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W e analyze a class o f state space identification algorithms for time series, based on canonical correlation analysis in the ligth o f recent results on stochastic systems theory called « subspace methods ». These can be describe as covariance estimation followed by stochastic realization. The methods offer the major advantage o f converting the nonlinear parameter estimation phase in traditional V A R M A models identification into the solution o f Riccati equation but introduce at the same time some nontrivial mathematical problems related to positivity. The states o f the forward-backward innovations representation have an interpretation: Instrumental Variables estimators.

State space models have several inherent advantages in model specification. The states are formal, minimal sufficient statistics for the past history o f the series, an important consideration in time series. Recently there has been a renewed interest in identification algorithms based on a two steps procedure which in principle can be described as covariance estimation follow ed by stochastic realization, [START_REF] Aoki | State Space Modeling of Time Series[END_REF][START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF]. These algorithms are based on canonical correlation analysis and can naturally accomodate multivariate time series. They offer the major advantage o f converting the nonlinear parameter estimation phase which is necessary in traditional V A R , V M A , and V A R M A models identification into the solution o f an algebraic Riccati equation, a much better undestood problem for which efficient numerical solution techniques are available. On the other hand these methods introduce some very nontrivial mathematical problems related to positivity, Heij et al (1992), [START_REF] Vaccaro | A solution to the positivity problem in the state space approach to modeling vector-valued time series[END_REF], [START_REF] Ratsimalahelo | On Approximate Dynamic Systems[END_REF]. In this paper we shall analyze the above class o f stochastic state-space identification methods in the light o f recent results on stochastic systems theory. Lindquist and Picci (1996), Van Overschee and De M oor (1996).

From the point o f view o f identification in state-space models, there are two possible approaches to determine the parameters o f a model from the finite covariance sequence. One that has been proposed in the literature is do minimal factorization o f a finite block Hankel matrix in balanced form, [START_REF] Aoki | State Space Modeling of Time Series[END_REF], [START_REF] Aoki | State space modeling of multiple time series[END_REF], [START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF], this yields a solution to the minimal partial realization problem which no guarantee a positive extension.

The second approach would be instead to perform positive extension first and then to use a stochastic model reduction procedure on the parameters of the positive extended sequence, Lindquist and Picci (1996). [START_REF] Akaike | Markovian representation of stochastic processes by canonical variables[END_REF] has developed a stochastic realization theory based on the information interface between the past and the future of a time series and the concepts of canonical correlation analysis. Here the pair of canonical vectors with positive canonical correlations form a minimal interface between the past and the future of the process. It is shown that these two canonical vectors are the states of the forward and backward innovations representation (extreme Markovian representations) introduced by [START_REF] Faurre | Stochastic realization algorithm[END_REF] and are also basis vectors of what Akaike calls the forward and backward predictor spaces, respectively. Moreover, the canonical correlations coefficients provide a rational basis for obtaining reduced order model. [START_REF] Desai | A transformation approach to stochastic model reduction[END_REF], [START_REF] Desai | A realization approach to stochastic model reduction[END_REF] extended Akaike's work by introducing the concept of balanced stochastic realizations. Here a forward-backward dual pair is obtained with state covariance matrices being equal and diagonal and these diagonal elements are the canonical correlation coefficients. A forward-backward pair that satisfies these conditions is said to be in balanced form. These balancing conditions are the stochastic counterpart to the deteministic balancing conditions using by [START_REF] Aoki | State Space Modeling of Time Series[END_REF], [START_REF] Aoki | State space modeling of multiple time series[END_REF], [START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF]. Balanced representation state space models have several property: an orderly specification search over a small number of dimensions and a choice of coordinate systems for states that makes sequential model order tests uncorrelated, thus preserving their confidence levels. The balanced truncation is in fact a stochastic model reduction procedure. In all such procedures there must be a guarantee that the reduced degree matrix function is positive real. . [START_REF] Aoki | State Space Modeling of Time Series[END_REF], [START_REF] Aoki | State space modeling of multiple time series[END_REF] [START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF] used an algorithm deterministic realization procedure and hence does not a priori insure that Ricatti equation is positive real even the Toeplitz matrix is positive definite. This paper is organized as follows. In section 2, we present the classical realization approach background. In section 3, the main principles of canonical correlation are outlined. In section 4, useful properties of dynamic systems are summarized, with the canonical correlation concept and balanced stochastic realization, in section 5 we show how approximate stochastic realization.

The classical realization approach.

