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Abstract

The aim o f this paper is to integrate the geographical dimension o f data in the 
estimation o f the convergence o f European regions and emphasize the importance of spatial 
effects in regional economic growth phenomena. In a sample o f 122 European regions over 

the 1980-1995 period, we find strong evidence o f spatial autocorrelation in the unconditional 

/^-convergence model using spatial econometric methods with different weight matrices: a 

simple contiguity matrix and 4 distance-based matrices. Therefore, this standard 

/^-convergence model exhibit misspecification, its estimation by OLS leads to inefficient 

estimators and invalid statistical inference. We suggest then a “minimal” specification of 

/^-convergence, which integrates and treats adequately the spatial autocorrelation detected.. 

Moreover, this model is interpreted as a conditional /^-convergence model revealing a spatial 

spillover effect between European regions. Therefore the European regions are interdependent 

and we show by a simulation experiment that a random shock affecting a given region 

propagates to all the regions o f the sample.

1 An earlier version of this paper was presented at the 6th RSAI World Congress 2000 “Regional Science in a 
Small World” , Lugano, Switzerland, may 16-20, 2000. We would like to thank R. Florax and G. Arbia for their 
helpful comments. Any errors or omissions remain our responsibility.
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Résumé

L’objectif de ce papier est d’ intégrer la dimension géographique des données dans 

l’estimation du processus de convergence des régions européennes et de souligner le rôle des 

effets spatiaux dans l’analyse de la croissance régionale. Dans un échantillon de 122 régions 

européennes sur la période 1980-1995, nous mettons en évidence la présence 

d’autocorrélation spatiale dans le modèle de /^-convergence absolue en utilisant les méthodes 

de l’économétrie spatiale et différentes matrices de poids : une matrice de contiguité et 4 

matrices de distances. Par conséquent ce modèle de /^-convergence est mal spécifié, son 

estimation par les MCO conduit à des estimateurs inefficients et à une inférence statistique 

peu fiable. Nous proposons alors une spécification « minimale » du modèle de /^-convergence 

permettant le traitement approprié de l’autocorrélation spatiale détectée dont nous soulignons 

l’ impact sur la croissance régionale. En outre, ce modèle peut être interprété comme un 

modèle de ^-convergence conditionnelle révélant un effet de débordement spatial entre les 

régions européennes. Les régions européennes sont donc interdépendantes et nous montrons à 

l’aide d’une expérience de simulation qu’un choc aléatoire affectant une région donnée se 

propage à l’ensemble des régions de l’échantillon.

JEL Classification: C51, R ll , R15
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Introduction

The problem o f regional economic convergence has been widely studied in the recent 
macroeconomic literature. This hypothesis is based on neo-classical growth models (Solow, 

1956; Swan, 1956), which assume constant returns to scale and decreasing marginal 

productivity. This implies a long run tendency towards the equalization o f per capita product 

levels o f different geographical areas. There is convergence when the growth rate of a 
« poor » region is bigger than the one of a « rich » region so that the « poor » region catches 

up in the long run the per capita income or product level o f the « rich » region. This feature 

corresponds to the ̂ -convergence concept (Barro and Sala-I-Martin, 1995).

Numerous empirical studies focus on the test o f this hypothesis at the regional scale 

but they meet great econometric problems. Thus the interpretation o f the results is subject to 

caution. Moreover, factors that explain economic convergence such as technology diffusions 

or factor mobility have a strong geographical dimension. Indeed, new economic geography 
theories and growth theories have been recently integrated in order to show the way 

interactions between agglomeration and growth processes could lead to new results and better 

explanations in regional growth studies (Baumont and Huriot, 1998). These theories stress on 

the role played by geographic spillovers in spatial and growth mechanisms. Most of the 
results highlight the dominating growth-geographical patterns o f Core-Periphery equilibrium 

and uneven regional development. Therefore, these results mean that economic performances 

o f neighboring regions are similar and not randomly spatially distributed on an economic 

integrated regional space.
This paper focuses on the theoretical and empirical problems, which arise when such a 

spatial order characterizes data used in empirical studies o f regional growth.
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From an econometric point o f view, spatial dependence between observations leads to 

unbiased but inefficient estimators and unreliable statistical inference. It is then 

straightforward that models using geographical data should be systematically tested for spatial 

autocorrelation (Cliff et Ord, 1981) like time series models are systematically tested for serial 

correlation. However just a few empirical studies in the recent literature on growth theories 

using geographical data apply the appropriate spatial econometric tools (Klotz and Knoth, 

1997; Fingleton and McCombie, 1998; Rey and Montouri, 1999; Fingleton, 1999).
Moreover, three important results can be obtained when spatial econometric tools are 

used in the estimation of regional growth process. First, they allow avoiding bias in statistical 

inference due to spatial autocorrelation and lead to more reliable estimates. Second, they 
allow estimating the magnitude o f geographical spillover effects in regional growth processes. 

Third, they show that spatial dependence leads to a minimal but unavoidable specification o f 

conditional ¡5 -convergence.

The empirical study o f /? -convergence for European regions we realize in this paper 

illustrates these three points. Using a sample of 122 European regions over the 1980-1995 
period, we show that the unconditional fi -convergence model is misspecified due to spatially 

autocorrelated errors. We then estimate different specifications integrating these spatial effects 
explicitly and compare the results obtained for various weight matrices: a contiguity weight 

matrix and 4 distance-based weight matrices. Our results indicate that the process of 

convergence is weak and are in conformity with other empirical studies on the convergence of 

the European regions (Barro and Sala-I-Martin, 1995; Jean-Pierre, 1999; Neven and Gouyette, 
1994). But we also show that the mean growth rate o f a region is positively influenced by 

those o f neighboring regions stressing a spatial spillover effect. Moreover, the spatially 

autocorrelated error model implies a spatial diffusion process o f random shocks that we 

evaluate by simulation. Our results are robust to the choice o f the weight matrix.

In order to discuss theoretical and empirical results on interactions between 

agglomeration and regional growth processes we present some theoretical principles showing 

that economic phenomenon are spatially ordered and that geographic spillovers affect regional 

growth (Section 1). Then we explain how spatial econometric tools can be applied to the 

estimation o f ¡3 -convergence models using European regional data (Section 2). Finally 

several estimations are realized and their results are discussed (Section 3).
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1. Geography and Regional Growth

In this paper, we consider new economic geography theories2, which have been 

developed following Kingman’s formalization o f inter-regional equilibrium with increasing 

returns (Krugman, 1991). These theories aim at explaining the location behaviors o f firms and 

their agglomeration processes. They give several theoretical information and principles, which 

help us to understand the uneven spatial repartition o f economic activities between regions.

