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Abstract 

This paper aims to construct a falsifiable model of an internal dimension of time that fits the 

observed results, that maximizes simplicity for explaining different quantum phenomena such 

as superposition, measurement and entanglement, that does not contradict the established 

principles and laws of the quantum mechanics and that predicts new testable features or 

phenomena. 
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1. Introduction 

Conventionally, some of the remarkable features of quantum mechanics such as 

superposition, measurement and particle-wave duality are illustrated by the double-slit 

thought experiment. When electrons are sent one at a time through a double-slit plate 

(hereafter called slit A and slit B), single random impacts are observed on a screen behind the 

plate as expected out of individual particles. However, when the electrons are allowed to build 

up one by one, the cumulative effect of a great number of impacts on the screen reveals an 

interference pattern characteristic of waves arriving at the screen from the two slits. 

Meanwhile, the interference pattern is made up of individual particle-like impacts. This 

phenomenon illustrates a particle-wave duality nature of the electrons.  

Moreover, when the electrons are made to build up one by one while detectors DA and DB are 

placed at slits A and B respectively to find out through which slit each electron went, the 

interference pattern disappears and the electrons behave solely as particles. It seems thus 

impossible to observe interference and to simultaneously know through which slit the particle 

has passed. Furthermore, the distribution of the interference pattern formed on the screen 

cannot be understood merely in a probabilistic manner by simply saying that half of the 

electrons pass through slit A and the other half through slit B. The best explanation that can 

be made is that the same electron passes simultaneously through both slits [1]. This seemingly 

paradoxical statement is conform with the experimental data and is best illustrated by a state-

vector. 

In quantum mechanics, for a given observable (e.g. position) having different possible values, 

the quantum system (e.g. the position of the particle) can be defined by a state-vector (noted 

     ) as a linear combination of different possible sub-states (noted       ). In the case of the 

double-slit experiment the state vector of an electron passing through slit A may be denoted as 

     , similarly, the state vector of an electron passing through slit B is denoted      . A particle 

passing through both slits A and B at the same time is said to be in a superposition state and 

its state-vector is denoted                    , where “a” and “b” are called the probability 

amplitudes. The mod-square of “a” represents the probability of the particle to be measured 
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by the DA detector at the slit A and likewise the mod-square of “b” represents the probability 

of the particle to be measured by the DB detector at the slit B. 

When no detectors are present at the slits, the state of the electron is said to be a wave of 

probabilities defined by the superposition state               in which the electron passes 

through slit A and slit B at the same time. A calculation assuming wave-like behaviour of 

electrons explains pretty well the interference pattern created on the screen by their 

cumulative impacts. Nevertheless, when detectors DA and DB measure from which slit the 

electron passes, the superposition state simply disappears and creates a so-called measurement 

problem. 

Conventionally, when no detectors are present, the state-vector       is said to evolve per a 

deterministic continuous unitary evolution U whereas, when detectors DA and DB measure 

from which slit the electron passes, the deterministic evolution of the state-vector       is 

transformed into a probabilistic discontinuous state reduction R as explained by Penrose [2]. 

In the above thought experiment, it is said that the state-vector                     evolving 

per the U process is reduced according to the R process from one describing a superposition 

of two observational outcomes to only one outcome either             or            . The two 

processes U and R create a conflict in the formalism of quantum mechanics. Different 

ontologies have been proposed to interpret the strange combination of the deterministic 

continuous U process with the probabilistic discontinuous R process. 

According to the Copenhagen interpretation [2, 3, 4], the state-vector       and the U and R 

processes should only be regarded as a description of the experimenter’s knowledge. There 

exist several other interpretations amongst which the Everett interpretation or what is more 

commonly known as the many-world interpretation [5, 6], according to which there is no 

wave function collapse and all measurement results exist but in different worlds. In line with 

this interpretation, Wallace [7] claims that when a measurement is conducted on an electron in 

the superposition state              , a deterministic branching takes place where on one 

branch detector A detects the electron while detector B doesn’t and at the same time but on 

the other branch, detector A doesn’t detect the electron while detector B does detect it. 

However, this interpretation pauses some probabilistic as well as ontological problems. Kent 

[8] argues that the axioms of quantum mechanics say nothing about the existence of multiple 

physical worlds. 

In this paper, it is intended to introduce an explanatory hypothesis that makes sense of the 

double-slit experiment as well as other features of quantum mechanics and in which the R 

process is replaced by an internal mechanism that does not come in conflict with the U 

process. 

It is learned from the double-slit experiment that when no measurement is conducted, the 

state-vector is a bloc of two sub-states       and       whereas, an act of measurement reveals 

only one of these two sub-states. It can be reasonably conjectured that the bloc of two sub-

states has an internal structure that inherently discriminates the two sub-states while 

permitting their coexistence at each instant of time. This reasonable conjecture infers a 

possible existence of an “internal dimension of time” different from the usual physical time 

such that the two sub-states may have a simultaneous existence with respect to the physical 

time but not with respect to the internal time. Thus, when no measurement is conducted, both 

sub-states       and       coexist simultaneously at each physical time instant while existing 
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separately at different internal time instants. The simultaneous coexistence of the two sub-

states       and       is relative only with respect to the physical time. This relative-simultaneity 

of the two sub-states       and       explains the passage of an electron through slits A and B at 

the same physical time whereas, the inherent discriminating feature of the two sub-states       

and       with respect to the internal time explains the bringing about of only one of these two 

sub-states by the act of measurement. This explanatory hypothesis is referred hereafter 

“internal-time-model”. 

A “spatial” analogy to the above “temporal” model can be given by the structure of a coin. 

Indeed, a coin is a bloc of “two-overlapped-faces” thanks to a “separating edge” defined in a 

spatial dimension different from the spatial dimensions with respect to which are defined the 

two faces. The separating edge enables on one hand, the “overlapping coexistence” of the two 

faces which is a sort of a spatial analogy to temporal simultaneity while on the other hand, 

discriminates between the two faces by allowing them to coexist within two distinct parallel 

planes and thus, when the coin falls on the ground, only one of the two outcome faces is 

observed. The “internal time” plays simply the role of the coin’s separating edge. 

Another peculiar feature of quantum mechanics is entanglement which occurs when the 

constituents of a system cannot be described independently. An example of an entangled 

system is one composed of two particles whose states are specified by two components of 

spin travelling in opposite directions and emanating from a single source. When a 

measurement of spin is made at either side, the outcome result is fixed for both particles. 