Let yt e Rm , t = 0, 1, 2,... T be a data sequence that is generated by the following system

x,+i = Axt + u, (1) yt = Cxt + V( (2) 
where x, e Rn is an unobserved state vector. A and C are matrices of appropriate dimensions. The vector sequence ut e Rn is a process noise while the vector sequence vt € Rm is a measurement noise, they are both assumed to be zero mean white, with covariance matrix
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where 5ts is the Kronecker delta function and primes denote the transpose of a vector and matrix. It is assumed that the stochastic process is zero mean stationary, i. e. E(xt) = 0 and E(xtx,) = P. The state covariance matrix P is independent of the time t. This implies that A is a stable matrix.

Since ut and vt are zero mean white noise vector sequences independent of xt. We know that E(xtut ) = 0 = E(xtvt). We find the Lyapunov equation for the state covariance matrix P = A P A ' + Q Defining the output covariance matrices Ai = E(yt+iyt). We find for Ao:

Ao = CPC' + R we get Ai = CAmG (3) A-i = (A,)' 1 = 1,2,... where G = APC' + S = E(xt+iyt' )
Given a system of the form (l)-( 2), the spectral density function S(z) of yt is defined by

S (z)= ¿ A tz -' or S(z) = Ao + C(zl -A ) 1 G + G' ( z 'l -A ') ''C' (4 
) where P, G and Ao are uniquely determined by

P = A P A ' + Q G = APC' + S Ao = CPC' + R. S(z) is interpreted as an expression of the form S(z) = Z(z) + Z ' (z-') (5) 
where

Z(z) = Ao /2 + C(zl -A )'1 G (6)
is the transfer matrix of a linear dynamic system.

The positivity of ( 6) is characterized in terms of the linear matrix inequality

P -APA' G -APC G'-CPA' A 0 -CPC >0, (7) 
The following result is well-known Lemme 1. « Kalman-Yakubovich-Popov », [START_REF] Caines | Linear stochastic systems[END_REF], p. 246.

A transfer function Z(z) given ( 6) is positive real with A asymptotically stable if and only if there exist a matrix symmetric P > 0 which satisfies (7).

The identification algorithms based on a two steps procedure consists first to estimate the matrices A, C and G. then the Riccati equation is solved for P.

Let the past and future of yt be defined respectively by

yt' = [yt-i, yt-2, -] yt+ = [yt, yt+i, •••]

Let Span(Yt+) and Span(Y,') be the Hilbert spaces obtained by taking the closed linear span of the random variables in Y t+ and Y t\ respectively. (In general, Span(.) will be the Hilbert space generated by the closed linear span of elements of (.) The inner product on this space is the cross covariance. Orthogonal projection in these Hilbert spaces is equivalent to conditional expectation i.e. x \Y = E(x \Y) denotes the orthogonal projection of x onto span(Y). This projection is given explicitly by x \ Y = E(xY) {E tY Y ') } ' ^ (8) where x and Y are zero-mean random vectors The projection Y t+ \ Y t' defines the state space of a markovian model of the form (l)-(2). Thus this projection is central to any stochastic realization algorithm. From (8), it can be seen that this projection is given in terms of the following matrices formed from the covariance sequence:

Y t+ \ Y,' = H R. lY (9) 
where

Y t' \ Y t+ = HR+-'Y+ H = E [Y t+(Y t ) ' ] = A, A 2 A 2 A 3 A 3 a 4 ( 10 
) R+ = E [Y t+(Y t+) ' ] = A 0 A,' a 2' A, > o A,' a 2 A, > o ( 11) A 0 Aj A 2 A ,' A 0 A, . . R. = E [Y t-(Yt ) ' ] = A 2 A j A q
H and R are the Hankel and Toeplitz matrices formed from the covariance lags of the output process. Let the full-rank factorization of R+ and R. be R+ = L+L+\ R. = L.L.' where L+ and L. are lower triangular Cholesky factors. From deterministic realization theory there exists an (A, B, C) whose impulse response equals the covariance sequence Aj, j = 1, 2,..; .Such a realization will be called a covariance realization. It is known that a given covariance realization corresponds to a particular factorization of the Hankel matrix as H = OQ'

We saw in Eq(3.) that the covariance matrices have the structure A i = CAmG, for 1 > 0 this indicates that the infinite Hankel matrix H formed from the covariance sequence can be factorized as

A , C CA C A 2 [G AG A 2G . .] H = O Q ' ( 13 
)
Thus a covariance Hankel matrix with both row and column dimension not less than p will have rank equal to p.