Driven by dominating agglomeration forces, industrial and high tertiary activities tend 

to concentrate in a few numbers o f places in developed nations.

The geographical distribution of areas characterized by high or low densities of 

economic activities is rarely random: the places where agglomerations take place are 
identified by first nature or second nature conditions (Krugman, 1993a). The former refers to 

natural conditions or to random location decisions taken by firms. The latter means that the 

attractiveness o f a place for a firm is due to the presence o f other firms, which have chosen to 

locate there before. In multi-regional models (Krugman, 1993b), it is shown that two 
agglomerations are separated by a minimum distance because a “ shadow effect ” prevents the 
formation o f a distinct agglomeration in the neighborhood of another one. This minimum 
distance value increases with the size o f the agglomeration.

Agglomeration processes are strongly cumulative because the agglomeration itself is a 
component o f agglomeration forces. Even if the starting distribution o f economic activities is 
spatially identical (i.e. there is no agglomeration), an exogenous shock, like the random 

decision o f a firm to re-locate in another place, can lead to the formation o f an agglomeration 
in that place.

The effects o f the uneven spatial distribution o f economic activities on regional 
economic growth have been pointed out in new economic geography by some theories 

constituting what we named “ geography-growth synthesis ” (Baumont, 1998b; Baumont and 
Huriot, 1999). The emergence o f these theories is based on the fact that several similar 

economic mechanisms are involved both in spatial and dynamical accumulation processes of 

economic activities, which further and support economic growth. These common 

determinants affect the characteristics of production processes (like increasing returns, 
monopolistic competition, externalities, vertical linkage...) and focus on specific factors (like 

R&D, innovation, producer services, high tertiary activities, public infrastructures...). Then an

2 See Duranton (1997) and Fujita, Thisse (1997) for more details.
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agglomeration as a whole can be considered as a factor of growth (Baumont, 1997). Several 

authors have formalized the links between agglomeration and growth processes (Englmann 

and Walz, 1995; Kubo, 1995; Martin and Ottaviano, 1996, 1999; Ottaviano, 1998; Pavilos 

and Wang, 1993; Walz, 1996)3 and they have obtained important results for the analysis o f 

regional growth mechanisms. On the one hand, it is shown that the spatial concentration of 

economic activities favors economic growth. As a result, uneven spatial distribution o f 

economic activities is an efficient geographic equilibrium for economic growth. On the other 

hand, economic growth can be considered like another agglomeration force, that is to say that 

growth can reinforce polarization processes.

These theoretical approaches allow studying the way economic integration policies 

influence convergence processes between regional economies (Baumont, 1998a, 1998b). For 

example, the intensification o f economic integration processes leads to lower costs of 

transaction, higher labor migrations and the widening o f market size ; each o f these factors 
contributing to agglomeration process and uneven regional development. We also know that 

the effects o f vertical linkage and geographic spillovers on both firms location and 

productivity reinforce the strength o f the interactions between agglomeration and growth 
processes. But few empirical studies on regional economic convergence consider the effects 

of explanatory spatial factors like labor migrations, interaction costs or geographic spillovers.
If we focus on geographic spillover effects, some theoretical results are especially 

important. Geographic spillovers refer to positive knowledge external effects produced by 

some located firms and affecting the production processes o f firms located elsewhere. Local 

and global geographic spillovers must be distinguished. The former means that production 

processes o f the firms located in one region only benefit from the knowledge accumulation in 

this region. In this case, uneven spatial distributions of economic activities and regional 
growth divergence are observed. The latter means that knowledge accumulation in one region 

improves productivity o f all the firms whatever the region where they are located. A global 

geographic spillover effect doesn’t reinforce agglomeration processes and contributes to 

growth convergence (Englmann and Walz, 1995). Intermediary spatial ranges can be 

considered if the concentration o f firms in one region produces both local and global 

knowledge spillovers o f different values (Kubo, 1995). Uneven or equilibrium patterns o f 

regional growth appear according to the relative strengths o f this geographic spillover in a 

region and between the regions.

3 See Baumont and Huriot (1999) for more details.
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All these theoretical results show that geographical patterns can be ordered by 

economic growth processes and that they can orient regional growth patterns. Applying them 

to the analysis o f an integrated regional space would lead to the following observations. 

1/ Since economic activities are unevenly distributed over space, cumulative processes of 

agglomeration take place and most o f the economic activities tend to concentrate in a few 

numbers o f regions. 2/ Since economic growth is stimulated by geographic concentration of 

economic activities, patterns o f uneven development are observed. 3/ The shadow effect 

contained in the cumulative agglomeration process and the spatial ranges o f geographic 
spillovers can now explain why rich and poor regions are or not regularly distributed4. 

Whereas all the regions could benefit from global geographic spillovers, cumulative processes 
o f concentration in one region empties its surroundings o f economic activities. As a result, 

rich regions can be close with each other if geographic spillovers are global and regularly 

distributed among them. On the contrary, the assumption o f local spillovers would explain a 
more regular juxtaposition o f rich and poor regions. 4/ Finally, since history matters through 

the initial conditions and the cumulative nature o f both growth and agglomeration processes, 
the observed geographic distribution o f rich and poor regions would be rather stable through 
time.

We could easily observe such spatial orders in European Union regional area. Rich and 

attractive regions5 keep on being geographically concentrated in the south o f England, in 
Benelux, in the east o f France, in the west o f Germany and in the north o f Italy along the 

London-Munich-Turin axis. In Spain, Portugal and South-Italy, poor regions are numerous.

These persistent empirical observations lead to three types o f issues. The first one 
refers to growth theories and investigates the convergence problem if poor regions don’t catch 

up rich ones. The second one refers to economic geography theories and investigates the 

effect o f geographic spillovers on growth processes to explain spatial development patterns. 
The third one refers to econometric methods we can use to estimate economic-geography 
phenomena since data are not spatially randomly distributed. The empirical research we 
present in this paper tries to answer these questions.

4 like for example black and white cases on a chessboard.
5 With per capita GDP above the mean of per capita GDP of European regions.



