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The aim o f this paper is to integrate the geographical dimension o f data in the estimation o f the convergence o f European regions and emphasize the importance o f spatial effects in regional economic growth phenomena. In a sample o f 122 European regions over the 1980-1995 period, we find strong evidence o f spatial autocorrelation in the unconditional /^-convergence model using spatial econometric methods with different weight matrices: a simple contiguity matrix and 4 distance-based matrices. Therefore, this standard /^-convergence model exhibit misspecification, its estimation by OLS leads to inefficient estimators and invalid statistical inference. We suggest then a "minimal" specification o f /^-convergence, which integrates and treats adequately the spatial autocorrelation detected.. Moreover, this model is interpreted as a conditional /^-convergence model revealing a spatial spillover effect between European regions. Therefore the European regions are interdependent and we show by a simulation experiment that a random shock affecting a given region propagates to all the regions o f the sample.

Résumé

L'objectif de ce papier est d'intégrer la dimension géographique des données dans l'estimation du processus de convergence des régions européennes et de souligner le rôle des effets spatiaux dans l' analyse de la croissance régionale. Dans un échantillon de 122 régions européennes sur la période 1980-1995, nous mettons en évidence la présence d' autocorrélation spatiale dans le modèle de /^-convergence absolue en utilisant les méthodes de l' économétrie spatiale et différentes matrices de poids : une matrice de contiguité et 4 matrices de distances. Par conséquent ce modèle de /^-convergence est mal spécifié, son estimation par les MCO conduit à des estimateurs inefficients et à une inférence statistique peu fiable. Nous proposons alors une spécification « minimale » du modèle de /^-convergence permettant le traitement approprié de l' autocorrélation spatiale détectée dont nous soulignons l'impact sur la croissance régionale. En outre, ce modèle peut être interprété comme un modèle de ^-convergence conditionnelle révélant un effet de débordement spatial entre les régions européennes. Les régions européennes sont donc interdépendantes et nous montrons à l'aide d'une expérience de simulation qu'un choc aléatoire affectant une région donnée se propage à l' ensemble des régions de l' échantillon.
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Introduction

The problem o f regional economic convergence has been widely studied in the recent macroeconomic literature. This hypothesis is based on neo-classical growth models [START_REF] Solow | A Contribution to the Theory o f Economic Growth[END_REF][START_REF] Swan | Economic Growth and Capital Accumulation[END_REF], which assume constant returns to scale and decreasing marginal productivity. This implies a long run tendency towards the equalization o f per capita product levels o f different geographical areas. There is convergence when the growth rate o f a « poor » region is bigger than the one o f a « rich » region so that the « poor » region catches up in the long run the per capita income or product level o f the « rich » region. This feature corresponds to the ^-convergence concept [START_REF] Barro | Economic Growth Theory[END_REF].

Numerous empirical studies focus on the test o f this hypothesis at the regional scale but they meet great econometric problems. Thus the interpretation o f the results is subject to caution. Moreover, factors that explain economic convergence such as technology diffusions or factor mobility have a strong geographical dimension. Indeed, new economic geography theories and growth theories have been recently integrated in order to show the way interactions between agglomeration and growth processes could lead to new results and better explanations in regional growth studies (Baumont and Huriot, 1998). These theories stress on the role played by geographic spillovers in spatial and growth mechanisms. Most o f the results highlight the dominating growth-geographical patterns o f Core-Periphery equilibrium and uneven regional development. Therefore, these results mean that economic performances o f neighboring regions are similar and not randomly spatially distributed on an economic integrated regional space. This paper focuses on the theoretical and empirical problems, which arise when such a spatial order characterizes data used in empirical studies o f regional growth.

