-response regulator that blocks translation during amino-
acid starvation or nutritional stress (Christensen et al., 2001).
In addition, four genes encoding ribosome-binding proteins
that also shutdown translation (Starosta et al., 2014) under
conditions of stress (stationary-phase, cold shock or low energy
status) were likewise induced: RaiA (pY, YfiA), the ribosome-
associated inhibitor A (raiA, 1.91 fold at 45 min); RMF, the
ribosome-modulation factor (rmf, 5.76- fold at 45 min); EttA
(YjjK), the “energy-dependent translational throttle A” (ettA,
2.13- fold at 45 min); and SRA (RpsV, S22), the stationary-
phase-induced ribosome-associated protein (rspV, 4.63-fold at 45
min). These observations suggest that EWMM exposure induces
a translational shutdown.

Repression of Genes Involved in Amino Acid

Biosynthesis and Uptake
Genes involved in the synthesis and transport of amino acids
were generally repressed by exposure of S. Enteritidis to EWMM
at 45◦C (Table 7). The amino acids affected include the branched
chain group (Val, Leu and Ile), aromatic amino acids (tryptophan,
phenylalanine, and tyrosine), threonine, arginine, cysteine, and
asparagine.

In contrast to the general trend, lysC was up-regulated (5.99-
fold change at 45 min). Consistent with this induction, lysC is
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TABLE 5 | Membrane-stress related gene.

Gene Function Fold change

7 min 25 min 45 min Control by

CELL INTEGRITY

htrA (degP) htrA; membrane-associated serine endoprotease, periplasmic 4.83 8.32 7.79 CpxAR [2, 9, 13, 18]

spy Spheroplast protein Y, periplasmic 7.62 12.53 22.18 CpxAR, BaeSR [3, 4, 9, 11, 12, 18, 19]

tolA Tolerance to colicins and phage; cell envelope integrity; 1.59 1.97 2.53 CpxAR [12], PspF [12]

tolB Tolerance to colicins and phage; cell envelope integrity; 1.76 1.89 2.15 CpxAR[12], PspF [12]

tolQ Tolerance to colicins and phage; cell envelope integrity 2.41 3.07 3.80 CpxAR[12]

tolR Tolerance to colicins and phage; cell envelope integrity 2.30 2.86 3.62

ybgC Acyl-CoA thioester-hydrolase 2.27 2.68 3.31 CpxAR[12]

yncJ Secreted hypothetical protein 6.35 14.31 19.35 CpxAR [18]

yjfN Secreted hypothetical protein n.s. 3.04 3.79 CpxAR [4, 18]

CELL PERMEABILITY

nmpC (ompD) Outer membrane porin protein n.s. 0.38 0.32 CpxR [15, 18]

ompC Outer membrane porin protein C 3.55 3.94 2.53 CpxAR [4, 6, 9, 13, 18], EnvZ/OmpR [10]

ompF Outer membrane protein F prcursor n.s. n.s. 0.33 CpxAR [4, 6, 9, 13, 18], EnvZ/OmpR [10]

ompS Outer membrane protein S1 n.s. 2.20 2.11 EnvZ/OmpR [17]

ompX Outer membrane protein X n.s. 2.27 2.19 EnvZ/OmpR [17]

MULTIDRUG EFFLUX SYSTEM

acrD Aminoglycoside/multidrug efflux system 1.96 2.42 3.60 CpxR, BaeSR [8, 9, 13, 14, 18]

emrD Multidrug resistance protein D 1.98 2.47 3.34 EnvZ /OmpR [5]

PEPTIDOGLYCAN METABOLISM

amiC N-acetylmuramoyl-L-alanine amidase 2.74 2.87 3.05 CpxAR [13, 16]

dacC D-alanyl-D-alanine carboxypeptidase 3.84 3.77 3.21 CpxAR [18]

dacD D-alanyl-D-alanine carboxypeptidase 3.78 3.71 3.45

emtA Murein transglycosylase E 2.04 1.52 1.41

mltA Murein transglycosylase A 2.18 2.15 2.12

mltD Murein transglycosylase D n.s. 1.53 2.10

yfhD Lytic transglycosylase F n.s. 1.61 2.10

PROTON-MOTIVE FORCE DISSIPATION

pspA Phage shock protein A 4.08 2.84 2.42 PspF [1, 7]

pspD Phage shock protein D 2.88 1.86 n.s. PspF [1, 7]

pspE Thiosulfate sulfurtransferase PspE 2.36 1.62 n.s. PspF [1, 7]

pspG Phage shock protein G 4.08 2.75 2.38 PspF [1, 7, 12]

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated (light gray) genes. (n.s.), fold changes with p > 0.05.

Jovanovic and Model, 1997 [1]; Danese and Silhavy, 1998[2]; Raivio et al., 2000 [3]; De Wulf et al., 2002 [4]; Oshima et al., 2002 [5]; Batchelor et al., 2005 [6]; Darwin, 2005 [7]; Hirakawa

et al., 2005 [8]; Dorel et al., 2006 [9]; Yoshida et al., 2006 [10]; Yamamoto et al., 2008 [11]; Bury-Moné et al., 2009 [12]; Price and Raivio, 2009 [13]; Appia-Ayme et al., 2011 [14]; Hu

et al., 2011 [15]; Weatherspoon-Griffin et al., 2011 [16]; Perkins et al., 2013 [17]; Raivio et al., 2013 [18]; Rosner and Martin, 2013 [19].

reported to be required for viability in egg white at 37◦C (Clavijo
et al., 2006). lysC encodes aspartate kinase involved in lysine,
threonine and methionine biosynthesis and in the initial step
of diaminopimelate (DAP) synthesis, required for peptidoglycan
production (Rodionov, 2003). However, lysA, required for the
final step of lysine synthesis, was down-regulated (0.10-fold
change at 45 min). It is possible that the increased expression
of lysC reflects the need to regenerate peptidoglycan, which may
also explain the slight induction of the dapABDE genes (n.s. to
1.81-fold at 45 min data not shown).

The oppABC operon, encoding an oligopeptide permease,
and dppABCDF, specifying a dipeptide permease, were both
down-regulated in EWMM (Table 7). These ABC transporters
constitute a major route for peptide uptake (Hosie and Poole,

2001; Davidson and Chen, 2004). Their expression is expected to
be dependent upon the availability of amino acids and need for
protein synthesis (Sharma et al., 2007).

Repression of Genes Involved in Motility and

Chemotaxis
Twenty eight genes involved in motility and chemotaxis were
down-regulated (0.05- to 0.42-fold at 45 min, Table 8) with the
degree of repression increasing over time. A strong repression
was seen for the flhCD operon, the class I master operon
that encodes the FlhCD regulatory complex. This complex is
the principal regulator of bacterial flagellum biogenesis and
swarming migration (Claret and Hughes, 2002). The class
II FlhDC−regulated genes, which encode the flagella basal
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TABLE 6 | Temperature-related genes.

Gene Function Fold change

7 min 25 min 45 min

htpG Heat shock protein 90 4.08 3.85 3.57

groEL Heat shock protein;

chaperonin GroEL

8.18 9.93 8.94

groES Heat shock protein;

co-chaperonin GroES

5.86 6.66 5.74

grpE Heat shock protein GrpE;

nucleotide exchange factor

for DnaKJ chaperone

5.36 3.69 3.32

SEN1800 Heat shock protein;

HSP20-like chaperone

14.43 22.26 16.68

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes. (n.s.), fold changes with p > 0.05.

body export machinery, were also down-regulated, in particular
flgKL, fliDST, flgMN, and fliAZ. The fliA gene specifies the
flagellum-specific sigma factor, σ

28, that regulates the class
III genes (Hughes et al., 1993). The class III genes (motAB,
cheAW, cheRBYZ, cheM, SEN3058, tcp, tsr, and fliB), encoding
chemotaxis proteins and structural subunits of the flagellum,
were also down-regulated. The FlhDC-regulated ycgR and yhjH
genes (Ko and Park, 2000) were also strongly repressed (0.08- and
0.18-fold at 45min respectively;Table 8). The ycgR gene regulates
flagellar motility and yhjH is involved in regulation of the switch
from flagellar motility to sessile behavior and curli expression.