2. A  spatial econometric approach of /¿-convergence

2.1. /¿-convergence concepts

The hypothesis o f convergence based on the neo-classical growth theories implies that 

a "poor" economy tends to grow more quickly than a "rich" economy, so that the "poor"

This property corresponds to the concept o f /^-convergence (Barro and Sala-I-Martin, 

1991, 1992, 1995). /^-convergence may be absolute (unconditional) or conditional. It is 

absolute when it is independent o f the initial conditions. It is conditional when, moreover, the 

economies are supposed to be identical in terms o f preferences, technologies and economic 

policies. The hypothesis o f absolute /^-convergence is usually tested on the following cross- 

sectional model:

where y u is the per capita GDP of the region i ( i = l,...,N ) at the date t , T is the length of 

the period, a and /? are unknown parameters to be estimated and ei an error term. There is 

/? —convergence when ¡3 is negative and statistically significant since in this case the average 

growth rate o f per capita GDP between dates 0 and T is negatively correlated with the initial 

level o f per capita GDP. The estimate o f ¡3 makes it possible to calculate the speed of

convergence: 0 = -ln(l + Tj3)/T. The time necessary for the economies to fill half o f the 

variation, which separates them from their stationary state, is called the half-life:

The test o f the hypothesis o f conditional ¡3 -convergence is based on the estimation 

of the following model where some variables, which differentiate the regions, are isolated:

Xt is a vector o f variables, maintaining constant the stationary-state o f economy i , including

some state variables, like the stock o f physical capital and the stock o f human capital, and 

control or environment variables, like the ratio o f public consumption to GDP, the ratio o f 

domestic investment to GDP, the modification of terms of trade, the fertility rate, the degree

economy catches up in the long run the level o f per capita income or production o f the "rich" 

economy.

—In = a + filn(yi0)+ £,• £i~i.i.d(0,<j 2£ ) (1)

I ln  2k . = a + p\n(yifi) + rX'i + s i
■L y  ì n i

ei~i.i.d(0,<j2e ) (2)
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o f political instability etc. (Barro and Sala-I-Martin, 1995). Another way of testing the 

assumption o f conditional convergence is still based on the equation (1) but it is estimated on 

subsamples o f economies for which the assumption o f similar stationary-states seems 

acceptable (construction of convergence clubs, see for example Baumol, 1986; Jean-Pierre, 

1999).

We can observe that two effects on economic growth are estimated in the conditional 

P -convergence model. The first one is an expected negative effect o f the initial per capita 

GDP through the estimated value of /? in order to capture the convergence phenomenon. The 

second one corresponds to all other effects on growth o f each explanatory variable introduced 

in X t. As a result, estimating equation (2) provides information on a more general process of

growth than in equation (1). We can deduce from the estimates, which variables contribute or 
weaken economic growth and the way the convergence process is constrained by some 

explanatory variables. Nevertheless, the appropriate choice o f these explanatory variables is 

problematic because we can’t be sure conceptually to include all the variables differentiating 
steady states. Even in this case data on some o f these variables may not be easily accessible 
and reliable for international comparisons (Caselli, Esquivel and Lefort, 1996; Fingleton 

1999). In addition some of these variables, including the initial per capita GDP, can be 

correlated with the error term invalidating estimation by Ordinary Least Squares and 

associated statistical inference (Quah, 1993; Evans, 1996).

Let us finally underline that in the convergence tests presented above, the analysis 

relates to regions observed in cross-sections by supposing implicitly that each one o f them is a 
geographically independent entity and by neglecting the possibility o f spatial interactions. 

Indeed the independence hypothesis on the error terms may be very restrictive and should be 
tested. If rejected, the estimation o f these models by Ordinary Least Squares will be 

inefficient though unbiased and the statistical inference will not be reliable. The spatial 

dimension o f the data should then be carefully integrated in the study and estimation of 

convergence processes.

2.2. Spatial dependence and econometric tools

Spatial dependence means that observations are geographically correlated due to some 

processes, which connect different areas: for example diffusion and dispersion processes or 
trade process, transfers or other social and economic interactions. Several economic factors, 

like labor force mobility, capital mobility, transportation costs or transaction costs are
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especially important because they directly affect trade between regions. Indeed, these various 

processes induce a particular organization o f economic activity in space.

Spatial autocorrelation can be defined as the coincidence o f value similarity and 

locational similarity (Anselin, 2000). Therefore there is positive spatial autocorrelation when 

high or low values o f a random variable tend to cluster in space and there is negative spatial 

autocorrelation when geographical areas tend to be surrounded by neighbors with very 

dissimilar values.
Three kinds o f model can be used to deal with spatial dependence o f observations: the 

spatial autoregressive model, the spatial cross-regressive model and the spatial error model 

(Anselin, 1988; Anselin and Bera, 1995; Cliff and Ord, 1981).

The spatial autoregressive model

In this model, spatial correlation o f observations is handled by the endogenous spatial 

lag variable fF[(l/r)ln(z)]:

\jT\n(z) = aS + fi\r(y0)+ pW[(}jT)\n(z)]+u m~N(0,<t27) (3)

where z is the (« x 1) vector o f the dependent variable in the unconditional ¡3 -convergence 

model, i.e. the vector o f per capita GDP ratios for each region i between dates T and 0, 

is then the vector o f average growth rates for each region i between dates T and 0; 

yQ is the (wxl) vector o f per capita GDP level for each region i at date 0 and s 

the(nxl) vector o f normal i.i.d. error terms; S is the sum vector; a, ¡3 and p  are the 

unknown parameters to be estimated, p is the spatial autoregressive parameter indicating the 

extent of interaction between the observations according to the spatial pattern, which is 
exogenously introduced in the weight matrix W o f dimension (nxn). This weight matrix is 

standardized such that the elements o f a row sum up to one. The endogenous spatial lag 

variable H/[(l/7,)ln(z)] is then a vector containing the growth rates premultiplied by the 

weight matrix: for a region i o f the vector, the corresponding line o f the spatial lag vector 

contains the spatially weighted average o f the growth rates o f the neighboring regions. This 

weight matrix is o f fundamental interest in spatial econometrics so we will specify its 

properties more deeply below.

Estimation o f this model by Ordinary Least Squares (OLS) produces inconsistent 

estimators due to the presence o f a stochastic regressor Wy, which is always correlated with 

s , even if the residuals are identically and independently distributed (Anselin, 1988, chap 6).
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Hence it is to be estimated by the Maximum Likelihood Method (ML) or the Instrumental 

Variables Method.
This specification can be interpreted in two ways. From the convergence perspective, 

it yields some information on the nature of convergence through the/? parameter once spatial 

effects are controlled for and thus it can be interpreted like a minimal conditional 

/? -convergence model allowing for spatially lagged endogenous effects. From the economic 

geography perspective, it indicates how the growth rate o f per capita GDP in a region is 

affected by those o f neighboring regions through the p  parameter after conditioning on the 

initial per capita GDP levels. It may thus help to highlight a spatial spillover effect.