To illustrate our point we shall first consider the identification procedure proposed in Aoki (1990) [START_REF] Aoki | State space modeling of multiple time series[END_REF]. Given the covariance sequence, factorize the Hankel matrix H by singular value decomposition (SVD) H = U r V ' ( 14) where U'U = I = V 'V Here £ is the square diagonal matrix obtained by listing in decreasing order the nonzero singular values along the diagonal. Let O = U £l/2 and Q. = VX1 / 2 then the Hankel matrix H may be factored as H = 0£T (15) a n d 0 ' 0 = £ = Q 'Q (16) which is balanced in the sense that the observability and constructibility grammians O' O and respectively are both equal to E.

The estimation of the parameters A, C and G are given

A = E •1 / 2 U 'HV2: -m C = H 1 . V 2 1 / 2 G = 2 1 / 2 U 'H*,
where H is the shifted Hankel matrix obtained from H by delecting the first block row and adding a block row at the bottom. Hi» (H*i )is the first block row (column) of H. U' are a singular value generalized inverse of O and G respectively so that V I '1 / 2 and I ' 1 / 2

QQ+ = ( L 0 +0 = ( I -1 / 2 U ')( UX ",/z) = I -1/2 -l/2\ V ' ) ( V I '1 / 2 ) = I.
Modem systems theory has established the balanced representation as the coordinate system of the choice for computational reasons. An implication of this choice of coordinate system is that some of the parameter estimates are « strictly nested ». The principal problem of this procedure is that it is a deterministic realization procedure and hence does not a priori insure that Z(z) is positive real even if the Toeplitz matrix R formed with the data is positive definite. Further, by calculating A, C and G from the n non-zero singular values in En and the orthogonal singular vectors of Un and V n subject to the balanced representation, the estimates have the property referred to as stricly nested, [START_REF] Aoki | State space modeling of multiple time series[END_REF].

Thus the parameters estimates are given by An = E, -^u r H . v , ^ ' m

Cn = H i. V j V 7 2 (17) Gn=zr1 / 2 urH,!
it is a principal subsystem truncation in the sense that

A" = A " C" = C, Gn = Gi ( 18 
)
where An Ci, and Gi are sub-matrices of the original balanced state space model, that is,

A = A u A,2 A 2i A 2 2 C = [C ,C 2] G = [ G , G 2] ( 19 
)
Further it has been shown by Pemebo and Silverman (1982) that An is stable if A is stable.

Model reduction is done by Hankel norm approximation commencing from the Hankel matrix of the covariances of the output process. In calculating the Hankel norm approximation one issue is to obtain a Hankel matrix as the approximating matrix again which is still a best approximation among the matrices of the rank n, [START_REF] Glover | All optimal Hankel-norm approximations of linear multivariable systems and their L error bounds[END_REF] one obtain a matrix will not be a Hankel matrix in general. Hence it can not in general be used to determine a reduced order system.

Further it has to be shown that (18) generates a covariance sequence, i.e. that Zn(z) = C " (z I-A n)-,G"' + ' /2 A0 is positive real. The crucial question of positivity is neglected in [START_REF] Aoki | State Space Modeling of Time Series[END_REF] [START_REF] Aoki | State space modeling of multiple time series[END_REF].

We shall demonstrate next that this reduction procedure indeed produces a positive real and balanced reduced model structure something that has not been available in the literature. Notice that this is a nontrivial and surprising result since it really seems to be too much to hope for that the singular values of the truncated system are exectly to the n first singular values of the original system.

Canonical correlation.

Canonical correlation analysis, introduced for the first time by [START_REF] Hotelling | Relations between two sets of variates[END_REF] essentially consists in computing the principal (canonical) angles between subspaces, a straightforward generalisation of angles between vectors [START_REF] Golub | Matrix computations[END_REF]. Let F and G be subspaces in Rm dim(F) = p dim(G) = q p > q > 1

The principal angles 0i, 02, •••, 0q between F and G are defined recursively by subject to cos(0t ) = max max U' V = U kVk for k = 2 ,..., q

1 Ue F V eG * u = V =1 U 'lij = 0 for i = 1 , k-1 V 'vj = 0 for i = 1,..., k-1
first, two vectors U and V are searched for, between which the angle is minimal (maximal cosine), resulting in Ui, Vi and 0i. Cos(0i) egal 1 if the subspaces intersect. The vectors U = {Uj,..., uq} and V = { Vi, ...,vq} are called principal vectors of the subspace pair (F, G). the idea of using SVD to compute the principal angles and vectors is due to Bjork and [START_REF] Bjorck | Numerical methods for computing angles between subspaces[END_REF] 

Canonical correlations and balanced stochastic realization.