Such phenomena were the subject of many papers and in particular, a paper by Einstein et al 

[9] describing what came to be known as the EPR paradox in which entanglement is 

considered to violate locality. However, Bell [10] proved the consistency of entanglement 

with the predictions of quantum mechanics. Entanglement was also verified experimentally 

by measuring the polarization or spin of entangled particles in different directions and the 

results were in agreement with Bell’s inequality [11, 12]. 

Again, an internal dimension of time may be considered as an entity that connects and 

synchronizes the states of the entangled particles giving a simple explanation of entanglement 

as shown hereafter. 

More precisely, the “internal-time-model” considers time as having a certain “thickness” and 

proposes to define the evolution of each elementary physical system with respect to a three-

dimensional-time presenting a thread-like-form, hereinafter referred to as “elementary-time-

thread”. The “longitudinal direction” of the elementary-time-thread corresponds to the usual 

physical-time-axis where each point is specified by a physical-time-index. However, the 

“cross-section” of the elementary-time-thread is referred to as a “state-time-plane” where each 

point is specified by a “state-time-index” defined by a couple of state-time-coordinates. 

Finally, each point - referred to as “elementary-time-instant” - of the elementary-time-thread 

is specified by a triplet of time-coordinates (one physical-time-coordinate and two state-time-

coordinates). 

It is postulated that every elementary physical object has its proper elementary-time-thread in 

the same way as it has its proper spatial extension. Thus, a plurality of physical objects evolve 

with respect to their corresponding elementary-time-threads. However, the projection of their 
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respective elementary-time-threads onto an arbitrary physical-time-axis gives the illusion of 

an external time-axis with respect to which the different events are organized. 

According to the proposed “internal-time-model”, a quantum system of an elementary 

physical object is defined by a fundamental-state-vector noted        composed of a set of sub-

states       . The fundamental-state-vector                 is governed by the usual 

deterministic unitary evolution U with respect to the physical-time-axis. However, at any 

given physical-time index, the fundamental-state-vector        is governed by an internal 

evolution with respect to a “state-time-line” contained in the state-time-plane of the quantum 

system’s elementary-time thread. The state-time-line with respect to which the evolution of 

the sub-states take place defines a sort of an “internal-state-time-clock” such that each ticking 

(defined at a specific state-time-index) is associated with only one sub-state such that at each 

physical-time-index, the set of sub-states does not occur at once. Thus, only one sub-state can 

exist at any given elementary-time-instant belonging to the elementary-time thread and 

therefore, the outcome of a measurement conducted at that given elementary-time-instant is 

naturally the sub-state that occurs at that instant. 

In other words, when a measuring device conducts a measurement on an elementary physical 

object at a given elementary-time-instant, it will simply measure or “selects” the sub-state 

(out of a set of sub-states) that occurs at that instant. Once a sub-state has been selected, it will 

be trapped by the measuring device and thus, the quantum system can no more change its 

state.    

Applying this model to the double-slit experiment leads to considering that at any given 

physical-time-index, the electron is at location A for a given state-time index and at location 

B for another state-time-index. Thus, at each physical-time-index, the electron “exists” at 

different locations and behaves as an extended object of a wave-like nature causing the 

interference pattern on the screen. However, when detectors are placed at the slits A and B, an 

electron may be detected either at A or at B. For example, if the electron is observed at A (i.e. 

the act of observation happened at an elementary-time-instant at which the electron was at A) 

then the transitions stop and the same electron will not be observed at B. Thus, the electron 

observed at A simply behaves as an individual particle causing a random impact on the screen 

as expected. 

In the case of the entangled system of two particles, the state transition of both particles is 

synchronized by the same internal-state-clock. When a measurement is made at one side, the 

measured sub-state is trapped and thus, there are simply no other sub-states from which 

another state can be selected. The trapped state forces the internal-state-clock to stop ticking 

and thus, ends the transitions at the other side. Therefore, the action of measurement on any 

particle fixes the outcome result for both particles. 

The proposed internal-time-model when put in the context of quantum mechanics replaces the 

reduction process R by an internal mechanism consistent with the U process and seems to 

imply and explain the observed quantum phenomena. 

 

2. Formalism 

2.1 Time-threads 
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The evolution of each quantum object is defined with respect to its proper “elementary-time-

thread” which is a three-dimensional-time presenting a thread-like-manifold. 

Each elementary-time-thread can be defined in a reference frame consisting of a three-

dimensional coordinate system in R-C
 

composed of the ordinary “physical-time-axis” 

(      ) along a real coordinate axis R, a first “state-time-axis” (      ) and a second or 

“conjugate-state-time-axis” (      ) where the        and        define a complex 

plane C. The elementary-time-thread has thus its cross-section comprised in a complex “state-

time-plane”       defined by the        and        and its longitudinal orientation 

defined along the real       . Each “elementary-time-instant” of the elementary-time-

thread is specified by a point             where  ,   and   are real numbers. For 

simplicity, each “elementary-time-instant”    of the elementary-time-thread is specified by the 

point           where the physical-time-index t is a real number and the state-time-index   

is a complex number of the form: 

                  (1) 

where     and   are the magnitude and argument of the state-time-index  . 

 

2.2 Quantum features with respect to dynamical time-threads 

Conventionally, a quantum system (e.g. spin of a particle) can be defined by a state-vector in 

an orthonormal eigenvector basis. For any observable Q, the state-vector       is defined by a 

superposition of vector projections in an eigenbasis         . In other words, the state-vector 

      is defined as a linear combination of the different possible sub-states. The normalized 

conventional state-vector of the quantum system is expressed as follows: 

                    (2) 

where        are orthonormal sub-states of the quantum system verifying             

(Kronecker delta) and the coefficients    of the state-vector       define the probability 

amplitudes in the specific orthonormal eigenvector basis         . 

In contrast, according to the present internal-time-model, if Q is an observable and its 

spectrum of possible orthonormal vectors is      where            , then the quantum 

system can be represented by a fundamental-state-vector noted        composed of a set of 

states (hereinafter called a set of sub-states)          in which the value of the observable Q is 

well defined. 

The fundamental-state-vector        is governed by the deterministic unitary evolution U 

(based on the Schrödinger equation) with respect to the physical-time-axis (      ). 