The lrhA gene, encoding “LysR homolog A,” was 0.20-fold
down-regulated at 45 min. LrhA regulates the transcription of
genes involved in the synthesis of type 1 fimbriae (Blumer,
2005). Indirectly, this protein also regulates the transcription
of several genes involved in motility, chemotaxis and flagellum
synthesis by directly controlling the expression of the master
regulator FlhDC (Lehnen et al., 2002). The expression of
flagella/motility/chemotaxis components is highly regulated by
multiple environmental stimuli including stress factors such as
heat-shock (Walker et al., 1999), extreme pH (Maurer et al.,
2005), envelope stress (CpxAR dependent, De Wulf et al., 2002)
and low iron content (via RyhB in Salmonella Typhimurum;
Kim and Kwon, 2013b). These stresses are relevant to egg white
exposure and so may well explain the down shift in motility/taxis
genes observed here.

Induction of the Kdp Potassium Uptake System
Egg white exposure resulted in a significant stimulation of the
genes specifying the high-affinity K+ uptake system, Kdp. Kdp
is a P-type ATPase composed of the K+ transporter, KdpABC,
and the two-component regulator, KdpDE. kdpABC and kdpD
were induced by EWMM at 45◦C (3.28- to 7.60-fold at 45 min,
Table 9), although kdpE was not affected. Potassium is a major
cytoplasmic cation in bacteria being involved in maintenance of
osmotic pressure and in regulation of cytoplasmic pH. The Kdp
system is activated when K+ is limited, when cytoplasmic pH is
suboptimal or when turgor pressure is decreased (Epstein, 2003).
A variety of environmental conditions including the pH, growth

temperature and the concentration of other cationic solutes are
known to additionally modulate the strength of the stimulus
perceived by KdpD (Asha and Gowrishankar, 1993).

Shift in Energy Metabolism and Catabolism
Repression of Genes Involved in Respiration
Many of the genes encoding proteins involved in energy
generation under aerobic and/or anaerobic conditions were
down regulated upon exposure to the EWMM at 45◦C
(0.05- to 0.70-fold at 45 min, Table 10). These include
genes encoding for cytochrome bo (cyoABCDE), succinate
dehydrogenase (sdhCDAB), NADH dehydrogenases I and
II (ndh, nuoABCDEFGHIJKLM), formate dehydrogenase-
O (fdoIGH), anaerobic glycerol3-phosphate dehydrogenase
(glpABC), formate dehydrogenase-H (fdhF), hydrogenases
1, 2, and 3 (hyaD, hybADEF, hycCDEFGHI, hydN, hypBC,),
pyruvate formate lyase-activating enzyme (pflABEF, yfiD), and
the reductases of nitrite, nitrate, sulfite, dimethylsulphoxide and
fumarate (nirBD, napADF, asrAC dmsABC, torT, and frdABD,
respectively). This set of repressed genes includes many that
specify iron-containing proteins (Table 10). Indeed, many of the
genes listed in Table 10 are reported to be RyhB/RfrAB, and/or
Fur controlled in the Enterobacteriaceae (Table 10).

The E. coli nuo, ndh and sdh genes have also been reported to
be repressed at high pH (Maurer et al., 2005) possibly through
control by CpxAR (note that the cyo genes are also CpxAR
repressed Raivio et al., 2013). The fdo and hyc genes are also
regulated by PspF in response to high pH response (Jovanovic
et al., 2006) and other genes are regulated by FlhDC (Table 10).

In summary, we observed down-regulation of most of the
genes involved in energy generation by respiration and these
effects are likely controlled by Fur/RfrAB, CpxAR, PspF, and/or
FlhDC.

Induction of Genes Involved in Utilization of

Hexonates and Hexuronates and Carbohydrate

Metabolism
Surprisingly, exposure to EWMM at 45◦C strongly induced
three distinct gene clusters involved in hexonate/hexuronate
utilization: the dgoRKADT operon; the uxuAB-uxaC operon; and
the SEN1433-6 genes. The dgo genes were 13.59- to 31.13-fold
induced (at 45 min; Table 11) in EWMM. Their general function
is believed to be in utilization of D-galactonate and 2-keto-3-
deoxygalactonate. dgoT is inferred to encode a D-galactonate
uptake system; dgoA, dgoK and dgoD are suggested to code
for enzymes involved in the conversion of D-galactonate to
pyruvate and glyceraldehyde-3-phosphate, and dgoR encodes a
GntR/FadR-related regulator likely acting as a D-galactonate-
responsive transcriptional repressor of the dgo operon (Cooper,
1978; Zhou and Rudd, 2013). The uxuAB-uxaC operon is
believed to be involved in mannonate utilization; these genes
were induced by levels (10.68- to 28.2-fold, 45 min, Table 11)
similar to those observed for the dgo genes. The SEN1433-
5 genes form a putative operon adjacent to the functionally-
related and divergent SEN1436 gene. They are induced by 5.17-
to 33.38-fold (at 45 min, Table 11), similar to dgo and uxuAB-
uxaC. The genes of the SEN1432-6 cluster specify three enzymes
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TABLE 7 | Metabolism and transport of amino acids.

Gene Function Fold Change

7 min 25 min 45 min

BRANCHED CHAIN AMINO ACIDS

ilvC Ketol-acid reductoisomerase 0.14 0.09 0.06

ilvD Dihydroxy-acid dehydratase n.s. 0.70 0.46

ilvE Branched-chain amino acid

aminotransferase

0.42 0.45 0.36

ilvG Acetolactate synthase 2 catalytic

subunit

0.50 0.49 0.41

ilvM Acetolactate synthase 2 regulatory

subunit

0.50 0.49 0.37

leuA 2-isopropylmalate synthase n.s. 0.38 0.16

leuB 3-isopropylmalate dehydrogenase n.s. 0.38 0.17

leuC Isopropylmalate isomerase large

subunit

n.s. 0.45 0.18

leuD Isopropylmalate isomerase small

subunit

n.s. 0.61 0.33

livF Leucine/isoleucine/valine transporter

ATP-binding subunit

n.s. 0.67 0.48

livG Leucine/isoleucine/valine transporter

ATP-binding subunit

n.s. 0.46 0.27

livK Leucine-specific binding protein n.s. 0.39 0.22

livM Leucine/isoleucine/valine transporter

permease subunit

n.s. 0.51 0.29

yeaS Leucine export protein LeuE 0.54 0.45 0.32

AROMATIC AMINO ACIDS

aroD 3-dehydroquinate dehydratase n.s. n.s. 0.48

aroP Aromatic amino acid transporter n.s. 0.55 0.35

aroG Phospho-2-dehydro-3-deoxyheptonate

aldolase

n.s. 0.35 0.22

mtr Tryptophan permease n.s. 0.37 0.26

pheA Bifunctional chorismate

mutase/prephenate dehydratase

0.27 0.35 0.36

trpA Tryptophan synthase subunit alpha n.s. 0.61 0.34

trpB Tryptophan synthase subunit beta n.s. 0.53 0.29

trpC Bifunctional indole-3-glycerol

phosphate synthase/

phosphoribosylanthranilate isomerase

0.43 0.34 0.19

trpD Bifunctional glutamine

amidotransferase/anthranilate

phosphoribosyltransferase

n.s. 0.34 0.21

trpE Anthranilate synthase component I n.s. 0.34 0.15

THREONINE

thrA Bifunctional aspartokinase I/homeserine

dehydrogenase I

0.29 0.28 0.15

thrB Homoserine kinase 0.33 0.38 0.22

thrC Threonine synthase n.s. n.s. 0.38

thrS Threonyl-tRNA synthetase 0.16 0.19 0.20

ARGININE

adi Arginine decarboxylase 0.54 0.30 0.24

artM Arginine transporter permease subunit

ArtM

0.51 0.42 0.42

yjdE Arginine:agmatin antiporter 0.49 0.30 0.23

(Continued)