In addition, let us stress also that this model can be rewritten as following:

( l - PWi(]/T)\n(zjl = aS + p]x{yQ)+u

[(yr)ln(z)] = a(l -  p W fS  + & I -  p W Y  InU )+ ( /  -  pW f u

Concerning the error process this expression means that a random shock in a specific 

region does not only affect the growth rate o f this region, but also has an impact on the growth 

rates of all other regions through the inverse spatial transformation ( / -  pW~)'x. Moreover, it 

means as well that the growth rate o f a given region is affected not only by its own per capita 

GDP initial level but also by those o f all other regions through the same inverse spatial 

transformation. The second interpretation is rather disturbing when we consider this 
specification from the pure convergence perspective: it is hard to say if it is really consistent 

with the basic ft -convergence concept. For the least, we think that this specification should 

be interpreted carefully in terms o f convergence processes.

The spatial cross-regressive model

Another way to deal with spatial dependence is to introduce exogenous spatial lag 

variables:
\/T ln(z) = aS + P ln(y0) + WZy + u u~ N(0, cr21) (4)

Here, the influence o f h spatially lagged exogenous variables contained in the (n x h) 

matrix Z is reflected by the parameter vector y . This general specification allows handling of 

spatial spillover effects explicitly and can be interpreted like a conditional convergence model 

integrating spatial environment variables possibly affecting growth rates.

The set o f explanatory variables in Z can include or not ln(y0). If it is the case, then

the model gives estimates o f both a direct and a spatially lagged effects o f initial per capita



GDP levels on the growth rates, besides estimates o f spatially lagged effects o f other 

explanatory variables. If it is not the case then the model focuses only on the spatially lagged 

effects o f other explanatory variables. The estimation o f this model can be based on OLS.

An interesting special case appears when Z includes only ln(y0), we have then:

1/T \n(z) = aS + J3 ln(>»0)+ yW ln(.y0)+ u w~N(0,(r27) (5)

in which only the spatially lagged initial per capita GDP levels affect growth rates. This 

model can be interpreted as the minimal specification allowing spatially lagged exogenous 

effects in a conditional /? -convergence model.

The spatial error model

This specification is accurate when we think that spatial dependence works through 

omitted variables. It is then handled by the error process with errors from different regions 

displaying spatial covariance. When the errors follow a first order process, the model is:

l/r in (z ) = aS + /?lnO;0)+£ s = XWs + u u~N(0,<r2I) (6)

where X is the scalar parameter expressing the intensity o f spatial correlation between 

regression residuals. Use o f OLS in the presence o f non-spherical errors would yield unbiased 

but inefficient estimators. In addition inference based on OLS may be misleading due to 

biased estimate o f the parameter’ s variance. Therefore this model should be estimated by ML 
or General Methods o f Moments.

This model has two interesting properties. First, spatially correlated errors imply that a 

random shock in a specific region is propagated to all the regions o f the sample (Rey and 
Montouri, 1999).

Indeed, since: s = XWe + u , then s = (I -  XW)~! u and the model (6) is:

(l/r)ln (z) = aS + p\n(y0)+ (I -  XWy'u (7)

This expression means that a random shock in a specific region does not only affect 

the growth rate o f this region, but also has an impact on the growth rates o f other regions 

through the inverse spatial transformation (I -X W )"'. Moreover, even if a given region has a 

limited number o f neighbors, the inverse operator in the transformation defines an error 

covariance diffusing the shocks not only to his neighbors but also to all the system.
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Second, this model can be rewritten in another form, which can be interpreted like a 

minimal model o f conditional P -convergence integrating two spatial environment variables.

Indeed, let us note that premultiplying equation (7) by ( /  -  AW) we get:

( /  -  m\\/T)\n(z) = c { l -  AW)S + p ( l -  XW)h(y0)+ u (9)

then:

(yr)ln(z)-AW [(j/T)ln(z)] = a ( f -  AW)S + p]n(y0)~ ApW In (y0)+ u (11)

(yr)ln  (z) = a{l -  xw)s + p  ln(y0) + AW[(]/T)ln (z)]+yWla{y0)+u  (12)

with the restriction y  = -Xp  (13)

This model can be estimated by ML and the restriction (13) can be tested by the 

common factor test (Burridge, 1981). If the restriction y + XP = 0 cannot be rejected then 

model (12) reduces to model (6).
It should be stressed that model (11) encompasses model (3) and (5) in the sense that it 

incorporates either the spatially lagged endogenous and exogenous variables: fF[l/nn(z)] and 

W ln(y0). It reveals two types of spatial spillover effects. Indeed, the growth rate o f a region i

may be influenced by the growth rate of neighboring regions, by the means o f the endogenous 

spatial lag variable. It may be as well influenced by the initial per capita GDP of neighboring 

regions, by the means o f the exogenous spatial lag variable. Spatial econometric models 

appear thus useful to highlight spatial spillover effects.

Tests of spatial autocorrelation

Three tests o f spatial autocorrelation can be carried out on the absolute 

P -convergence model (3). The Moran’s /  test adapted to the regression residuals by Cliff and 

Ord (1981) is very powerful against all forms o f spatial dependence but it does not allow 

discriminating between them (Anselin and Florax, 1995). In this purpose, we can use two 

Lagrange Multiplier tests (Anselin, 1988) as well as their robust counterparts (Anselin et al., 

1996), which allow testing the presence of the two possible forms o f autocorrelation: LMLAG 

for an autoregressive spatial lag variable and LMERR for a spatial autocorrelation of errors. 