However, at any given physical-time index t, the fundamental-state-vector        undergoes a 

transition process between the different states of the set of sub-states         . The transition 

process is governed by an “internal mechanism” defined in the “state-time-plane”      . The 

different points (i.e. the different state-time-indices          belonging to the state-time-

plane) visited by the set of sub-states             form a “state-time-line” denoted “   ” whose 

“oriented-length” (i.e “oriented-state-time-life”) denoted “  ” is a vector defined by a 

complex number in the state-time-plane      . 
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Thus, each sub-state           defines the state of the quantum system at a corresponding state-

time-index   along the state-time-line (υ). More precisely, at any given physical-time index t, 

a surjective function is defined from the set of state-time-indices              belonging to 

the state-time-line (υ) onto the set of sub-states           such that every sub-state        has at 

least one corresponding state-time-index           . The sub-set of state-time-indices that 

correspond to the same sub-state        is denoted      whose “oriented-length”     represents 

the oriented-state-time-life of the corresponding sub-state        at any given physical-time 

index t. 

In other words, the oriented-state-time-life    of the fundamental-state-vector        can be 

subdivided into different sets       of oriented-state-time-lives (i.e.         ) each of 

which (i.e. each set     ) is associated to a specific sub-state          . Moreover, each set  

    of oriented-state-time-lives simply concatenates all oriented-sub-state-time-lives      

scattered all over the oriented-state-time-life    and visited by the same sub-state          . 

That is           
 
 where n is the number of times the sub-state           is visited during 

the whole oriented-state-time-life    of the fundamental-state-vector        at a given physical-

time index t. Specifically, the oriented-state-time-life     of a sub-state        corresponds to 

the sum of oriented-sub-state-time-lives         of all state-time-indices visited by the sub-

state       . Thus, at any given physical-time index t, the internal transition process should be 

defined by the transitions between the different sub-states             as well as by their 

corresponding “oriented-sub-state-time-lives”       . 

The relation between the oriented-state-time-life    of the fundamental-state-vector        at a 

given physical-time index t and the oriented-state-time-lives       of the corresponding set of 

sub-states           is: 

           and                     
      (3) 

where     and     are the components of     along respectively the        and        

and where       and    are respectively the magnitude and argument of     in the state-

plane      . The magnitude or module       represents the duration of the oriented-state-

time-life and is thus simply called “state-time-life”. The argument    represents the 

orientation of the oriented-state-time-life. Thus, the whole state-time-life      of the 

fundamental-state-vector        at a given physical-time index t, is: 

                  (4) 

Schematically, the fundamental-state-vector        may be viewed as evolving with respect to a 

two-dimensional-time-manifold (i.e. a “time-surface” referred hereafter “2d-time-manifold”) 

embedded in the elementary-time-thread and made up of elementary-time-instants    
              wherein, each state-time-index t is mapped to a corresponding state-time-line 

     whose oriented-state-time-life is    . Schematically, a state-time-line      belonging to a 

2d-time-manifold is formed by the intersection between the 2d-time-manifold and the cross-

section (i.e. the state-time-plane      ) of the elementary-time-thread at the physical-time-

index t.  In the following text, the suffix “t” is dropped as it is implicitly clear that any state-

time-line     is defined with respect to a corresponding physical-time index t. 
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A given fundamental-state-vector        evolving with respect to its corresponding 2d-time-

manifold (t, υ) can be expressed in function of its sub-states as follows: 

                                  
    (5) 

where             is the Dirac measure (or indicator function) defined as follows: 

            
           
       

      (6) 

The above expressions (5, 6) define the fundamental-state-vector        as a step function made 

up of a combination of Dirac measures of state-time-lives visited by the different sub-states. 

Equation (5) indicates that at any current physical-time-index t, the different sub-states 

            can be viewed as forming a “state-block” wherein, all potential sub-state-outcomes 

exist but do not occur at once with respect to the corresponding state-time-line    . The 

“state-block” forms a kind of a “state-history” labeled by a sequence of “state-dates”. Thus, at 

any given time-index t, the different sub-states do not occur simultaneously and can only be 

considered as partially simultaneous with respect to the physical-time only. In other words, 

equation (5) indicates that for a given physical-time-index t and for a given state-time-life 

      , the fundamental-state-vector        should be in only one specific sub-state            . 

Thus, for a given physical-time-index t, the transitions and oriented-state-time-lives        

relative to the different sub-states             form an “internal-state-clock” that governs the 

evolution of the system with respect to the state-time-line (υ). It should be noted that the 

oriented-state-time lives        and       may a priori, depend on the physical-time-index t. 

To find a relation between the fundamental-state-vector        of equation (5) and the 

conventional state-vector of equation (2), a sort of a summation process should be used over 

the state-time-line (υ) at each physical-time-index t, so that the “resultant” state-vector does 

not explicitly depend on the state-time. Thus, it is proposed to calculate at each physical-time-

index t, a “resultant-state-vector”          that describes the resultant behavior of the set of 

different sub-states               over the whole oriented-state-time-period       while taking 

into consideration the values of the corresponding oriented-state-time lives       . It can be 

reasonably conjectured that the impact of each individual sub-state             on the global 

behavior of the quantum system should depend on the value of its corresponding oriented-

state-time-life       .  

Thus, the resultant-state-vector           can be expressed as the sum of the different sub-states 

            affected by coefficients that depend on the physical time-index as well as on the 

corresponding oriented-state-time-lives        as follows: 

                                      (7) 

The information concerning the dynamics of sub-states and their oriented-state-time-lives     

as given by the Dirac measures             of equation (5) is transferred to the coefficients    

of equation (7). 

By replacing                 
       of equation (3) into equation (7), the latter equation 

becomes:  

                         
                                         

                      (8) 
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or may be expressed more simply as: 

                                              (9) 

Moreover, the resultant-state-vector           should be governed by the deterministic unitary 

evolution U according to Schrödinger equation and satisfying the normalisation property: 

                               (10) 

Thus, the product                in the eigenbasis          of the normalised resultant-state-

vector           is: 

                                
 

      (11) 

where each mod-square                 
 
 can thus be interpreted as the probability of 

occurrence                of the corresponding sub-state          . 

On the other hand, at a given physical-time-index t, the probability of occurrence 

                of a sub-state             which depends on the physical-time t as well as the 

state-time   can be straightforwardly conjectured to be proportional to the ratio of the state-

time-life          of that sub-state             to the total state-time-life         of all the sub-

states: 

                               
 
 

        

       
    (12) 

and thus for a fixed physical-time-index  , equation (9) becomes: 

                                             
        

       
                  

 

   (13) 

For simplicity, the above equation is expressed as follows: 

                          (14) 

where     
        

       
          (15) 

Equation (14) clearly indicates that the resultant-state-vector           constructed out of the 

fundamental-state-vector        is similar to the conventional-state-vector of equation (2). 