TABLE 7 | Continued

Gene Function Fold Change

7 min 25 min 45 min

CYSTEINE

cysA Sulfate/thiosulfate transporter subunit 0.36 0.34 0.22

cysB Transcriptional regulator CysB n.s. 0.38 0.21

cysC Adenylylsulfate kinase n.s. 0.61 0.3

cysD Sulfate adenylyltransferase subunit 2 n.s. n.s. 0.41

cysH Phosphoadenosine phosphosulfate

reductase

n.s. 0.63 0.46

cysI Sulfite reductase subunit beta n.s. 0.76 0.43

cysJ Sulfite reductase (NADPH) flavoprotein

beta subunit

n.s. n.s. 0.42

cysM Cysteine synthase B 0.44 0.49 0.49

cysN Sulfate adenylyltransferase subunit 1 n.s. n.s. 0.43

cysP Thiosulfate transporter subunit n.s. 0.63 0.38

cysU Sulfate/thiosulfate transporter subunit n.s. 0.45 0.26

cysW Sulfate/thiosulfate transporter

permease subunit

0.31 0.37 0.24

yedO D-cysteine desulfhydrase 0.42 0.42 0.40

ASPARAGINE, GLUTAMATE

asnA Asparagine synthetase AsnA n.s. n.s. 0.25

asnB Asparagine synthetase B 0.36 0.37 0.36

gltB Glutamate synthase subunit alpha 0.37 0.49 0.30

gltD Glutamate synthase subunit beta n.s. 0.68 0.41

gltJ Glutamate/aspartate transport system

permease protein GltJ

0.52 n.s. 0.45

gltK Glutamate/aspartate transport system

permease protein GltK

0.48 0.76 0.43

gltP Glutamate/aspartate:proton symporter 0.55 0.54 0.40

LYSINE

cadB Lysine/cadaverine antiporter 0.47 0.49 0.37

lysA Diaminopimelate decarboxylase 0.23 0.11 0.10

lysC Aspartate kinase III 2.77 4.14 5.99

OTHER AMINO-ACID OR PEPTIDE TRANSPORTERS

dppA Periplasmic dipeptide transport protein

precursor

n.s. 0.35 0.19

dppB Dipeptide transporter permease DppB 0.37 0.40 0.24

dppC Dipeptide transporter n.s. n.s. 0.33

dppD Dipeptide transporter ATP-binding

subunit

0.40 0.51 0.30

dppF Dipeptide transporter ATP-binding

subunit

0.44 0.55 0.39

oppA Periplasmic oligopeptide-binding

protein precursor (OppA)

n.s. 0.64 0.36

oppB Oligopeptide transporter permease n.s. 0.54 0.27

oppC Oligopeptide transport system

permease protein (OppC)

0.47 0.49 0.34

oppD Oligopeptide transporter ATP-binding

component

0.57 0.74 0.46

yecC Putative amino-acid ABC transporter

ATP-binding protein

0.41 0.41 0.40

yecS Putative ABC transporter membrane

protein

0.38 0.40 0.41

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes. (n.s.), fold changes with p > 0.05.
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TABLE 8 | Motility and taxis.

Gene Function Fold change

7 min 25 min 45 min

FLAGELLA BIOSYNTHESIS

flgK Flagellar hook-associated

protein FlgK

n.s. 0.15 0.10

flgL Flagellar hook-associated

protein FlgL

n.s. 0.28 0.18

flgM Anti-sigma28 factor FlgM n.s. 0.28 0.14

flgN Flagella synthesis chaperone

protein FlgN

n.s. 0.26 0.15

flhB Flagellar biosynthesis protein

FlhB

0.26 0.25 0.23

flhC Transcriptional activator FlhC 0.61 0.52 0.41

flhD Transcriptional activator FlhD 0.51 0.40 0.34

fliA Flagellar biosynthesis sigma

factor

n.s. 0.12 0.07

fliB Lysine-N-methylase 0.14 0.08 0.06

fliD Flagellar capping protein n.s. 0.18 0.07

fliS Flagellar protein FliS n.s. 0.18 0.07

fliT Flagellar biosynthesis protein

FliT

n.s. 0.16 0.06

fliZ Flagella biosynthesis protein FliZ n.s. 0.14 0.08

motA Flagellar motor protein MotA 0.37 0.20 0.14

motB Flagellar motor protein MotB n.s. 0.24 0.14

CHEMOTAXIS

cheA Chemotaxis protein CheA n.s. 0.25 0.14

cheB Chemotaxis-specific

methylesterase

0.39 0.32 0.25

cheM Methyl-accepting chemotaxis

protein II

n.s. 0.20 0.12

cheR Chemotaxis methyltransferase

CheR

0.33 0.22 0.16

cheW Purine-binding chemotaxis

protein

n.s. 0.40 0.21

cheY Chemotaxis regulatory protein

CheY

n.s. 0.42 0.24

cheZ Chemotaxis regulator CheZ n.s. 0.42 0.27

SEN2296 Chemotaxis protein CheV 0.18 0.10 0.06

SEN3058 Methyl-accepting chemotaxis

protein II

n.s. 0.19 0.10

tcp Methyl-accepting chemotaxis

citrate transducer

0.15 0.08 0.05

tsr Methyl-accepting chemotaxis

protein

n.s. 0.21 0.14

MOTILITY REGULATION

aer Aerotaxis receptor protein n.s. 0.50 0.42

lrhA Transcriptional regulator 0.37 0.29 0.20

ycgR Flagellar brake protein YcgR n.s. 0.20 0.08

yhjH Cyclic-guanylate-specific

phosphodiesterase

n.s. 0.23 0.18

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes. (n.s.): fold changes with p > 0.05.

(two suspected dehydrogenases and one dehydratase), likely to
be involved in hexonate utilization, and a proposed hexonate
transporter.

TABLE 9 | High-affinity potassium uptake.

Gene Function Fold change

7 min 25 min 45 min

kdpA Potassium-transporting ATPase

subunit A

2.75 3.60 5.74

kdpB Potassium-transporting ATPase

subunit B

2.68 3.16 5.28

kdpC Potassium-transporting ATPase

subunit C

3.17 5.05 7.60

kdpD Sensor kinase KdpD n.s. 2.29 3.28

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes. (n.s.), fold changes with p > 0.05.

A subset of genes encoding phosphotransferase components,
involved in the uptake of carbohydrate, was also induced (ptsH,
ptsA(frwA), frwBC, treB) in EWMM, as were several genes
specifying glycolysis and pentose phosphate pathway enzymes
(gapA, gpmA, pykA, fbaB, pfkB, talC, rpiA, tktA), by 1.99- to
5.62-fold at 45 min (Table 11). Six genes involved in the one
carbon pathway and degradation of serine, glycine and threonine
to pyruvate and ammonia were also induced by EWMM (gcvT,
gcvH, sdaA, glyA, kbl, tdh, serB; Table 11). Both the glyA and
sdaA genes of E. coli were up-regulated by heat shock (Nonaka
et al., 2006; Wolfe et al., 2008; Lüders et al., 2009). Indeed,
the acetate kinase (ackA) and ethanol dehydrogenase (adhP)
genes encoding mixed-acid fermentation enzymes were induced
(Table 11). In contrast, several genes of the TCA cycle (sdhCDAB,
Table 10; lpdA and acnAB, Table 11) were 0.36- to 0.48-fold
down-regulated in EWMM.

In summary, exposure to EWMM at 45◦C provoked
changes in carbohydrate metabolism involving activation of the
hexonate/hexuronate, pentose phosphate, glycolysis pathways
and repression of the TCA cycle.