The two robust tests have a good power against their specific alternative. The decision rule 

suggested by Anselin and Florax (1995) can then be used to decide which specification is the 

more appropriate.
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The spatial weight matrix

Let us now detail the properties o f the weight matrix W . This matrix contains the 

information about the relative spatial dependence between the n regions i . The elements wu

on the diagonal are set to zero whereas the elements wtj indicate the way the region i is 

spatially connected to the region j . In order to normalize the outside influence upon each 

region, the weight matrix is standardized such that the elements o f a row sum up to one 

w’j = Wy/y] Wy . For a variable x , this transformation means that the expression Wx is simply

the weighted average o f the neighboring observations.
Two principal ways are used to evaluate geographical connections: a contiguity 

indicator or a distance indicator. In the first case, we assume that interactions can only exist if 

two regions share a common border: then wÿ = 1 if regions i and j  have a common border

and Wy = 0 otherwise. This contiguity indicator can be refined by taking into account the

length o f this common border assuming that the intensity o f interactions cannot be identical 

between regions sharing a border o f 10 kilometers and those sharing a border o f 100 
kilometers. It is worth stressing that this later contiguity indicator is more relevant for 
European regions than for US States: the disparities in terms o f length o f common border are 

indeed more important for European regions than for US States.
In the second case, we assume that the intensity of interactions depends on the distance 

between the centroids o f these regions or between the regional capitals. Various indicators can 

be used depending on the definition o f the distance dtj (great circle distance or distance by

roads, including transportation cost or time considerations) and depending on the functional 

form (the inverse o f the distance or the inverse o f the squared distance...) we choose: 

Wy = \Jdy or Wy = \fdy . We can also define a cutoff above which wy = 0 assuming that above

that distance the interactions are negligible.
Although W is exogenously defined by the researcher, the choice o f a specific method 

to introduce spatial dependence means that specific assumptions are made. For example, if we 

calculate distance between regional centroids it means that economic activity is 

homogeneously distributed on the whole region whereas if we prefer evaluating distance 

between regional capitals it means that economic activity is concentrated in these regional 

capitals. Each functional form allows bringing out slight differences in the way spillovers
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affect pairs o f regions. Finally, the kind of economic interactions we try to estimate may give 

information and help to choose a specific weight matrix.

Using a contiguity weight matrix, we have shown in a previous work (Baumont, Ertur 
and Le Gallo, 2000) that a strong positive spatial autocorrelation characterizes both per capita 

GDP levels and growth rates for a slightly different sample o f European Union regions for the 

1980-1995 period using Exploratory Spatial Data Analysis (ESDA) and Local Indicators of 

Spatial Association (LISA). We have also found strong positive spatial autocorrelation for the 

error process in the /? -convergence model and estimated the various spatial specifications 

with a contiguity matrix. In this paper we want to compare the effects o f geographic spillovers 

relative to the choice o f a particular weight matrix and assess the robustness o f our previous 

results using a more complete sample.

3. Estimation results stressing spatial spillover effects

We use spatial econometrics techniques briefly described above to detect and to treat 
spatial autocorrelation in the model of absolute ¡3 -convergence on the per capita GDP of the 

European regions over the 1980-1995 period. The data are extracted from the EUROSTAT- 

REGIO databank. Our sample includes 122 regions (Denmark, Luxembourg and United 

Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and 

Portugal in NUTS2 level)6.

We first estimate the model of absolute /^-convergence and carry out various tests 

aiming at detecting the presence o f spatial dependence. We then consider the specifications 

integrating these spatial effects explicitly and compare the results obtained for various weight 

matrices: a contiguity weight matrix and 4 distance-based weight matrices.

Let us take as a starting point the following model o f absolute /^-convergence:

Model (I): (l/r)ln(z) = 5a + /?ln(^1980)+ £  e~N (0,& I)

where (l/r)ln (z) is the vector o f dimension N=122 o f the average per capita GDP growth 

rates for each region i between 1995 and 1980, T = 15 , y ]980 is the vector containing the 

observations o f per capita GDP for all the regions in 1980, a and ¡3 are the unknown

6 This sample implies a block-diagonal pattern for the simple contiguity weight matrix due to the presence of 
United Kingdom, which doesn’t share a common border with any other state of the sample.
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parameters to be estimated, S is the unit vector and s is the vector o f errors with the usual 

properties.

The results o f the estimation by OLS o f this model are given in Table 1. The 

coefficient associated with the initial per capita GDP is significant and negative, which 

confirms the hypothesis o f convergence for the European regions. The speed o f convergence 

associated with this estimation is 1,37% and the half-life is 56 years. These results indicate 

that the process o f convergence is weak and are in conformity with other empirical studies on 

the convergence o f the European regions (Barro and Sala-I-Martin, 1995; Jean-Pierre, 1999; 

Neven and Gouyette, 1994). It is worth mentioning that the Jarque-Bera test doesn’t reject 

Normality: the reliability o f all subsequent testing procedures and the use o f Maximum 

Likelihood estimation method are then strengthened. We note also that the Breusch-Pagan test 

of heteroskedasticity is not significant. Further consideration o f spatial heterogeneity is 

therefore omitted and we only take into account spatial dependence in this empirical analysis7.

Three tests o f spatial autocorrelation are then carried out: the test o f  Moran’ s /  adapted 

to the regression residuals indicates the presence o f spatial dependence. To discriminate 
between the two forms o f spatial dependence -  endogenous spatial lag or spatial 
autocorrelation o f errors - we perform two robust Lagrange Multiplier tests: respectively 

LMERR and LMLAG. Applying the decision rule suggested by Anselin and Florax (1995) 
these tests indicate the presence o f spatial autocorrelation rather than a spatial lag variable8.

Therefore model (I) is misspecified due to the omission o f spatial autocorrelation o f 

the errors. Actually, each region is not independent o f the others, as it is frequently supposed 

in the former studies at the regional level. The model o f absolute /^-convergence must thus be 

modified to integrate this spatial dependence explicitly.

To handle the spatial dependence found, we first estimate the spatial autoregressive 

model including the endogenous lag variable:

Model (II): (]/T)ln(z)= Sa + J3ln(^1980)+ pW\{}jT)ln(z)]+ u u ~ N(0,cr27)

The results o f estimation by maximum likelihood using the contiguity weight matrix 
are given in Table 1. The coefficients are all significant. Concerning the convergence 

hypothesis, we note that the estimated value of the /? parameter is indeed negative but much 

smaller than in the preceding model and leads to a convergence speed o f 0.8% and a half-life 

of 91 years. The convergence process appears therefore to be even weaker. From the

7 It is not the case of Fingleton (1999) who rejects Normality and homoskedasticity for his sample.
8 All estimations were carried out using SpaceStat 1.90.
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economic geography perspective, the estimated spatial autoregressive parameter p  is highly 

significant and positive (/? = 0.631) and emphasizes a spatial spillover effect: the growth rate 

of per capita GDP in a given region is influenced by those o f neighboring regions. The 

LMERR test does not reject the null hypothesis o f no additional spatial error autocorrelation. 

The spatially adjusted Breusch-Pagan test is not significant indicating absence o f spatial 

heterogeneity. This model performs better than the previous one in terms o f information 
criteria (Akaike, 1974; Schwarz, 1978).