Equations (5) and (14 or 2) express the same quantum system from different point of views. 

The fundamental-state-vector        gives an internal and a more detailed view of the quantum 

system whereas, the resultant-state-vector           (or the conventional-state-vector      ) gives 

an external and global view of the quantum system. 

Equation (14) or (2) should be interpreted as a mere “resultant” or a sort of “average” of the 

sub-states at any given physical-time-index only intended to countervail our ignorance of the 

sub-states evolution with respect to the internal-time and should certainly not be misleadingly 

interpreted as a factual superposition of these sub-states.  It gives a global picture of all the 

actual sub-states in abstraction of the underlying internal-time and is thus more practical to 
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use whenever probabilities, interactions or a global picture are desired but certainly not when 

fundamental details are required. 

 

2.3 Measurement 

Equation (5) defines the fundamental-state-vector as a set of different sub-states evolving with 

respect to a 2d-time-manifold corresponding to the succession of state-time-lines ( ) along the 

physical-time t. It describes the fundamental internal evolution of the state-vector and can be 

used to interpret any phenomenon of the quantum system and should be used whenever a 

measurement is conducted on the quantum system. In contrast, the alternative equation (14) 

expresses the resultant-state-vector as a sum over the different sub-states affected by 

coefficients whose mod-squares yield the probabilities with which the possible results of the 

measurement will be obtained. The coefficients of equation (14) are derived from the state-

time-lives of each sub-state at a given physical-time-index. 

According to equation (5), a measurement can be regarded as an act of selecting one sub-state 

at a given elementary-time-instant            and once a sub-state has been selected, there are 

simply no other sub-states to select and thus the transition operation comes to a halt. In other 

words, the act of measurement stops the internally transitional process of the fundamental-

state-vector        corresponding to the chosen observable. 

Let       denote the state-vector of a measuring device and        that of the quantum system 

under equation (5). Prior to any interaction (at t=0), the state-vector       for the entire system 

(i.e. the measuring device and the quantum system) is denoted as follows: 

                                                          (16) 

where         denotes the initial state of the measuring device. 

Under the action of the Schrödinger evolution with respect to the physical-time, the state-

vector       for the entire system of the above expression evolves into the following entangled 

state:  

                                  
                      

       
    (17) 

where               represents the quantum system being in the sub-state        and the 

measuring device being in the state indicating the sub-state       . 

Equation (17) expresses the fact that if the interaction between the measuring device and the 

quantum system occurred during the oriented-state-time-life     of the sub-state       , then 

the measuring device indicates that the measured quantum system is at the state       . 

It should be noted that once a sub-state of a quantum system has been detected, it will be 

trapped by the measuring device (or in other words entangled with the measuring device), and 

thus the fundamental-state-vector        of the quantum system can no more change its state 

along the state-time-line (υ). In other words, the internal-state-clock associated to the state-

time-line stops ticking and thus, the oriented-state-time-life     of the sub-state        

becomes equal to the whole oriented-state-time-life    of the fundamental-state-vector       . 
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The above interpretation can be enlightened by making an analogy to a fictive experiment of 

consecutive tossing of a “quantum” coin. At each time, the coin is thrown into the air letting it 

rotate several times before it lands on a table in order to measure the outcome. The whole 

process of flipping a coin could of course be modeled by classical laws of physics in function 

of its trajectory and its precession. However, without any physical foundation and only for 

mere analogical purposes, the spinning motion of the coin in the air is assimilated to a 

permutation mechanism of transitions between its two faces with respect to an imaginary 

“state-time-line” ( ) whereas, the consecutive outcomes on the table is assimilated to the 

evolution of the coin along a physical-time-axis (      ). 

The space of states is a set of two elements “head” and “tail”:            . According 

to the conventional interpretation of quantum mechanics, the normalized state-vector       of 

the coin while it is rotating in the air is considered to be in a “superposition” state of two sub-

states       and       that can be expressed as follows: 

                              (18) 

The probability to find the outcome       or       when a measurement is conducted is    . 

When the coin falls on the table, there is only a single outcome either head or tail and in line 

with the conventional quantum mechanics, this is interpreted as a collapse of the initial 

superposed state of the coin into a single sub-state. This misinterpretation comes from the fact 

that the face-up side of the coin cannot be observed while it is spinning in the air and the coin 

was supposed to be simultaneously in different states. 

However, according to the present internal-time-model, the face-up side of the coin while it is 

spinning in the air is accounted for by assigning a “state-time-life” for each face-up side of the 

coin. Let     and     denote the state-time-lives of the two sub-states       and       
respectively while the coin is spinning. In this case, the state of the flipping coin while it is in 

the air should be represented by a fundamental-state-vector        as follows:  

                                            (19) 

The outcome can be observed with respect to the physical-time-axis only when the table (i.e., 

the measuring device) stops the flipping mechanism of the coin. Indeed, only when the coin 

settles down on the table that can be said whether the outcome is head or tail. 

Let       denote the state vector of the table and        that of the quantum coin according to 

equation (19). Prior to landing on the table (at t=0), the state vector       for the entire system 

(i.e. the table and the quantum coin) is denoted as follows: 

                                                                     (20) 

where         denotes the initial state of the table wherein, the coin did not land yet. 

Once the coin lands on the table, the state vector       for the entire system (table+coin) 

becomes:  

                                              
                  
                  

     (21) 

When the coin lands on the table at a given physical-time index    and a given state-time 

index   , the transition process comes to an end and the measured outcome becomes either 



11 
 

“head” or “tail”. Indeed, if the state-time index   belongs to the state-time-life    , then the 

quantum coin on the table would be in the state       and the table would indicate that the face-

up side of the coin is “head”. Otherwise, if    belongs to    , the table would indicate that 

the face-up side of the coin is “tail”. 

Therefore, by using the fundamental-state-vector of equation (19) instead of the conventional 

state-vector of equation (18), no reduction process happens at all. When a measurement is 

conducted, the outcome is simply the existing state at the measuring elementary-time-instant. 

The reduction process is simply an illusion resulting from not considering the internal-time by 

interpreting the superposition principle of the conventional state vector as an underlying truth. 