The application of the canonical correlation analysis to the realization problem has been pioneered by [START_REF] Akaike | Markovian representation of stochastic processes by canonical variables[END_REF][START_REF] Akaike | Canonical Correlation Analysis of Time Series and Use of an Information Criterion[END_REF], [START_REF] Desai | A transformation approach to stochastic model reduction[END_REF], [START_REF] Desai | A realization approach to stochastic model reduction[END_REF], [START_REF] Aoki | A method for approximate representation of vector valued time series and its relation to two alternatives[END_REF], [START_REF] Aoki | State Space Modeling of Time Series[END_REF]) (1994), Lindquist and Picci (1996), [START_REF] Van Overschee | Subspace identification for linear systems[END_REF] who tied this in with balancing technique. The state is in fact the information interface between past and future. The canonical correlations lead, therefore to a natural distance measure between the past and the future, which in the Gaussian case is nothing else than the Kullback-Leibler mutual information.

The model (l)-( 2) can be converted into a so called forward innovation model and backward innovation model, [START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF]. Forward innovation zt+i = Az, + Ket (20a) yt = Cz, + et (20b) where zt = E(xt/y1 .1') = £2R. 'yt-i (21) This has to be interpreted as follows zt is the optimal prediction of the state xt based on the measurements yt-i'.

e, = yt -E(yt/y ,.i) is called the forward innovation component in the state vector yt, E(et) = 0.

Conclusions.

The purpose of this paper is to analyze a class of state space identification algorithms for time series based on canonical correlation analysis. The usual deterministic arguments based on factorization of a Hankel matrix are not valid for data generating process something that is habitually overlooked in the literature.

We have shown how the IV estimators for the state space models are related to the forward and backward innovations in state space form.

The principal subsystem truncation proposed preserves positivity and balancing then the strict nesting property enjoyed by the original algorithm can be restored to the models constructed by the IV estimators.

State space systems provide a flexible and parsimonious way for time series modelling.

  and summarized in the following theorem: If the columns of Qf and Qg define orthonormal bases for F and G respectively, the principal angles and vectors follows from the SVD of Qf Qg Qf Qg = PSQ' [ U i , . . " Uq] = QfP [Vl,..., Vq] = QgQ S = diag(si,...,sq) cos(0k) = Sk for k = l,...,q Several alternative methods to obtain the required orthonormal bases are conceivable (Q-R decomposition, SVD, generalized SVD, etc ...). If only knowledge of intersection is needed an SVD of the concatenation of two matrices defining the subspaces can suffice: the intersection of the row spaces of two matrices f and G can be calculated from PiF, where [p, pa£ ] -o matrices Pi and P2 being determined through the SVD.

By construction E(ety"t-i) = 0 and E(etzs' ) = 0.

t > s

The matrix of covariance is E(ete,') = Ao-CP.C' The Kalman gain is K = (G -APC' )( A0-CP.C' )'1. P. = E(ztzt' ) is the forward state covariance matrix which can be determined from the forward the algebraic Riccati equation P. = AP.A' + (G -AP.C'X Ao -CP.C')'1 (G -AP.C' ) '

Backward innovation wt.i = A 'wt + Bet (22a) yt = G'wt + £t (22b) where wt = E ( xt/yt+i+) = 0 ,R+'1 yt+i+ (23) et = yt -E(yt/y+,+i) is the backward innovation, E(wt) = 0 It is uncorrelated with wt :E(£,wt) = 0. The matrix of covariance is E (e, et') = ( Ao -G'P+G) The Kalman gain is B = (C' -A ' P+G) ( Ao -G'P+G)'1 Where P+ = E(w,wt' ) is the backward state covariance matrix, this is the solution of algebraic Riccati equation

Following [START_REF] Van Overschee | Subspace identification for linear systems[END_REF] the states of the forward (zt) and the backward (wt) innovations representation are generated from the principal directions between the past and future output data.

Estimates of parameters A, C, G and Ao. Estimate of C. Following [START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF], given z , , the least squares estimate of C is

it is also the IV estimate using z t as instruments. From the definition zt = QR/'y't-i we can form a reduced form for estimate of the covariance matrice of state by P. = QR-_1Q ' . So that

Estimate of G The matrix G is estimated exactly as C in the forward innovation G = (i:y,w t+1-)(E w t+1w t+1 ') -1 where w t is used as an instrument.