Confirmation of Microarray Data by
qRT-PCR
To confirm the validity of the expression effects observed
by microarray analysis, qRT-PCR was used to determine the
expression changes of six genes following incubation in EWMM
for 45 min at 45◦C (Table 12). The six genes selected for analysis
were from four different, relevant functional groups and included
those displaying the highest differential expression effects (iroB,
fes, and ftn for iron acquisition, bioB for biotin synthesis, dgoK for
hexonate metabolism and spy for envelope stress). The qRT-PCR
data confirm the expression change of the six genes in response
to exposure of S. Enteritidis to EWMM, although qRT-PCR
indicated a greater degree of regulation (3- to 24-fold higher)
than the microarray analysis, as previously reported (Franchini,
2006). Thus, the qRT-PCR data support the induction of the
iron restriction, hexonate catabolism, biotin biosynthesis and
envelope-stress genes in EWMM and therefore provide support
for the reliability of the expression effects revealed by microarray
analysis (Tables 2–11).
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TABLE 10 | Energy metabolism.

Gene Function Fold change Fe

content

Fur/RyhB

regulation

Other regulation

7 min 25 min 45 min

asrA Anaerobic sulfite reductase subunit A 0.39 0.36 0.26 Yes

asrC Anaerobic sulfite reductase subunit C 0.56 0.47 0.42 Yes

cyoA Cytochrome o ubiquinol oxidase subunit II n.s. 0.71 0.39 No [3, 5, 10, 16] CpxAR [13]

cyoB Cytochrome o ubiquinol oxidase subunit I n.s. n.s. 0.41 Yes [3, 5, 10, 16] FlhDC [4], CpxAR[13]

cyoC Cytochrome o ubiquinol oxidase subunit III 0.52 0.64 0.36 No [3, 5, 10, 16] FlhDC [4], CpxAR[13] PspF [7]

cyoD Cytochrome o ubiquinol oxidase subunit IV 0.59 0.79 0.46 No [3, 5, 10, 16] FlhDC [4], CpxAR[13]

dmsA Anaerobic dimethyl sulfoxide reductase chain A precursor 0.35 0.30 0.29 Yes [10] FlhDC[1, 4, 15], PspF [7]

dmsB Anaerobic dimethyl sulfoxide reductase chain B 0.40 0.33 0.29 Yes [10] FlhDC [1, 4], PspF [7]

dmsC Anaerobic dimethyl sulfoxide reductase chain C 0.43 0.42 0.39 No [3, 10] FlhD [1]

fdhE Formate dehydrogenase accessory protein 0.38 0.42 0.43 Yes

fdhF Formate dehydrogenase H 0.39 0.35 0.27 Yes

fdoG Formate dehydrogenase-O, major subunit 0.15 0.23 0.16 Yes [5]

fdoH Formate dehydrogenase-O beta subunit 0.16 0.23 0.20 Yes [5]

fdoI Formate dehydrogenase-O subunit gamma 0.11 0.17 0.13 Yes [5] PspF [7]

frdA Fumarate reductase flavoprotein subunit 0.58 0.44 0.38 No [3, 5, 10, 11, 12, 14] FlhDC [4]

frdB Fumarate reductase iron-sulfur subunit 0.59 0.46 0.40 Yes [3, 5, 10] FlhDC [4]

frdD Fumarate reductase subunit D n.s. 0.50 0.48 No [3, 5, 10] FlhDC [4]

glpA Sn-glycerol-3-phosphate dehydrogenase subunit A 0.50 0.33 0.25 No [3, 10] FlhDC [1, 4], PspF [8], CpxAR [8]

glpB Anaerobic glycerol-3-phosphate dehydrogenase subunit B n.s. 0.50 0.43 No [3, 10] FlhDC [1, 4], PspF [8], CpxAR [8]

glpC Sn-glycerol-3-phosphate dehydrogenase subunit C 0.47 0.35 0.29 Yes [3, 10] FlhDC [1], PspF [8], CpxAR [8]

hyaD Hydrogenase 1 maturation protease 0.55 0.49 0.47 No

hybA Hydrogenase 2 protein HybA 0.30 0.31 0.30 Yes [5] FlhDC [4]

hybD Hydrogenase 2 maturation endopeptidase 0.48 0.58 0.70 No [5] FlhDC [4]

hybE Hydrogenase 2-specific chaperone 0.42 n.s. n.s. [5]

hybF Hydrogenase nickel incorporation protein HybF 0.34 0.47 0.56 No [5] FlhDC [4]

hycA Formate hydrogenlyase regulatory protein HycA n.s. 0.40 0.36 No

hycC Formate hydrogenlyase subunit 3 n.s. 0.51 0.38 No

hycD Formate hydrogenlyase subunit 4 n.s. 0.42 0.27 No

hycE Formate hydrogenlyase subunit 5 0.47 0.33 0.29 Yes

hycF Formate hydrogenlyase complex iron-sulfur subunit 0.40 0.28 0.20 Yes PspF [7]

hycG Formate hydrogenlyase subunit 7 0.54 0.44 0.45 Yes PspF [7]

hycH Formate hydrogenlyase maturation protein 0.34 0.25 0.21 No

hycI Hydrogenase 3 maturation protease 0.35 0.24 0.21 No PspF [7]

hydN Electron transport protein HydN 0.21 0.22 0.18 Yes

hypB Hydrogenase nickel incorporation protein HypB n.s. 0.56 0.49 No

hypC Hydrogenase assembly chaperone 0.60 0.50 0.47 Yes

napA Nitrate reductase catalytic subunit n.s. 0.38 0.35 Yes [3] FlhDC [4]

napD Assembly protein for periplasmic nitrate reductase n.s. 0.14 0.10 No [3] FlhDC [4]

napF Ferredoxin 0.15 0.11 0.07 Yes [3] FlhDC [4]

ndh NADH dehydrogenase 0.34 0.32 0.31 No

nirB Nitrite reductase large subunit n.s. 0.40 0.37 Yes [3, 14, 16] PspF [7]

nirD Nitrite reductase small subunit n.s. 0.46 0.48 [3, 16]

nuoA NADH dehydrogenase subunit A 0.38 0.34 0.33 No [3, 5] CpxAR [13]

nuoB NADH dehydrogenase subunit B 0.41 0.36 0.35 Yes [3, 5] CpxAR [13]

nuoC Bifunctional NADH:ubiquinone oxidoreductase subunit C/D 0.30 0.35 0.33 No [3, 5] CpxAR [13]

nuoE NADH dehydrogenase subunit E 0.34 0.40 0.37 Yes [3, 5] CpxAR [13]

nuoF NADH dehydrogenase I subunit F 0.35 0.44 0.40 Yes [3, 5] CpxAR [13]

nuoG NADH dehydrogenase subunit G 0.38 0.50 0.52 Yes [3, 5] CpxAR [13]

(Continued)
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TABLE 10 | Continued

Gene Function Fold change Fe

content

Fur/RyhB

regulation

Other regulation

7 min 25 min 45 min

nuoH NADH dehydrogenase subunit H 0.22 0.34 0.33 No [3, 5] CpxAR [13]

nuoI NADH dehydrogenase subunit I 0.24 0.36 0.36 Yes [3, 5] CpxAR [13]

nuoJ NADH dehydrogenase subunit J 0.27 0.39 0.39 No [3, 5] CpxAR [13]

nuoK NADH dehydrogenase subunit K 0.27 0.42 0.41 No [3, 5] CpxAR [13]

nuoL NADH dehydrogenase subunit L 0.31 0.56 0.56 No [3, 5] CpxAR [13]

nuoM NADH dehydrogenase subunit M 0.39 0.61 0.64 No [3, 5] CpxAR [13]

pflA Pyruvate formate lyase-activating enzyme 1 0.65 0.56 0.44 Yes

pflB Formate acetyltransferase 1 n.s. 0.45 0.50 No

pflE Putative pyruvate formate-lyase 3 activating enzyme 0.14 0.15 0.12 No

pflF Putative formate acetyltransferase 3 0.14 0.16 0.14 No [12]

sdhA Succinate dehydrogenase flavoprotein subunit n.s. 0.60 0.33 No [2, 5, 10, 14] FlhDC [4], CpxAR[13]

sdhB Succinate dehydrogenase iron-sulfur subunit n.s. n.s. 0.45 Yes [2, 5, 6] FlhDC [4], CpxAR[13]

sdhC Succinate dehydrogenase cytochrome b556 large membrane

subunit

0.50 0.63 0.44 Yes [2, 5, 6, 9, 14] FlhDC [4], CpxAR[13]

sdhD Succinate dehydrogenase cytochrome b556 small membrane

subunit

0.41 0.60 0.35 Yes [2, 5, 6, 14] FlhDC [4], CpxAR[13]

torT TMAO reductase system periplasmic protein TorT 0.45 0.45 0.35 No

yfiD Autonomous glycyl radical cofactor GrcA, stress-induced

alternate pyruvate formate-lyase subunit

0.13 0.05 0.05 No [9] FlhDC [4]

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated (light gray) genes. (n.s.), fold changes with p > 0.05.