Had the conventional state-vector of equation (19) been used instead of the fundamental-state-

vector of equation (18), then measurement should not be interpreted as a “collapse” (or 

“reduction”) of the state-vector but rather as a two-steps procedure consisting of  

“decomposing” (or “separating”) the state-vector into its constituent sub-states with respect to 

an internal state-time before selecting the sub-state present at the physical-time-index and 

state-time-index during which the act of measurement took place. 

It should be noted that before measurement, at each physical-time index t, the fundamental-

state-vector is a sequence of a finite or infinite number of sub-states along a state-time-line 

( ). Once a measurement is conducted at a given physical-time index t, the fundamental-state-

vector becomes “frozen” at the sub-state it had at the state-time-index during which the 

interaction between the quantum system and the measuring device took place. Thus, 

measurement affects the pre-existing states of the quantum system in the sense that before 

measurement the state-time-line is visited by a series of different sub-states, during 

measurement one single sub-state is selected in function of the elementary-time-instant during 

which the interaction took place and after measurement the state-time-line is visited by the 

single state that has been measured. Thus, the condition of the quantum object is altered by 

the experience. The object before measurement can be considered as the quantum object in-

itself (or the noumenal object). After measurement, it becomes a phenomenal object that 

depends on the measuring device (or observer). 

 

2.4 Schrödinger’s Cat Paradox  

According to this well-known paradox, a live cat is placed in a box comprising a mechanism 

coupled to a radioactive atom and a vial of poison. At the beginning, the state-vector of the 

combined system “cat + atom” corresponds to a live cat. According to conventional quantum 

mechanics, the state-vector of the combined system at a time t, is a superposition of the state 

for a live cat and that for a dead cat. Upon opening the box, the state of the cat would collapse 

into either a live cat or a dead cat [13]. 

However, by applying the fundamental-state-vector        of equation (5), the cat paradox 

becomes simple. 

Let A stands for a non-decayed atom and D for a decayed atom. Then by applying equation 

(5), the fundamental-state-vector        of the atom is: 

                                                    
                  
                  

   (22) 
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However, in accordance to the present internal-time model, a disintegration of an atom should 

be logically considered as a binary feature in the sense that at any given elementary date 

        , an atom is either decayed (state D) or not decayed (state A). Thus, if an atom is in 

a decayed state at an elementary-time-date            , then, at the physical-time-index   , 

the atom is in the state D for      and at the state A for      (i.e. the atom is in the 

decayed state as well as in the non-decayed state only with respect to the physical-time-

index). In accordance with the measurement principle of section 2.3 and the binary feature of 

decay, it is straightforwardly concluded that for all physical-time-indices smaller than the 

physical-time-index   , the oriented-state-time-life     of the sub-state            is entirely 

equal to the oriented-state-time-life    of the whole state-line     while for all physical-time-

indices greater than   , the oriented-state-time-life     of the sub-state            is entirely 

equal to the state-oriented-time-life    of the state-line    . This is expressed as follows: 

      
  
 
   

     

         
       
        

    and 

      
 
  
   

     

         
       
        

      (23) 

Let       denotes the state-vector of the cat and       the state vector for the combined system 

“cat + atom”.  At the beginning (t=0), the state vector       for the combined system is: 

                                                                                 (24) 

By considering expression (23) and knowing that at the beginning the cat is alive (i.e. 

                  ), equation (24) is reduced into: 

                                (25) 

Under the action of the Schrödinger evolution with respect to the physical-time, the state 

vector       for the combined system of the equation (24) evolves into the following entangled 

state:  

                                                             
                    
                  

  

(26)  

where                 represents the state in which the atom is in the non-decayed state and the 

cat is alive and where                 represents the state in which the atom is in the decayed 

state and the cat is dead and thus, the cat cannot be in a superposition state live and dead. 

By applying equation (23) into equation (26), the state vector          for the combined system 

can be expressed as follows: 

           

          

          

                         
     

         
       
        

    (27) 

The above equation expresses the fact that there exists a physical time index    before which 

the cat is alive and after which the cat is dead which is naturally logical. However, the cat is in 
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a “partially-simultaneous” state dead and alive only with respect to the physical-time-index    

but not with respect to the elementary-time-date    . Therefore, by using the fundamental-

state-vector of equation (22), the Schrödinger’s cat paradox becomes intelligible. 

  

2.5 Uncertainty 

At any given physical-time-index, the internal-time model implies that a quantum system may 

have a plurality of sub-states indexed by different state-time-indices   in the state-time-plane 

      thus inferring uncertainty. Indeed, different fundamental-state-vectors        and         

related to different observables of the same quantum object may evolve along different 2d-

time-manifolds (t, υ) and (t,   ) embedded in the same elementary-time-thread wherein, for 

each physical-time index t, the state-time-lines (υ) and      in the state-time-plane       are 

different. It may thus be reasonably conjectured that non-commuting observables should refer 

to different sets of sub-states evolving with respect to different state-time-lines whereas, 

commuting observables should refer to sets of sub-states indexed with respect to the same 

state-time-line. 

Let Q and P be two non-commuting observables (i.e.        ) associated with first and 

second fundamental-state-vectors         and         respectively, expressed as follows: 

                               
              

 
    (28) 

                               
               

    (29) 

where         and         are first and second oriented-state-time-lives in function of the 

physical-time index t of the corresponding first and second sub-states                and 

                respectively. The first fundamental-state-vector         of the quantum object 

evolves with respect to a first 2d-time-manifold         while the second fundamental-state-

vectors         of the same quantum object evolves with respect to a second 2d-time-manifold 

       . Each sub-state defined with respect to the first 2d-time-manifold does not necessarily 

have a simultaneous corresponding sub-state evolving with respect to the second 2d-time-

manifold unless if the two manifolds intersects each other at an elementary date common to 

these two sub-states. Indeed, since the first observable A is defined with respect to a first 

state-time-line      and the second observable B with respect to a second state-time-line 

    , there could be no elementary-time-date                  at which both observables 

can be measured simultaneously unless there exist points where both state-time-lines intersect 

each other. Thus, for a fixed physical-time-index  , the first and second fundamental-state-

vectors evolve with respect to two different state-time-lines      and      signifying 

uncertainty between the two observables Q and P. 