We estimate also the special case o f the spatial cross-regressive model with only the 
spatially lagged initial per capita GDP level:

Model (III): l/rin (z) = o5, + /?ln(>'1980)+/fFln(^1980)+M w~N(0,cr2/)

We saw that this specification can be interpreted as the minimal conditional /? -convergence 

model allowing for spatially lagged exogenous effects. The estimation results by OLS using 

the contiguity weight matrix are presented in Table 1. ¡3 is highly significant and bigger than 

in the two preceding models leading to a convergence speed o f 1.62% and a half-life of 48 
years. The coefficient associated with the exogenous lag variable is not significant: the initial 
per capita GDP o f neighboring regions doesn’t influence the growth rate o f a given region. 

There’s no spatial spillover effect associated with the exogenous lag variable in this model. 
Moreover, there are some problems with spatial dependence tests, which indicate the presence 

o f spatial error autocorrelation (Moran’s I and LMERR) and presence o f a lagged endogenous 

variable (LMLAG). The Breusch-Pagan test is also significant pointing to heteroskedasticity. 
The picture is worse than for model (I) and (II) according to information criteria. This model 

seems therefore to be strongly misspecified and is also the worst in terms o f information 
criteria.

The tests carried out on model (I) suggested the presence o f spatial error 

autocorrelation rather than an endogenous lag variable; we therefore estimate finally the 
spatial error model:

Model (IV): (l/r)ln (z)= Sa+ ln(;y1980) + e e = XWe + u m~N(0,<727)

Model (V): (l/r)ln(z) = a ( l -  XW)S + /?ln(yl9J +  AW[(]/T)\n(z)]+yiV\n(ymo)+u

The estimation results by maximum likelihood are given in Table 1. The coefficients 

are all significant. The coefficient associated with the level o f initial per capita GDP is higher

than that o f the model (I) and a positive spatial autocorrelation o f the errors (A = 0,694) is
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found. The LMLAG test does not reject the null hypothesis o f the absence o f an additional 

autoregressive lag variable. The spatially adjusted Breusch-Pagan test is not significant 

indicating absence o f spatial heterogeneity. The common factor test indicates that the

restriction y + Xfi = 0 cannot be rejected then model (V) reduces to model (IV) with y = -Xfi 

but this coefficient is not significant at the 5% significance level. According to information 

criteria this model seems to perform better than all the preceding specifications. It thus 

appears that the model with spatial autocorrelation o f the errors is the most appropriate 

specification.
This specification has two implications:

First, the speed o f convergence in the model with spatial autocorrelation is 1,73% and 
is thus higher than that o f all the preceding models; the half-life reduces to 45 years once the 

spatial effects are controlled for. This model reveals also a spatial spillover effect, when 

reformulated as model (V), in that the mean growth rate o f a region i is positively influenced 

by the mean growth rate o f contiguous regions, through the endogenous spatial lag variable 

ff[(l/r )ln(z)]. But it seems not to be influenced by the initial per capita GDP o f contiguous 

regions, through the exogenous spatial lag variable fFln(j>1980). This spillover effect indicates

that the spatial association patterns are not neutral for the economic performances o f European 
regions. The more a region is surrounded by dynamic regions with high growth rates, the 
more its growth rate will be high. In other words, the geographical environment has an 

influence on growth processes. This corroborates the theoretical results highlighted by the 

New Economic Geography. From the pure perspective o f convergence processes, this first 

implication may seem qualitatively negligible, but we must underline that this is the only 

proper way o f estimating a conditional model o f ¡3 -convergence once spatially autocorrelated 

errors are detected and the only proper way of drawing reliable statistical inference.

The second implication is even more interesting. We saw that this specification has an 

interesting property concerning the diffusion o f a random shock. We present some simulation 

results to illustrate this property with a random shock affecting Burgundy, which is close to 

the centroid of European regions included in our sample9. This shock has the largest relative 

impact on Burgundy where the estimated mean growth rate is 27,5% higher than the estimated 

mean growth rate without the shock. Nevertheless we observe a clear spatial diffusion pattern 

of this shock to all other regions o f the sample excepted United-Kingdom (due to the block-

9 This shock is set equal to two times the residual variance of the estimated spatial error model (IV).
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diagonal structure o f the contiguity weight matrix). The magnitude o f the impact o f this shock 

is between 1.8% and 5.5% for the regions neighboring Burgundy and gradually decreases 

when we move to peripheral regions (Figure 1). Therefore the spatially autocorrelated errors 

specification underlines that the geographical diffusion of shocks are at least as important as 
the dynamic diffusion o f these shocks in the analysis of convergence processes. Integration of 

these two aspects may be studied in further research.
We reestimate then all these specifications with 4 distance-based matrices, which are 

defined as following (k = 1,...,4) :

'wy = 0 if  I = y

■ w ,= p i  if d, < m
W y  = 0  if d y >  D(k)

where dtj is the great circle distance between centroids o f regions i and j ; D(\) = Q l , 

D(2) = M e, D(3) = Q3 and £>(4) = Max, where Ql, Me, Q3 and Max are respectively the 

lower quartile (436 km), the median (767 km), the upper quartile (1218 km) and the 

maximum (2496 km) o f the great circle distance distribution. D{k) is a cutoff parameter for 

k = 1,2,3 above which interactions are assumed negligible. For A: = 4, the distance matrix is 

full without cutoff. The choice of the cutoff can also be based on a residual correlogram with 

ranges defined by minimum, lower quartile, median, upper quartile and maximum great circle 

distances (see Table 2).
The determination of the cutoff that maximize the absolute value o f significant 

Moran’s I or robust Lagrange Multiplier test statistics for spatial autocorrelation o f the errors 

lead to Ql or Q3: we could only retain a cutoff o f 436 km or 1218 km for the distance based 
weight matrix, but we prefer to maintain all 4 matrices for full robustness evaluation of 

estimation results.
The estimation results are presented in Tables 3 to 6. The overall picture is quite 

similar to those obtained with the contiguity matrix and indicates the robustness o f our results 

to the choice o f the weight matrix. More specifically, in the cross-regressive model, the 

coefficient o f the exogenous lag variable is never significant and in the spatial autoregressive 

model, the half-life to convergence reaches always more than twice the value we find in other 

models. The spatial error model is the best one according to information criteria whatever the
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specification we adopt for the weight matrix and provides always a better fit than the absolute 

P -convergence model.