Prüß et al., 2001 [1]; Massé and Gottesman, 2002 [2]; McHugh et al., 2003 [3]; Prüß et al., 2003 [4]; Massé et al., 2005 [5]; Zhang et al., 2005 [6]; Jovanovic et al., 2006 [7]; Bury-Moné

et al., 2009 [8]; Kumar and Shimizu, 2011 [9]; Troxell et al., 2011 [10]; Kim and Kwon, 2013a [11]; Kim and Kwon, 2013b [12]; Raivio et al., 2013 [13]; Wright et al., 2013 [14]; Yang

et al., 2013 [15]; Calderón et al., 2014 [16].

DISCUSSION

Overview
Here we describe the first global-transcriptional analysis of
the response of S. Enteritidis to egg white exposure under
bactericidal conditions, providing a unique insight into egg white
antibacterial activity. In order to enable this study, an “egg
white model medium” (EWMM) was employed that lacks the
problematic viscosity of egg white. This medium was shown to
retain the bacteriostatic and bactericidal activity of egg white
at 30 and 45◦C, respectively, which supports previous work
showing EWMM to be an appropriate mimick of egg white
(Baron et al., 1997; Alabdeh et al., 2011). This bactericidal
action clearly requires the combined action of temperature
with egg white as S. Enteritidis is not subject to substantial
killing in TSB at 45◦C nor in egg white at lower temperature
(30◦C). Previous work showed only a moderate bactericidal
activity for egg white at 42◦C (reduction of less than 2 log10
CFU/ml to 3.5 log10 CFU/ml for S. Enteritidis during a 24–
96 h incubation; Guan et al., 2006; Kang et al., 2006; Raspoet
et al., 2014) whereas a complete bactericidal effect was seen at
45◦C (Alabdeh et al., 2011). This observation matches a previous
study (Liot and Anza, 1996) showing that bacterial destruction
by liquid egg white treatment (as used in the food industry)
is optimal at 42–45◦C. Thus, incubation at 45◦C in EWMM
(as employed here) represents ideal conditions for examination
of the response of S. Enteritidis to the bactericidal activity of
egg white. Relatively short incubation times (7–45 min) were

used since prolonged EWMM exposure results in total cell death
at 24 h.

Transcriptional Response of S. Enteritidis
to EWMM
Incubation of S. Enteritidis in EWMM at 45◦C provoked a
major transcriptional response (18.7% of genes affected at 45
min) indicative of a substantial shift in cellular physiology.
Of the differentially-regulated genes, 49.2% were assigned to
one of eleven functional classes, as described in the Results
section, reflecting specific physiological alterations caused by egg
white exposure. Among the remaining genes, most (47.3%) have
either unknown or hypothetical function. The eleven functional
classes thus defined were divided into three broad categories:
nutrient deprivation; cell damage/stress; and a shift in energy
metabolism and catabolism (Figure 2). The majority of these
changes correlate well with previous findings and with the
conditions associated with egg white (Baron et al., 2016).

Nutrient Deprivation
The strong induction of the bio operon (Table 2) is fully
consistent with results suggesting a role for the bioB gene in
egg white survival at 42◦C (Raspoet et al., 2014) and can be
considered to represent a rational physiological response of S.
Enteritidis to the poor biotin avaibility in egg white resulting
from the presence of avidin, a powerful biotin-chelation protein
(Banks et al., 1986; Beckett, 2007) that thus supports the
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TABLE 11 | Hexonate and hexuronate utilization and carbohydrate

metabolism.

Gene Function Fold change

7 min 25 min 45 min

GLYCOLYSIS/HEXOSE METABOLISM

fbaB Fructose-bisphosphate aldolase 2.27 2.98 4.28

frwB Putative fructose-like

phosphotransferase EIIB subunit 2

2.28 2.52 2.56

frwC Putative fructose-like permease EIIC

subunit 2

1.59 2.35 2.17

gapA Glyceraldehyde 3-phosphate

dehydrogenase A

3.10 2.33 2.02

gpmA Phosphoglycerate mutase 1 1.48 1.94 2.14

pfkB 6-phosphofructokinase 2 4.53 5.47 4.87

ptsA

(frwA)

Phosphoenolpyruvate-protein

phosphotransferase

1.69 2.26 2.53

ptsH Phosphohistidinoprotein-hexose

phosphotransferase component of PTS

system (HPr)

1.76 2.07 2.28

pykA Pyruvate kinase n.s. 1.73 1.99

talC Fructose-6-phosphate aldolase 2.88 5.38 5.62

treB Trehalose(maltose)-specific PTS system

components IIBC

2.52 2.49 2.27

ONE CARBON PATHWAY

gcvA DNA-binding transcriptional activator

GcvA

n.s. 0.62 0.39

gcvH Glycine cleavage system protein H 1.94 2.00 2.15

gcvT Glycine cleavage system

aminomethyltransferase T

2.13 2.08 2.12

kbl 2-amino-3-ketobutyrate coenzyme A

ligase

2.65 2.20 2.00

tdh L-threonine 3-dehydrogenase 2.23 1.80 1.64

glyA Serine hydroxymethyltransferase 3.40 2.83 2.56

sdaA L-serine deaminase 1 3.03 3.54 3.34

serB Phosphoserine phosphatase 2.85 2.40 2.75

TCA CYCLE

aceE Pyruvate dehydrogenase subunit E1 0.21 0.36 0.36

aceF Dihydrolipoamide acetyltransferase 0.23 0.44 0.43

acnA Aconitate hydratase 0.45 0.51 0.37

acnB Bifunctional aconitate hydratase

2/2-methylisocitrate dehydratase

0.29 0.35 0.27

lpdA Dihydrolipoamide dehydrogenase 0.30 0.50 0.48

MIXED FERMENTATION

ackA Acetate kinase n.s. 2.02 2.23

adhP Alcohol dehydrogenase n.s. 2.22 1.95

PENTOSE PHOSPHATE SHUNT (NON-OXIDATIVE BRANCH)

rpiA Ribose-5-phosphate isomerase A 3.01 2.24 2.15

tktA Transketolase 2.94 2.91 3.17

D-GALACTONATE UTILIZATION

dgoA D-galactonate dehydratase (SEN3644) 5.87 26.22 24.85

dgoD 2-dehydro-3-deoxy-6-

phosphogalactonate aldolase

(SEN3645)

6.67 23.93 22.03

dgoK 2-dehydro-3-deoxygalactonokinase 9.47 34.35 31.13

dgoR Galactonate operon transcriptional

repressor

8.96 28.70 27.13

(Continued)

TABLE 11 | Continued

Gene Function Fold change

7 min 25 min 45 min

dgoT D-galactonate transporter n.s. 10.77 13.59

dkgB 2,5-diketo-D-gluconate reductase B 2.89 2.19 2.85

yiaE Putative 2-hydroxyacid dehydrogenase 2.05 2.04 2.07

MANNONATE UTILIZATION

SEN2978 Mannonate dehydratase (uxuA) 4.39 24.16 28.19

SEN2979 D-mannonate oxidoreductase (uxuB) n.s. 16.77 19.11

SEN2980 Glucuronate isomerase; uronate

isomerase; uronic isomerase (uxaC)

n.s. 8.81 10.68

HEXONATE UTILIZATION

eda Keto-hydroxyglutarate-aldolase/keto-

deoxy-phosphogluconate

aldolase

2.09 2.01 1.94

SEN1433 L-idonate 5-dehydrogenase IdnD 3.05 3.21 5.17

SEN1434 Hexonate sugar transporter n.s. 2.70 5.68

SEN1435 Gluconate 5-dehydrogenase n.s. 3.07 7.40

SEN1436 D-galactonate dehydratase family

member SEN1436

n.s. 10.30 33.38

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes. (n.s.), fold changes with p > 0.05.