Using the estimate of the covariance matrice of state P+ = O'R+ 'O, we obtain

The matrix A appears both in the forward and backward innovations, hence two alternative estimates are obtained by using zt or wt as instruments. For zt as instrument, we obtain  = ( I z t+lz , ) ( I z tz't) _l where Ezt+i zt' = QR/'iZyt'yt+i'^R.'1 £2' For wt as instrument, we get  = ( I w tw t.,' )(L w tw t' ) "'

Estimate of Ao A0 = T'Eytyt'

Following [START_REF] Akaike | Markovian representation of stochastic processes by canonical variables[END_REF], [START_REF] Desai | A transformation approach to stochastic model reduction[END_REF] and [START_REF] Desai | A realization approach to stochastic model reduction[END_REF] Van Overschee and De Moor (1996) consider a normalized Hankel matrix H* = L'+ H(L'+)' ^ (24) Taking the singular value decomposition of H instead of H H* = UEV' with U'U = I = V 'V Suppose that a finte dimensional realization of order n for yt exist, rank (H*) = n = rank(H) then Z = diag[ai, a2, . , a"], 1 > at > a 2 >... > a"-So that H = (L+U)Z(L.V)' . The singular values become the canonical correlation coefficients i.e. the cosines of the angles between the past and the future of the process y We have

) This is a realization stochastic balanced, its corresponds to a more natural type of balancing corresponding to a Hankel operator describing. The interface between the past and the future of the times series y. Definition: A Balanced stochastic realization (B.S.R) is an innovations representation with state covariance matrix equal to the canonical correlation coefficient matrix Z.

Gel 'fand and Yaglom (1959) have shown that the mutual information between the past and the future is given by I(Y t',Yt+) = -Yi In det (I -Z2) = -Vi Z ln(la?) Since H = OQ.' and this factorization is unique modulo coordinate transformation in state space, we may take O = L+UZ1 / 2 and Q = L_V II/2

Proposition.

In the stochastically balanced basis, an estimate of parameters are

This result is different of the result obtain by [START_REF] Aoki | Two complementary representations of multiple time series in state space innovation forms[END_REF].

5.Approximate stochastic realization.

A stright-forward positive extension of a finite covariance sequence leads to a spectral density S(z) o r, to equivalently, to a positive real matrix function Z(z) = C(zl -A y 'G ' + Vi Ao of a degree n which is often too large. In this section we shall discuss a method of approximating Z, and hence the positive extension, by a positive real function Z, of lower degree, this method is called balanced truncation [START_REF] Desai | A realization approach to stochastic model reduction[END_REF], Lindquist and Picci (1996).

The parameters of a model A, C, G can be chosen in a stochastically balanced form, so that the minimal and maximal solutions, P. and P+, of the algebraic Riccati equation P = A P A ' + (G -APC' X A0-CPC' )'1 (G -APC' ) ' are such that P. = Z = P+, where Z = diag{Ci, a2,..., an} is the matrix of canonical correlation coefficients of the process y. The idea is to replace Z by a rational matrix function Z^C^-An^Gr+ViAo, of lower degree n*, where n* should be chosen, if possible, so that the last n -n* canonical correlation coefficients {<T ".+,, G n*+2,-, a n}, to be disregard, are small. With (A, C, G) in balanced form, (Au, Ci, GO are chosen so that

where Zi = diag {<Ji, Gi,..., <?"♦} and £2 = diag {a n*+i, a n*+2,-, <*n}-The questions to be answered here is whether this procedure leads to a Zi which is positive real and hence corresponds to a spectral density and wheteher {An, Cj, G i } is in stochastically balanced form, i.e. whether the corresponding minimal and maximal solutions, Then the following theorem holds Theorem. Suppose that R = A 0 -CP. C' > 0 and that P+ -P. > 0. Then the balanced truncation (An, Ci, Gi) defines a strictly positive real function for which it is a minimal realization in balanced form. Consequently, S,(z) = Z,(z) + Z ,(z' ) is strictly positive on the unit circle. The proof can be found in Lindquist and Picci (1996).

Further, by calculating A, C and G from the n* non-zero canonical correlation coefficients in X , the estimates have the property referred to as strictly nested. The estimates are called « strictly nested » because the leading principal submatrices of A, C and G contain the exact numerical values of the correponding lower order model. This result is due to the orthogonality of the singular vectors which enter the formulae of the parameter estimates. Thus if additional states are included incorrectly in the model, all coefficients of the model are estimated consistenly and, in fact, are numerically identical to the estimates that would be obtained from the correct specification.