For example, once the first observable Q is measured at a specific elementary-time-date 

             , the value of the first fundamental-state-vector                 becomes 

well-defined by a single sub-state given by: 

                                     (30) 
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However, at the same physical-time-component    of the elementary-time-date     

         , the second fundamental-state-vector                 still has a multitude of sub-

states: 

                                
                                                        

(31)  

Thus, at the common physical-time-component   , the first fundamental-state-vector 

                has a definite value, while the second fundamental-state-vector 

                has a plurality of states evolving along the state-time-line      that has a 

length (i.e. state-time-life) equals to          . 

Thus, the uncertainty principle should be related to the thickness of time and hence, an 

estimation of the thickness of time may be evaluated out of the uncertainty principle as will be 

shown in section 2.8. 

On the other hand, it should be noted that each 2d-time-manifold has its own relation order 

but no relation order can be established between two different manifolds. Nevertheless, the 

projection onto the physical-time-axis of different 2d-time-manifolds embedded in the same 

elementary-time-thread generates a relative physical-time order between the different 

elementary-time-dates. Similarly, the projection onto an arbitrary physical-time-axis of 

different 2d-time-manifolds (embedded in respectively different elementary-time-threads) 

with respect to which different quantum objects evolve generates a relative physical-time 

order between the different events associated to these quantum objects. This order gives the 

illusion that the different quantum systems are governed by an external time and that each 

physical-time-coordinate forms an event. 

 

2.6 Double-slit experiment 

In the case of the double-slit experiment, once an electron comes out of a slit, it’s position at 

any given physical-time-index can be at any place between and/or beyond both slits. 

However, for simplicity and without much loss of generality, the fundamental-state-vector 

       of an electron may be considered to be composed of only two sub-states       and       
corresponding to the position of the particle being in the neighbourhood of slits A and B 

respectively at the same physical time index t. The sub-states       and       depend on the state-

time-indices υ, and the fundamental-state-vector        can thus, be expressed as: 

                                                                 (32) 

where        and        are the oriented-state-time-lives in function of the physical-time-

index t of the two sub-states       and       respectively. In other words, at a given physical-time 

index t,     and     are the oriented-state-time intervals during which the electron’s position 

is in the neighbourhood of slits A and B respectively and wherein          is equal to 1 if the 

state-time index   is an element of     and 0 if not, and similarly,          is equal to 1 if   

is an element of     and 0 if not. In other words, the electron is at A and B at a given 

physical time t but not at the same state-time υ. This situation may be considered as a 

“relative-simultaneity” with respect to only the physical time index t, but is certainly not an 
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“absolute-simultaneity” because there isn’t any elementary-time triplet            with 

respect to which the electron is at A and B. 

This relative-simultaneity is responsible for considering the particle as an extended object of a 

wave-like nature when in fact it is simply a single particle having several positions (A and B) 

at different state-times υ but at the same physical-time-index t. The duality particle-wave 

becomes an illusion resulting out of our ignorance of the internal time. 

Nevertheless, for a given physical-time-index t, the particle can be at position A as well as 

position B. In that case, a resultant-state-vector           can be used to illustrate the observed 

phenomenon on the screen at a given physical-time-index t as in the conventional superposed-

state-vector. 

In view of equation (7) the resultant-state-vector           in the situation of the double-slit 

experiment is: 

                                                          (33) 

As in the conventional quantum mechanics, equation (33) obviously illustrates the same 

interference phenomenon on the screen. 

Indeed, in view of equation (13) the resultant-state-vector           can also be written as: 

                         
                               

                    (34) 

For simplicity, the dependencies on   are dropped and the coefficients are shortened such that 

the above equation becomes: 

              
                 

                 (35) 

The probability P that an electron passing through slits A and B arrives at a given point on the 

screen is: 

      
          

       
 
   

    
                   (36) 

where                 is the interference term [14]. 

On the other hand, when detectors A and B are placed at slits A and B respectively, the 

fundamental representation as characterized by the fundamental-state-vector             is used 

to illustrate the detection of the electron through slit A or slit B. 

Let        and        denote the state-vectors of the detectors DA and DB at slits A and B 

respectively and let        be the fundamental-state-vector of the electron according to equation 

(32). Prior to any interaction (at t=0), the state vector       for the entire system (i.e. the 

detectors and the electron) is denoted as follows: 

                                          (37) 

Thus, 

                                                                            (38) 

where the phase terms         and          are dropped for simplicity. At the beginning (t=0), 

detectors A and B do not detect any electron. Let         and         denote the state of the 
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detectors when they are not clicking (i.e. not detecting) and thus the above expression (38) is 

reduced into: 

                                                      (39) 

Equation (39) indicates that there is no electron at slit A and detector DA is not clicking and 

that there is no electron at slit B and detector DB is not clicking. 

Under the action of the Schrödinger evolution with respect to the physical-time, the state 

vector       evolves into the following entangled state:  

                                                                (40) 

Equation (40) can be expressed as follows:  

          
                           
                         

   (41) 

where          represents the state in which the electron is at the slit A and the detector DA 

clicks and similarly          represents the state in which the electron is at the slit B and the 

detector DB clicks. The above expression indicates that the electron is either on the one hand 

detected at slit A and not at slit B or on the other hand is not detected at slit A and detected at 

slit B. Therefore, no interference can take place and the electron simply behaves as a simple 

particle impacting the screen at a specific point. 

 

2.7. Entanglement 

Consider a quantum system composed of first and second entangled particles travelling in 

different directions. Suppose          and          are two eigenbasis of the first and second 

particles respectively. The composite state of the quantum system is defined by the tensor 

product which can be expressed as follows: 

                            (42) 

Similarly to equation (5), the fundamental-state-vector             in the composite space of 

states of the two particles can be expressed in function of the vector projections in the 

eigenbasis            of an observable as follows: 

                                      
                  

       
      (43) 

where as in equation (6),         is the Dirac measure that labels and orders the composite 

sub-states          along the state-time-line     and where in general      . The first and 

second parts of the ket represent the sub-states of the first and second particles respectively. 

Equation (43) indicates that the composite sub-states            do not occur at once and only 

one composite sub-state exists at each state-time-index  . The transition from one composite 

sub-state into another is governed by the internal-state-clock “materialized” by the 

corresponding state-time-line. Indeed, at each physical-time-index, the corresponding 

internal-state-clock governs the entangled system as a single entity thus, synchronizing the 

transitions of both particles. In other words, both particles are “connected” by the same 2-d-
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manifold whatever is the spatial separation between them. Both particles can thus be 

considered as “connected” by a same “time-filament” belonging to the 2-d-manifold at each 

ticking of the internal-state-clock. 