TABLE 12 | Confirmation of selected genes by qRT-PCR analysis.

Gene Function Fold change (45◦C, 45 min)

RT-PCR* Microarray

bioB Biotin synthetase, biotin synthesis 172.7 (± 34.5) 23.4

dgoK 2-dehydro-3-deoxygalactonokinase

hexonate metabolism

240.2 (± 44.3) 31.1

fes Ferric enterobactin esterase, iron

uptake

285.5 (± 87.5) 11.9

ftnA Ferritin, iron storage 0.76 (± 0.04) 0.19

iroB Salmochelin synthesis, iron uptake 14.9 (± 1.4) 4.1

spy Spheroplast formation 64.5 (± 32.7) 22.2

Highlighted fold changes correspond to up-regulated (dark gray) and down-regulated

(light gray) genes.

*Calculation of fold change by qRT-PCR was determined from the number of RNA copies

after 45 min of incubation divided by the number of RNA copies at T = 0). A total of two

RNA extractions were performed using distinct S. Enteritidis cultures grown on different

batches of EWMM. Each of the two RNA extracts thus obtained was subject to qRT-PCR,

in triplicate, for each gene. Data were normalized using values for three internal control

genes (asmA, emrA, orf32). Standard deviations are calculated from two sets of triplicate

data are in parentheses.

validity of the array data. Likewise, the comprehensive induction
of genes involved in the iron-starvation response (Table 3)
supports the notion that egg white represents an iron-restricted
environment for Salmonella. These findings corroborate a
number of previous studies suggesting that a major contributor
to the bacteria-growth inhibition capacity of egg white is the
imposition of iron deficiency, generated largely as a consequence
of the strong ferric-iron chelation activity of ovotransferrin
(Garibaldi, 1970; Lock and Board, 1992; Baron et al., 1997;
Kang et al., 2006). Indeed, previous studies have shown that
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S. Enteritidis iron-acquisition mutants (entF and entF/feoAB)
are attenuated for survival in egg white (Kang et al., 2006)
providing additional evidence for the iron-restricted nature of
egg white. This effect appears to be coordinated by the global Fe-
regulator, Fur, and incorporates the following effects: induction of
iron-uptake pathways; down-regulation of iron-storage capacity
(along with the probable mobilization of iron stores); induction
of the alternative Fe-S cluster manufacturing pathway; iron
rationing with replacement of iron-dependent proteins by
manganese-dependent alternatives; and induction of manganese
uptake to supply Mn2+ to the newly-induced Mn-dependent
isoenzymes.

The down-regulation of a set of virulence genes (Table 4)
associated with the SPI-1 locus (all members of the Fur
modulon) correlates with the iron-restriction imposed by egg
white (Teixidó et al., 2011).

Cell Damage/stress
The expression data were consistent with a considerable
membrane-stress response (Table 5). The up-regulation of spy
is consistent with the microscopy observation made on E. coli
in the same conditions (Jan et al., 2013), where incubation in
EWMM for 45 min at 45◦C caused formation of spheroplasts.
The induction of degP, encoding an endoprotease that degrades
abnormal proteins, is consistent with previous studies. Mo et al.
(2006) showed that DegP is required for survival of Salmonella
Typhimurium at high temperatures and Raspoet et al. (2014)
reveal its role in survival of S. Enteritidis in egg white at 42◦C.
The genes of the Tol-Pal system involved in the maintenance of
cell-envelope integrity were also induced.

The observed change in the porin-expression profile (up
regulation of ompC and down regulation of ompF) would be
consistent with an attempt by S. Enteritidis to protect itself
from the antimicrobial activities within egg white. The reciprocal
regulation of ompC and ompF might enable the cell to continue
to acquire nutrients whilst limiting exposure to toxins by utilizing
OmpC (smaller pore size) in place of OmpF (Nikaido, 1996;
Batchelor et al., 2005). Replacing the general-diffusion porins
with porins of smaller pore-size is a recognized antibiotic-
resistance strategy (Delcour, 2009).

Induction of several peptidoglycan hydrolase genes (dacC,
dacD amiC, mltA, mltD, emtA, yfhD) was another feature
of the microarray data. Up-regulation of amiC is already
recognized to enhance survival of E. coli during treatment
with the antimicrobial peptide protamine (Weatherspoon-Griffin
et al., 2011). The up-regulation of peptidoglycan hydrolases
is suggested to induce a remodeling of the peptidoglycan in
response to environmental challenge and so would be fully
consistent with an envelope-stress response. However, it should
be noted that expression of the major peptidoglycans synthetases
(mcrA, mcrB, pbpA, pbpB, pbpC, ftsI, and mtgA; data not shown)
was not significantly affected. Appropriate balance between
peptidoglycan synthesis and hydrolysis is critical for cell integrity
(Meisel et al., 2003; Kumar et al., 2012). The apparent imbalance
in their respective expression levels upon EWMM exposure
might result in excessive peptidoglycan hydrolysis leading to loss
of integrity of the peptidoglycan layer, which would be expected

to promote spheroplast formation as seen for E. coli EWMM
exposure (Jan et al., 2013).

The induction of the pspADEG genes observed here is
consistent with the psp response previously described in E. coli
and Salmonella Typhimurium where up regulation of pspA and
pspG was triggered by the reduction of the pmf, without effect
on other psp genes (Lloyd et al., 2004). These results are also
consistent with the production of PspA in response to heat
stress at 45◦C (Hassani et al., 2009). There are at least two
factors (ovotransferrin and high pH) in egg white that can cause
dissipation of the pmf and which could thus induce the observed
psp response (Aguilera et al., 2003; Darwin, 2005).

The expression data indicate a major induction of membrane-
stress related genes in cells exposed to EWMM at 45◦C, likely
mediated by the transcriptional regulators CpxR, OmpR and
PspF (Figure 2). The probable environmental factors triggering
this effect in EWMM are antimicrobial egg white components
(Kohanski et al., 2008; Laubacher and Ades, 2008; Farris et al.,
2010; Audrain et al., 2013; Evans et al., 2013; Raivio et al.,
2013; Raivio, 2014), pmf dissipation (Weiner and Model, 1994;
Kleerebezem et al., 1996; Joly et al., 2010) and alkaline pH
(Danese and Silhavy, 1998; Thede et al., 2011; Tschauner et al.,
2014) along with temperature (Brissette et al., 1990; Danese
and Silhavy, 1998; Raivio and Silhavy, 2001; Darwin, 2005; Joly
et al., 2010; Raivio, 2014). Previous work has also suggested
that maintenance of cell-envelope integrity is an important facet
of resistance to egg white (Gantois et al., 2008a), with cell-
wall disruption and progressive cell lysis reported as the major
mechanisms of egg white-mediated bactericidal action at 45◦C
for E. coli (Jan et al., 2013).

Heat-shock proteins under RpoH control (Rouvière et al.,
1995) were also induced (Table 6), presumably in response to the
temperature upshift experienced by S. Enteritidis upon transfer
of the inoculum (37◦C) to EWMM (45◦C). This type of induction
was also observed in E. coli, (Arsène et al., 2000; Guisbert et al.,
2008) and indicates that S. Enteritidis suffers heat-shock under
the conditions employed here. In addition, the induction of a
“ribosomal-stress response,” and the large-scale repression of
genes required for amino-acid biosynthesis and uptake (Table 7),
suggest a translational shutdown. It is likely that this translational
down-regulation is caused by the unfavorable growth conditions
imposed by the hostile conditions of EWMM at 45◦C resulting
in a block in protein production through interference with
ribosome activity possibly arising from reduced amino acid
availability or from a direct effect of temperature on the ribosome
(Starosta et al., 2014).