Conclusion
The aim of this paper is to analyze the consequences o f spatial dependence on regional 

growth and convergence processes for European regions over the 1980-1995 period. Among 

all the specifications integrating spatial autocorrelation, the spatial error model is the best one 

according to test procedures and information criteria. This specification reveals spatial 
spillover effects in that the mean growth rate o f per capita GDP o f a region is affected by the 

mean growth rate o f neighboring regions. Moreover, we stress the importance o f the spatial 

diffusion process implied by this model. We interpret this specification as the minimal 

conditional /^-convergence model in the sense that it captures the effects o f all other variables 

that could explain differentiated steady states along the lines o f Haining (1990) and Fingleton 

(1999). We could also suggest that standard conditional ^-convergence models should be 

tested for spatial dependence and if it is detected they should include at least the endogenous 

lagged variable and be estimated by the appropriate econometric method.
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Model
f3 -convergence 

(D
Spatial error 
(IV) and (V)

Spatial lag-dep 
(II)

Spatial lag-ex
(in)

Estimation OLS ML-cont ML-cont OLS-cont
0.170 0.196 0.089 0.164

a (0.000) (0.000) (0.000) (0.000)
-0.01239 -0.01523 -0.00761 -0.01439

f i (0.000) (0.000) (0.000) (0.000)
conv. speed 1.37% 1.73% 0.8% 1.62%

(0.000) (0.000) (0.000) (0.000)
half-life 56 45 91 48

/K

A
- 0.694

(0.000)
- -

P
- - 0.631

(0.000)
-

f - - - 0.0026
(0.557)

Adi-/?2 or R 2' 0.253 0.39* 0.44* 0.249
U K 406.72 436.70 431.89 406.90
AIC -809.44 -869.40 -857.79 -807.80
BIC -803.83 -863.79 -849.37 -799.38
<72 7.569. lO'5 3.931.10'5 4.389. lO'5 7.610.10'5

Tests
JB 2.429

(0.297)
- - 3.348

(0.187)
BP or BP-S* 0.0156 1.084* 0.286* 11.904

(0.901) (0.298) (0.593) (0.003)
Moran’s I (error) 8.812

(0.000)
- - 8.695

(0.000)
LMERR 69.255

(0.000)
- 1.686

(0.194)
68.199
(0.000)

R-LMERR 11.563
(0.000)

- - 8.777
(0.003)

LMLAG 58.046
(0.000)

0.113
(0.737)

- 69.330
(0.000)

R-LMLAG 0.353
(0.552)

- - 9.909
(0.001)

LR-com-fac - 0.00060
(0.980)

- -

iii - 0.0106
(0.822)

- -

Table 1 : Contiguity Matrix
Note: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and 
United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in 
NUTS2 level). The contiguity matrix is block diagonal due to the presence of United-Kingdom, whose regions 
don’t share any common border with any other region from another state in the sample.
P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the Akaike (1974) 
information criterion. BIC is the Schwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated 
residuals Normality test. MORAN is the Moran’s I test adapted to estimated residuals (Cliff and Ord, 1981). 
LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust 
version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial 
autocorrelation (Anselin and Florax, 1995; Anselin et al., 1996). LR-com-fac is the likelihood ratio common 
factor test (Burridge, 1981). BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially 
adjusted version of this test.
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Range (Km) [Min;Ql[
[15;436[

[Qi;Me[
[436;767[

[Me;Q3[
[767;1218[

[Q3;Max[
[1218;2496[

Moran’ s I 12.690 -2.505 -10.210 -0.010
p-value 0.000 0.012 0.000 0.992

R-LMERR 39.61 7.97 56.21 1.17
p-value 0.000 0.005 0.000 0.278

Table 2: Residual Correlogram

Note: Ql, Me, Q3 and Max are respectively the lower quartile (436 km), the median (767 km), the upper 
quartile (1218 km) and the maximum (2496 km) of the great circle distance distribution between centroids of 
each region. For each range, we estimate the absolute p  -convergence model and we perform Moran’s /  test
adapted to estimated residuals and the robust Lagrange multiplier test for residual spatial autocorrelation based 
on a simple contiguity matrix.
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Model
P -convergence 

(D
Spatial error 
(IV) and (V)

Spatial lag-dep 
(II)

Spatial lag-ex 
(HI)

Estimation OLS ML-cont ML-cont OLS-cont

a
0.170 0.175 0.069 0.163

(0.000) (0.000) (0.000) (0.000)
-0.01239 -0.01316 -0.00578 -0.01523

p (0.000) (0.000) (0.002) (0.000)
conv. speed 1.37% 1.47% 0.6% 1.41%

(0.000) (0.000) (0.000) (0.000)
half life 56 53 120 55

/\
X

- 0.747
(0.000)

“ -

p
- - 0.696

(0.000)
-

f - - - 0.0035
(0.436)

Adi-R2 or R2' 0.253 0.29* 0.43* 0.250
UK 406.72 434.28 430.41 407.03
AIC -809.44 -864.57 -854.82 -808.07
BIC -803.83 -858.96 -846.41 -799.65
<T2 7.569.10"5 4.235.10-5 4.600.10 s 7.593.10 s

Tests
JB 2.429

(0.297)
- - 3.887

(0.143)
BP or BP-S* 0.0156 3.268* 2.200* 13.898

(0.901) (0.0706) (0.138) (0.000)
Moran’s I (error) 10.157

(0.000)
- - 9.970

(0.000)
LMERR 87.065

(0.000)
- 3.099

(0.078)
84.108
(0.000)

R-LMERR 21.170
(0.000)

- - 2.601
(0.107)

LMLAG 66.520
(0.000)

0.0068
(0.935)

- 85.631
(0.000)

R-LMLAG 0.624
(0.429)

- - 4.124
(0.042)

LR-com-fac - 0.00015
(0.990)

- -

1II - 0.0098
(0.861)

- -

Table 3 : Ql-distance weight matrix
Note: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and 
United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in 
NUTS2 level).
P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the Akaike (1974) 
information criterion. BIC is the Schwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated 
residuals Normality test. MORAN is the Moran’s I test adapted to estimated residuals (Cliff and Ord (1981). 
LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust 
version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial 
autocorrelation (Anselin and Florax, 1995; Anselin et al., 1996). LR-com-fac is the likelihood ratio common 
factor test (Burridge, 1981). BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially 
adjusted version of this test.
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Model
¡3 -convergence

(D
Spatial error 
(TV) and (V)

Spatial lag-dep 
(H)

Spatial lag-ex 
(HI)

Estimation OLS ML-cont ML-cont OLS-cont
A

a 0.170 0.174 0.065 0.164
(0.000) (0.000) (0.001) (0.000)

p -0.01239 -0.01307 -0.00577 -0.01421
(0.000) (0.000) (0.003) (0.000)

conv. speed 1.37% 1.45% 0.6% 1.6%
(0.000) (0.000) (0.001) (0.000)

half life 56 53 120 49
X - 0.813

(0.000)
- -

A

P - - 0.761
(0.000)