Suppose a measurement is to be made at the side of the first particle. Let       denotes the 

state-vector of the measuring device and       the state vector for the combined system 

“measuring device + particle”.  At the beginning (t=0) and before measurement, the state 

vector       for the combined system is: 

                                                                (44) 

Under the action of the Schrödinger evolution with respect to the physical-time, the state 

vector       for the combined system of the above expression evolves into the following 

entangled state: 

                                                               (45) 

Thus: 

          
                               

       
     (46) 

where                         represents on the one hand the state in which the first particle is in 

the state         and the measuring device being in the state indicating the state         and on the 

other hand the state in which the first particle is in the state         and the second particle is in 

the state        . 

This indicates that once the state of the first particle is observed to be at the state         (i.e. it 

has been selected by the measuring device when it was at the state         ), no more transitions 

can take place simply because the internal-state-clock along the state-line     stops ticking 

and therefore the state of the second particle is held-up at the corresponding state         . 

When at a specific physical-time-index, a measurement is made at either side of the entangled 

system, the internal-state-clock governing the fundamental-state-vector             simply 

stops the transition of the entangled system into any other sub-state. In other words, the 

internal-state-clock synchronizing the transition of states of both particles stops ticking and 

thus, the action of measurement on any particle fixes the outcome result for both particles. 

Consider for example an entangled system of two particles characterized by two spins 

specified by the z components travelling in opposite directions and emanating from a source 

midway between two detectors. The composite state of the two-spin system is a tensor 

product having the following basis vectors [15]: 

       ;        ;        ;         (47) 

where the u stands for spin “up” (i.e. an upward direction of spin with respect to a z-axis) and 

the d for spin “down” (i.e. a downward direction of spin with respect to the z-axis) and where 

the first and second parts of the ket represent the states of the first and second particles 

respectively. 
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Let the two-spin system be in a maximally entangled state corresponding to the singlet state 

         conventionally expressed as follows: 

                            (48) 

However, in accordance to equation (43), the fundamental-state-vector                is: 

                                             
              
              

     (49) 

Equation (49) expresses the fact that both particles are “connected” by the same 2d-time-

manifold composed of an ordered sequence of two “time-filaments” corresponding to sub-

states        and        respectively. In other words, the state transition of both particles is 

synchronized by the same internal-state-clock, and thus, when a measurement is made at 

either side, the internal-state-clock simply stops the transition into any other sub-state. 

The following affirmations can be concluded out of the above formalism: 

- Any physical object has a definite state at each elementary-time independently of our 

observing it. 

- No hidden information is built-in the entangled particles at their source and their states are 

simply synchronized by a common state-time-line. Thus, before measurement, the two 

entangled particles are governed by a common cause that screens off the apparent correlation 

between them. This common cause is the internal-state-clock (i.e. the state-time-line and 

transition process) that synchronizes their states. 

- After measurement, the act of measurement at one end stops the ticking of the internal-state-

clock (i.e. stops the transition process along the state-time-line) and thus affects the transition 

process at the other end. The measured state of one particle at one end “instantaneously” with 

respect to the physical-time (i.e. at the same physical-time-index t) affects the state of the 

other particle at the other end whatever is the distance between them. However, this 

interaction between both particles takes place through the internal-state-time and 

instantaneously with respect to the physical-time without any transfer of information through 

space. 

To summarize, there is a common cause (internal-state-clock) that synchronizes the entangled 

particles before measurement and the act of measurement on one particle instantaneously (by 

means of the state-time) affects the state of the other particle.  

Thus, the model of internal-time seems to reconcile the local realism of Einstein with the 

predictions of quantum mechanics. Indeed, any physical system has pre-existing states 

independently of our observing them and the principle of locality is not transgressed because 

entangled particles that are space-like separated do not causally influence each other through 

space but through the internal state-time. 

 

2.8. Estimation of Time’s thickness and Testability 
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The state-time index   along the state-time-line     is considered as a simple index or 

parameter. However, in certain cases and in particular, when time is an internal variable (as is 

the case of the state-time index  ), it can be considered as a time operator [16, 17]. 

Indeed, for a given quantum system at a given physical-time-index t, the internal state 

transitions of a given fundamental-state-vector             evolve with respect to the state-

time-line    . These transitions along the state-time-line     define an internal-state-clock 

inherent to that fundamental-state-vector            . The internal-state-clock is ticking in a 

domain limited to the oriented-state-time-life    of the state-time-line     and wherein the 

corresponding fundamental-state-vector             evolves in the domain    and vanishes to 

zero outside this domain. In order to make a distinction between a simple parameter on the 

state-time-line and an inherent state-time-index, the latter is simply called a “state-time-date”. 

The state-time-date is intrinsically related to the elementary-time-thread of the system and 

may thus be advantageously considered as a state-time observable associated to a Hermitian 

operator   such that: 

              for all     .     (50) 

Every real number    in the domain    is an eigenvalue of  , and the corresponding 

eigenvectors are thus given by Dirac’s delta functions: 

                   (51) 

Thus, the Hermitian operator       is considered to be the state-time-operator at the state-

time-date   . Hence, the action of the state-time-operator       on the fundamental-

state-vector             determines and selects the corresponding state-time-date and 

automatically yields the state associated to the selected state-time-date: 

                                 
  

  
       (52) 

Advantageously, for any given physical-time-index t, the Hermitian operator       may 

be used to define the measurement of an observable at any state-time-date    along the 

state-time-line    . 

A Hermitian energy operator   can thus be defined with respect to the state-time-line     and 

the uncertainty relation between energy E and the state-time-life         of the corresponding 

state-time-line     can be used to evaluate the thickness of time. Thus, a rough estimate value 

of the thickness of time      for a particle having a well-defined energy E is: 

           (53) 

This value is very small hence, the expression “thickness of time”. To be more precise, the 

above expression represents the lower bound estimate of the thickness of time knowing that 

the uncertainty relation is        . 

The double-slit experiment may be used to determine the upper bound estimate by increasing 

the distance between the slits until the interference disappears. Indeed, when the state-time 

needed for a particle to be at both slits exceeds the thickness of time, interference should not 

take place. This kind of experiment may be used as a test for the internal-time model as well 

as, a means to calculate the thickness of time. 
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Let the maximum distance between the slits be      above which no interference takes place. 

Thus, for a particle having a speed c, a rough upper bound estimate of the thickness of time 

may be given by: 

               (54) 

It should be noted that time-thickness for macroscopic objects or phenomena is very small to 

be noticeable and can thus be neglected. Nevertheless, it becomes important and should be 

taken into consideration for short living phenomena such as the creation of virtual particles. 