It should be noted that amino acid synthesis is considered
important for survival in egg white at 37◦C (Clavijo et al., 2006;
Gantois et al., 2008a). However, the conditions used here (45◦C)
are bactericidal and so no growth is expected, and thus amino
acid production is unlikely to be a major requirement and this
would be consistent with a reduced anabolic demand probably
resulting from the cessation of growth that occurs upon EWMM
exposure.

A further major alteration in expression was seen for motility,
as the genes associated with flagella biosynthesis and chemotaxis
were subject to repression (Table 8). Flagella-mediated motility
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FIGURE 2 | Summary of physiological response of S. Enteritidis to egg white exposure. Blue elipses are used to indicate the three major responses elicited by

egg white. The central gray box represents the major genetic regulatory responses. Boxes in purple are the egg white factors that are interpreted as having a clear

impact on S. Enteritidis under the conditions employed here. Systems induced and repressed are indicated in red and green, respectively. Physiological responses are

indicated in blue text. Black arrows indicate solute uptake suggested to be triggered by egg white exposure. Red arrows and green broken lines indicate, respectively,

activation (red) and repression (green) by corresponding regulators: the origin of the arrow indicates the regulator involved (origins located in the central gray box

indicate that all associated regulators are involved). Lighting symbols represent the stimuli that activate regulator responses: pink for antimicrobial molecules, orange

for alkaline stress, yellow for thermal stress and blue for low iron conditions.

is transcriptionally controlled in response to multiple stresses
including heat-shock (RpoH dependent), pH change (CpxAR
dependent), envelope stress (OmpR/EnvZ, CpxAR and PspF
dependent) and low iron content (Fur dependent) (Shin and
Park, 1995; Prüß et al., 2003; Lloyd et al., 2004; Jovanovic
et al., 2006; Raivio et al., 2013), which are all of relevance
to the conditions experienced upon EWMM exposure, as
indicated by the transcriptomics data. The down-regulation of
flagella/motility genes is consistent with AFM (Atomic Force
Microscopy) observation in EWMM showing lack of flagella at
30 and 45◦C in E. coli (Jan et al., 2013). Repression of motility
genes at high pH (8.6) was also shown by Maurer et al. (2005),
which matches the expression effects reported here. It should be
stressed that some reports indicate that motility is a requirement
for egg colonization by S. Enteritidis; non-motile S. Enteritidis
mutants (fliC and motAB) are unable to grow in egg white
or colonize eggs (Cogan et al., 2004), and a non-flagellated
flgG mutant of S. Enteritidis showed a reduced survival in egg
albumen (Gantois et al., 2008a). These observations suggest

that the reduced expression of motility factors in EWMM, as
observed here, might at least partly explain the inability of S.
Enteritidis to propagate in this medium. The shutdown of flagella
production and motility may represent an energy-conserving
strategy since flagella motion is energy demanding (Zhao et al.,
2007).

The reason for the induction of the kdp system (Table 9)
is unclear because K+ levels in egg white medium are not
limited (∼36 mM in egg white; Nys and Sauveur, 2004) and
the osmolarity of egg white medium (∼240 mosm/L; Alabdeh,
2012) is comparable to that of the pre-culture medium, TSB
(∼320 mosm/L; (Alabdeh, 2012). However, KdpD kinase senses
intracellular rather than extracellular K+ and K+ is crucial for the
regulation of intracellular pH, as well as for the activity of several
enzymes (Page and Di Cera, 2006). In the conditions used here
(no extra-cellular K+ limitation, no osmotic shock, alkaline pH,
physiological and metabolic adaptation to egg white conditions),
Kdp activation probably reflects an attempt to alter cellular levels
of K+ in response to exposure to EWMM.
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FIGURE 3 | Summary of the major global regulatory responses of S. Enteritidis to bacteriocidal egg white exposure. Each regulon is represented by black

elipses and lighting symbols represent the stimuli that activate regulator responses: pink for antimicrobial molecules, orange for alkaline stress, yellow for thermal

stress and blue for low iron conditions. Up-regulated, down-regulated and non-regulated genes are represented in red, green or black, respectively. Genes with a

≥fourfold change in expression are in bold. Genes underlined are identified as up or down regulated by alkaline pH (Maurer et al., 2005). Red arrows and green broken

lines indicate, respectively, activation (red) and repression (green) by corresponding regulators: the origin of the arrows indicates the regulator involved. In each

regulon, genes are grouped in boxes depending of the metabolic pathway to which they belong: iron metabolism (turquoise), oxidative stress (fuchsia), energy (dark

blue), carbon and amino-acid metabolism (purple), motility (gray) and membrane integrity (orange). Genes previously reported to be regulated by the corresponding

regulators are indicated by uppercase letters with the following designations: Brissette et al., 1991 [b1]; Stojiljkovic et al., 1994 [s1]; Crawford and Goldberg, 1998

[c3]; Danese and Silhavy, 1998 [d2]; Vassinova and Kozyrev, 2000 [v2]; Prüß et al., 2001 [p1]; D’Autréaux et al., 2002 [a]; De Wulf et al., 2002 [d]; Kehres et al., 2002

[k]; Oshima et al., 2002 [o]; McHugh et al., 2003 [m1]; Prüß et al., 2003 [p2]; Humphreys et al., 2004 [h]; Batchelor et al., 2005 [b2]; Jubelin et al., 2005 [j1]; Massé

et al., 2005 [m]; Stafford et al., 2005 [s]; Vianney, 2005 [v3]; Zhao et al., 2005 [z1]; Zhang et al., 2005 [z2]; Dorel et al., 2006 [d1]; Jovanovic et al., 2006 [j]; Nonaka

et al., 2006 [n]; Wade et al., 2006 [w2]; Yoshida et al., 2006 [y]; Zahrl et al., 2006 [z]; Chen et al., 2007 [c1]; Bury-Moné et al., 2009 [b]; Price and Raivio, 2009 [p];

Perkins et al., 2009 [p3]; De la Cruz and Calva, 2010 [c]; Hu et al., 2011 [h1]; Kumar and Shimizu, 2011 [k3]; Weatherspoon-Griffin et al., 2011 [w]; Troxell et al., 2011

[t]; Teixidó et al., 2011 [x]; Lin et al., 2012 [l]; Kim and Kwon, 2013a [k1]; Kim and Kwon, 2013b [k2]; Samanta et al., 2013 [s2]; Raivio et al., 2013 [v]; Wright et al.,

2013 [w1]; Calderón et al., 2014 [c2]; Fitzgerald et al., 2014 [f]; Quinn et al., 2014 [q]; Raivio, 2014 [v1].

Shift in Energy Metabolism and Catabolism
The expression data also provide evidence for a major switch
in energy-generation mode since most of the genes involved
in respiration were repressed (Table 10). It is likely that their
repression is largely caused by the low-iron conditions of EWMM
as part of an iron-rationing response induced to reduce the
demand for iron. The iron-rationing response is controlled
indirectly by Fur through RfrA and RfrB in Salmonella (RyhB
in E. coli) and largely functions to repress genes encoding iron-
containing proteins in reaction to low iron conditions (McHugh
et al., 2003; Massé et al., 2005; Yang et al., 2013). Thus, the
observed down regulation of the genes listed in Table 10 appears,

in part at least, to represent an attempt by S. Enteritidis to
reprioritize cellular iron deployment. The down-regulation of
these genes is likely to also include regulatory effects mediated by
CpxAR (envelope and/or pH stress) and PspF (pmf dissipation).
These effects correlate well with the low iron availability, high
pH and membrane-disruption capacity associated with egg white
(Baron et al., 2016).