-

A

y 0.00242
(0.616)

Adi-i?2 or R 2 * 0.253 0.29* 0.41* 0.248
LIK 406.72 432.04 428.79 406.85
AIC -809.44 -860.09 -851.58 -807.70
BIC -803.83 -854.48 -843.16 -799.28
<72 7.569.10'5 4.416.10'5 4.741.10'5 7.616.10'5

Tests
JB 2.429

(0.297)
- - 3.190

(0.203)
BP or BP-S* 0.0156 2.423* 1.964* 11.189

(0.901) (0.119) (0.161) (0.004)
Moran’s I (error) 9.944

(0.000)
- - 9.869

(0.000)
LMERR 80.082

(0.000)
- 3.309

(0.069)
78.526
(0.000)

R- LMERR 19.469
(0.000)

- - 0.675
(0.411)

LMLAG 60.871
(0.000)

0.154
(0.694)

- 79.127
(0.000)

R-LMLAG 0.259
(0.611)

- - 1.276
(0.258)

LR-com-fac - 0.08833
(0.766)

- -

II 1 - 0,0106
(0.859)

-

Table 4 : Q2-distance weight matrix
Note: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and 
United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in 
NUTS2 level).
P-values are in parentheses. LIK is value o f the maximum likelihood function. AIC is the Akaike (1974) 
information criterion. BIC is the Schwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated 
residuals Normality test. MORAN is the Moran’s I  test adapted to estimated residuals (Cliff and Ord (1981). 
LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust 
version o f this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial 
autocorrelation (Anselin and Florax, 1995; Anselin et al., 1996). LR-com-fac is the likelihood ratio common 
factor test (Burridge, 1981). BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially 
adjusted version o f this test.
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Model
¡3 -convergence

(D
Spatial error 
(TV) and (V)

Spatial lag-dep 
(II)

Spatial lag-ex 
(IH)

Estimation OLS ML-cont ML-cont OLS-cont
â 0.170 0.169 0.063 0.166

(0.000) (0.000) (0.000) (0.000)

P
-0.01239 -0.01271 -0.00588 -0.01334
(0.000) (0.000) (0.002) (0.001)

conv. speed 1.37% 1.41% 0.6% 1.50%
(0.000) (0.000) (0.000) (0.000)

half life 56 55 118 52
i - 0.857

(0.000)
- -

p - - 0.811
(0.000)

-

f - - - 0.00135
(0.791)

Adj- R2 or R2 * 0.253 0.27* 0.41* 0.247
LIK 406.72 431.25 428.64 406.757
AIC -809.44 -858.50 -851.27 -807.514
BIC -803.83 -852.89 -842.86 -799.10
<72 7.569.1 O'5 4.461. IO'5 4.731.10-5 7.628. IO5

Tests
JB 2.429

(0.297)
- - 2.815

(0.245)
BP or BP-S’ 0.0156 2.072* 2.321* 11.617

(0.901) (0.150) (0.128) (0.003)
Moran 9.579

(0.000)
- - 9.557

(0.000)
LMERR 73.374

(0.000)
- 2.680

(0.102)
72.661
(0.000)

R-LMERR 16.124
(0.000)

- - 0.437
(0.508)

LMLAG 57.322
(0.000)

0.312
(0.576)

- 72.895
(0.000)

R-LMLAG 0.072
(0.788)

- - 0.671
(0.412)

LR-com-fac - 0.2389
(0.625)

-

1II - 0,0109
(0.846)

-

Table 5 : Q3-distance weight matrix
Note: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and 
United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in 
NUTS2 level).
P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the Akaike (1974) 
information criterion. BIC is the Schwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated 
residuals Normality test. MORAN is the Moran’s I test adapted to estimated residuals (Cliff and Ord (1981). 
LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust 
version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial 
autocorrelation (Anselin and Florax, 1995; Anselin et al., 1996). LR-com-fac is the likelihood ratio common 
factor test (Burridge, 1981). BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially 
adjusted version of this test.
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Model
P  -convergence

(I)
Spatial error 
(IV) and (V)

Spatial lag-dep 
(II)

Spatial lag-ex
(IH)

Estimation OLS ML-cont ML-cont OLS-cont
â 0.170 0.173 0.068 0.156

(0.000) (0.000) (0.000) (0.000)
R -0.01239 -0.01323 -0.00669 -0.01491
P (0.000) (0.000) (0.000) (0.000)

conv. speed 1.37% 1.47% 0.7% 1.69
(0.000) (0.000) (0.000) (0.000)

half life 56 52 104 47
X - 0.868

(0.000)
- -

p - - 0.841
(0.000)

-

Y
- - - 0.0041

(0.464)
Adj-i?2 or R2 * 0.253 0.29* 0.39* 0.249

LIK 406.72 430.43 428.03 407.00
AIC -809.44 -856.87 -850.06 -807.99
BIC -803.83 -851.26 -841.65 -799.58
<T2 7.569.10-5 4.542.10"5 4.768.1 O'5 7.600.1 O'5

Tests
JB 2.429

(0.297)
- - 3.603

(0.165)
BP or BP-S* 0.0156 1.498* 1.695* 11.170

(0.901) (0.221) (0.193) (0.004)
Moran 9.408

(0.000)
- - 9.175

(0.000)
LMERR 71.137

(0.000)
- 2.640

(0.104)
67.072
(0.000)

R- LMERR 17.636
(0.000)

- - 3.545
(0.060)

LMLAG 54.050
(0.000)

0.446
(0.504)

68.913
(0.000)

R-LMLAG 0.549
(0.458)

- 5.386
(0.020)

LR-com-fac - 0.2099
(0.650)

- -

<ĈS1II - 0,0115
(0.849)

-

Table 6 : full-distance weight matrix
Note: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and 
United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in 
NUTS2 level).
P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the Akaike (1974) 
information criterion. BIC is the Schwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated 
residuals Normality test. MORAN is the Moran’s I test adapted to estimated residuals (Cliff and Ord (1981). 
LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust 
version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial 
autocorrelation (Anselin and Florax, 1995; Anselin et al., 1996). LR-com-fac is the likelihood ratio common 
factor test (Burridge, 1981). BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially 
adjusted version of this test.
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Figure 1

Percent variation of mean growth rates due to a shock in Burgundy 1980-1995
Diffusion in the spatial error model using a simple contiguity weight matrix 

(median: 0.044%; mean: 0.66%)
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