Indeed, the time life of a newly created virtual particle should be given by: 

                   (55) 

Another example where time-thickness should not be neglected is the early stage of the 

universe where the expansion of the universe should have lasted more than what would be 

expected by an observer who traces the history only along the physical-time axis. This may 

explain a very early inflation of the universe. 

2.9. Cosmic consequences of the internal-time model 

The standard big bang theory explains the expansion of the Universe, the spectrum of the 

cosmic microwave background radiation as well as plenty other observations. However, it 

leaves some questions unanswered and seems to demand very carefully chosen initial 

conditions [18]. This feature, known as the horizon problem cannot be accounted for by the 

standard big bang theory. Another special feature, known as the flatness problem requires 

from the big bang to specify the mass density of the early Universe with extreme precision. 

These initial conditions were explained by Guth [19] by an inflation phenomenon at the early 

stage of the Universe. 

The internal-time model can be used to give an alternative scenario for explaining these 

seemingly special initial conditions of the universe. In a microscopic universe (i.e. at the 

beginning of the universe), the thickness of time should not be neglected. Indeed, as the 

physical-time tends to zero, the state-time should have been comparable in magnitude to that 

of the physical-time. Therefore, in order to understand the phenomena that took place at the 

beginning of the universe, time-thickness should be taken into consideration. 

The approach explained by Carroll [20] is used to derive an appropriate metric that takes into 

consideration the global-time-tube metric of equation (2). A spatially homogenous and 

isotropic Universe evolving within a global-time-tube can be represented at each point of the 

global-time-tube by spacelike three-dimensional slices such that each slice is maximally 

symmetric. Thus spacetime is considered to be     where    represents a three-dimensional 

time metric and   is a maximally symmetric three-dimensional space metric. The six-

dimensional spacetime can thus be expressed by the following sort of Robertson-Walker 

metric: 

        
          

         (56) 

where    is the global-time-tube,       is a dimensionless scale factor and     is the metric 

on  . 

The above metric of equation (43) obeys the following Friedman equations: 
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              (57) 

  

 
  

   

 
               (58) 

where   is the scale factor that stands for      ,   is the Hubble parameter,   is the 

gravitational constant,   is the energy density,   is the spatial curvature, and   is the pressure. 

Friedmann equation (44) can equivalently be written in the following form: 

      
   

         (59) 

where   is the density parameter measuring the ratio between the density and the critical 

density and where a flat space is represented by     [18, 21]. 

By taking into consideration the metric of equation (2), an element of the global-time-tube at 

the beginning of the big bang (i.e., t being very small) may be expressed as follows: 

  
                       (60) 

After introducing, the above element of the global-time-tube, the scale factor for a universe 

dominated by only one kind of energy density (which indeed should have been the case at the 

beginning of the universe) is given by the following relation: 

     
 
           

 
            (61) 

Differentiating the above expression with respect to the physical time t gives: 

   
  

 
        

 
        (62) 

Differentiating again with respect to t gives: 

    
        

 
    

 
     

   

 
        (63) 

The first term is positive and thus: 

      when    
 

   
     (64) 

 Let     
 

   
       (65) 

where   represents the physical time below which, the Universe was in an inflation-era. 

Introducing the estimation of time-thickness of equation (53) into equation (65) gives:   

    
 

   
      (66) 

At the beginning, the universe was radiation-dominated (i.e. n=4,   
 
  ) and thus the 

inflation era is given by: 

              (67) 
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Equation (67) gives an estimation of the inflation era in function of the energy at the 

beginning of the Universe. 

On the other hand, by substituting       into the Friedmann equations (57, 58), the following 

inequalities are derived : 

   
 
     (68) 

 
   

  
   

  
     (69) 

In particular, relation (69) forces the value of   in equation (59) to 1 which solves the flatness 

problem. This scenario explains the observed flatness and isotropy of the Universe without 

the need to introduce any kind of “dark energy”. 

However, according to this scenario, the space inflation seems to be more of an illusion and it 

simply results out of observing the inflation-era with respect to the very small scale (   ) of 

the physical-time axis. Indeed, for    , the length of the global-time-tube    is greater than 

that of the physical time t (            ) and thus, the real period of time is greater than 

that of the physical time. In other words, the expansion of the universe during the inflation era 

lasted more than what would be expected by an observer who traces the history only along the 

physical-time axis. 

On the other hand, for    ,      and thus, the inflation stops at     and the acceleration 

decreases for    . 

For    ,  the projections of the global-time-tube on the state-time-axis can be neglected as 

they are very small compared to that on the physical-time axis. The global-time-tube can 

simply be approximated by its projection on the physical-time axis (i.e.     ). Thus, far from 

the inflation-era the global-time-tube behaves almost as the familiar physical time. 

However, depending on the energy density of the universe, the curvature of spacetime should 

affect the dynamical relation between the different components of time. In other words, the 

global-time-tube becomes more or less curved and this in its turn should affect the apparent 

rate of expansion of the universe. For example, if the “length” of the global-time-tube is 

greater than its projection on the physical-time axis, then the universe would seem to be 

spatially inflating if the physical-time-axis is the only one to be considered and not the real 

“length” of the global-time. The present observations seem to indicate that the universe is 

inflating and this apparent inflation could be simply explained by the dynamic nature of time 

without the need to introduce any kind of dark energy. 

 

3. Conclusion  

This internal-time model defines an internal evolving mechanism embedded in the U-process.  

At each physical-time-index, the state of the quantum system evolves from one state into 

another with respect to the state-time-line. A measurement stops the internal evolving 

mechanism such that the quantum system will only be at the state associated to the 

elementary-time-date during which the interaction between the quantum system and the 

measuring apparatus took place. Unlike the conventional U and R processes, the internal-time 
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model does not seem to create any conflict between the internal mechanism and the U-

process. 

On the other hand, the internal-time model comes fully in terms with the fundamentals or 

principles of quantum mechanics. Yet, it seems to maximize simplicity for explaining the 

measurement problem, the particle-wave duality, and the uncertainty principle. It also gives a 

reasonable explanation of entanglement without transgressing the principle of locality. These 

simple explanations may be considered as indications of the veracity of this model. 

Nevertheless, the internal-time model is experimentally falsifiable and provides new features 

concerning for example the life duration of virtual particles which can be tested. 
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