The apparent loss of respiratory capacity was accompanied
by other expression changes suggesting modifications in energy
generation and catabolic processes (Table 11). The major
induction of the 15 genes associated with hexonate and
hexuronate metabolism was unexpected and is unexplained.
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These systems have not been previously reported to possess
any role in egg white survival, nor have they been shown
to be up-regulated by egg white exposure or to be subject
to co-regulation. The main carbohydrate present in egg white
is glucose (98% of total sugar; 0.4–0.5% w/v), with lower
levels of other sugars which include mannose, galactose,
arabinose, xylose, ribose and deoxyribose (Guérin-Dubiard
et al., 2010). As hexonates and hexuronates are not reported
to be present within egg white, the identity of the inducer
(and its source) responsible for dgoRKADT, uxuAB-uxaC and
SEN1433-6 up-regulation is unclear, although evidently these
genes are not subject to any substantial catabolite repression
since induction is observed despite the high glucose levels
in egg white. In summary, the clear implication of these
data is that during incubation in egg white, S. Enteritidis
is exposed to hexonates and/or hexuronates, or a related
compound, which results in co-induction of the dgo, uxu
and SEN1433-6 gene sets that potentially represent a novel
regulon. Since egg white lacks any of these organic acids, the
most likely reason for the induction observed would appear to
be the release of an endogenous inducer from S. Enteritidis,
possibly in response to cell envelope damage. However, further
experiments are required in order to clarify how EWMM
exposure results in the induction of this set of genes and whether
hexonate/hexuronate metabolism plays any role in egg white
survival.

Increased glucose and hexonate/hexuronate catabolic
capacity, increased uptake of carbohydrate and glycolysis
along with serine breakdown via the One-Carbon pathway
(induction of genes involved in the degradation of serine,
glycine and threonine to pyruvate: gcvHT, sdaA, glyA, kbl, tdh;
serB; Table 11) would be anticipated to boost ATP production
through substrate-level phosphorylation which could at least
partly compensate for loss of respiratory capacity and reduced
expression of respiratory components.

The combined up-regulation of glycolysis with the down
regulation of both the TCA cycle and respiration, as indicated
above, is suggestive of a shift in energy metabolism away
from respiration and toward fermentation. Indeed, the acetate
kinase (ackA) and ethanol dehydrogenase (adhP) genes encoding
mixed-acid fermentation enzymes are induced, supporting this
notion. It is possible that the resulting accumulation of organic
acids contributes to alkaline pH adaptation (Stancik et al., 2002;
Yohannes et al., 2004; Slonczewski et al., 2009).

In conclusion, the gene expression response of S. Enteritidis
to EWMM exposure at 45◦C reveals three major effects: nutrient
deprivation; cell damage/stress; and a shift in energy metabolism
and catabolism, as summarized in Figure 2.

Comparison of Transcriptomic and
Mutation Data
There is a general agreement that the key processes in egg
white defense are iron deficiency (through iron chelation
by ovotransferrin) and disruption of bacterial membranes by
antimicrobial compounds (lysozyme, ovotransferrin, and various
other antimicrobial molecules) (Clavijo et al., 2006; Kang et al.,

2006; Baron et al., 2016). Previous mutagenesis-based studies
revealed a number of specific cell functions required for S.
Enteritidis to overcome egg white defenses (Cogan et al., 2001;
Lu et al., 2003; Kang et al., 2006; Gantois et al., 2008a, 2009b;
Raspoet et al., 2014). These include sugar, amino acid and nucleic
acid metabolism, cell envelope biogenesis and maintenance
(including LPS biosynthesis), motility, iron transport, DNA
synthesis and repair, stress responses, invasion and pathogenicity
(Cogan et al., 2001; Lu et al., 2003; Clavijo et al., 2006; Kang
et al., 2006; Gantois et al., 2008b, 2009a; Baron et al., 2016
for review). However, such mutagenesis studies do not provide
a comprehensive view of the combined and relative effects
that egg white exerts upon S. Enteritidis since the numbers of
genes identified in each individual study are limited and the
experimental conditions employed are distinct for each study
(Baron et al., 2016 for review). In contrast, our investigation
of the global expression response of S. Enteritidis to egg
white provides a complete genome-wide view of the complex
physiological response of this pathogen to egg white-induced
bactericide under specific conditions. The three major alterations
in cell function (Figure 2) appear to well match the requirements
of S. Enteritidis when challenged with egg white.

However, the gene sets showing major expression changes in
the bactericidal conditions of EWMM are not a precise match for
those highlighted by previous mutagenesis approaches although
they do compare well with the corresponding functional-gene
categories identified in earlier work, and thus the data presented
here can be considered to generally support previous findings.
One notable distinction is the failure to observe any modulation
of genes related to LPS biosynthesis. Gantois et al. (2009b)
showed that the rfbH gene, involved in lipopolysaccharide
biosynthesis, is essential for survival at 42◦C, and Raspoet
et al. (2014) identified 16 lipopolysaccharide biosynthesis genes
required for survival in egg white at 42◦C for 24 h. This
discrepancy likely relates to differences in conditions (e.g.,
temperature and incubation times) and experimental approaches
employed, e.g., expression vs. survival.

Insight into the Bactericidal Action of Egg
White
There are a number of bactericidal and bacteriostatic factors
combined within egg white that operate together to generate
a highly effective antibacterial cocktail. This amalgamation of
components can be expected to exert a mutually-dependent,
combinatorial antibacterial influence. Nutrient deprival should
act to restrict pathogen growth and thus limit capacity to react to
lethal stresses that induce envelope disruption. A key component
of egg white defense, illustrated in this work, is temperature.
Thus, S. Enteritidis suffers bacteriostasis upon exposure to egg
white at moderate temperature (30◦C) but is lysed at 45◦C
(although not in TSB) showing that the lytic activity of egg
white is markedly enhanced by temperature. This observation
suggests that the lethal antibacterial egg white components
affecting S. Enteritidis survival operate optimally at ∼45◦C, a
feature possibly related to increased bacterial membrane fluidity
at higher temperature (Los and Murata, 2004).
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A summary of the physiological responses and major
regulatory effects suggested by the transcriptional data is shown
in Figures 2, 3. The regulators that appear to have the greatest
influence on expression in EWMM at 45◦C are Fur, RpoH, PspF,
OmpR/EnvZ, CpxAR, and FlhDC. The environmental and egg
white factors to which these regulators respond are low iron
content (ovotransferrin mediated), unfolded proteins (induced
by high temperature, alkaline pH), pmf dissipation and envelope
stress (egg white membrane disruption, alkaline pH). The
regulatory responses are thus an excellent representation of the
environmental conditions provided by EWMM at 45◦C. These
regulons are highly interconnected (Figure 3). For instance,
CpxAR modulates the action of various regulators including
OmpR/EnvZ, FlhDC, RpoE and RpoH (Dorel et al., 2006; Raivio,
2014). Moreover, Fur, PspF and OmpR/EnvZ regulate FlhDC
(Stojiljkovic and Hantke, 1992; Campoy et al., 2002; Jovanovic
et al., 2006; Samanta et al., 2013) and PspF is negatively regulated
by RpoH involved in the heat shock response (Brissette et al.,
1991). Some of the differentially-regulated genes listed above are
subject to joint control by more than one of the transcription
factors highlighted in Figure 3.

The transcriptomic analysis performed here shows that
incubation in EWMM at 45◦C provokes a major modification of
S. Enteritidis physiology that can be presumed to raise capacity
to withstand the harmful effects imposed. However, although S.
Enteritidis displays strong resistance to egg white, it surrcumbs to
its bacteriocidal influences at temperatures of ≥42◦C (Alabdeh
et al., 2011). The temperature condition employed here (45◦C)
matches with that recommended for the French patent (Liot
and Anza, 1996) that decribes a highly-efficient liquid egg white
microbial stabilization process. This temperature is similar to
that encountered naturally during egg formation in the hen
genital tract (42◦C), and during hatching (∼42◦C). Interestingly,
a previous study (Keller et al., 1995) showed that although
S. Enteritidis infection of the reproductive organs causes
significant contamination of eggs prior to oviposition, the level of

contamination is greatly decreased after laying. It was suggested
that this is due to the enhanced bacteriocidal effects of egg white
during the full egg formation phase in the oviduct (over 21 h),
which would be promoted by the temperature of the hen oviduct
(42◦C). This observation provides further evidence that the
precise environmental conditions of egg white are instrumental
for achieving optimal antibacterial activity and that the innate
immunity of the egg white is “designed” for maximum effect
according to the environmental parameters that prevail during
egg formation and hatching.
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