From an econometric point o f view, spatial dependence between observations leads to unbiased but inefficient estimators and unreliable statistical inference. It is then straightforward that models using geographical data should be systematically tested for spatial autocorrelation (Cliff et Ord, 1981) like time series models are systematically tested for serial correlation. However just a few empirical studies in the recent literature on growth theories using geographical data apply the appropriate spatial econometric tools (Klotz and Knoth, 1997;[START_REF] Fingleton | Increasing Returns and Economic Growth: Some Evidence for Manufacturing from the European Union Regions[END_REF][START_REF] Rey | Convergence: a Spatial Econometric Perspective[END_REF][START_REF] Fingleton | Estimates o f Time to Convergence: An Analysis o f Regions o f European Union[END_REF].

Moreover, three important results can be obtained when spatial econometric tools are used in the estimation o f regional growth process. First, they allow avoiding bias in statistical inference due to spatial autocorrelation and lead to more reliable estimates. Second, they allow estimating the magnitude o f geographical spillover effects in regional growth processes.

Third, they show that spatial dependence leads to a minimal but unavoidable specification o f conditional ¡5 -convergence.

The empirical study o f /? -convergence for European regions we realize in this paper illustrates these three points. Using a sample o f 122 European regions over the 1980-1995 period, we show that the unconditional fi -convergence model is misspecified due to spatially autocorrelated errors. We then estimate different specifications integrating these spatial effects explicitly and compare the results obtained for various weight matrices: a contiguity weight matrix and 4 distance-based weight matrices. Our results indicate that the process o f convergence is weak and are in conformity with other empirical studies on the convergence o f the European regions [START_REF] Barro | Economic Growth Theory[END_REF][START_REF] Jean-Pierre | La convergence régionale européenne : une approche empirique par les clubs et les panels[END_REF][START_REF] Neven | European Integration and Regional Growth[END_REF]. But we also show that the mean growth rate o f a region is positively influenced by those o f neighboring regions stressing a spatial spillover effect. Moreover, the spatially autocorrelated error model implies a spatial diffusion process o f random shocks that we evaluate by simulation. Our results are robust to the choice o f the weight matrix.

In order to discuss theoretical and empirical results on interactions between agglomeration and regional growth processes we present some theoretical principles showing that economic phenomenon are spatially ordered and that geographic spillovers affect regional growth (Section 1). Then we explain how spatial econometric tools can be applied to the estimation o f ¡3 -convergence models using European regional data (Section 2). Finally several estimations are realized and their results are discussed (Section 3).

Geography and Regional Growth

In this paper, we consider new economic geography theories2, which have been developed following Kingman's formalization o f inter-regional equilibrium with increasing returns [START_REF] Krugman | Increasing Returns and Economic Geography[END_REF]. These theories aim at explaining the location behaviors o f firms and their agglomeration processes. They give several theoretical information and principles, which help us to understand the uneven spatial repartition o f economic activities between regions.

Driven by dominating agglomeration forces, industrial and high tertiary activities tend to concentrate in a few numbers o f places in developed nations.

The geographical distribution o f areas characterized by high or low densities of economic activities is rarely random: the places where agglomerations take place are identified by first nature or second nature conditions (Krugman, 1993a). The former refers to natural conditions or to random location decisions taken by firms. The latter means that the attractiveness o f a place for a firm is due to the presence o f other firms, which have chosen to locate there before. In multi-regional models (Krugman, 1993b), it is shown that two agglomerations are separated by a minimum distance because a " shadow effect " prevents the formation o f a distinct agglomeration in the neighborhood o f another one. This minimum distance value increases with the size o f the agglomeration.

Agglomeration processes are strongly cumulative because the agglomeration itself is a component o f agglomeration forces. Even if the starting distribution o f economic activities is spatially identical (i.e. there is no agglomeration), an exogenous shock, like the random decision o f a firm to re-locate in another place, can lead to the formation o f an agglomeration in that place.

The effects o f the uneven spatial distribution o f economic activities on regional economic growth have been pointed out in new economic geography by some theories constituting what we named " geography-growth synthesis " (Baumont, 1998b;[START_REF] Baumont | L'interaction agglomération-croissance en économie géographique[END_REF]. The emergence o f these theories is based on the fact that several similar economic mechanisms are involved both in spatial and dynamical accumulation processes o f economic activities, which further and support economic growth. These common determinants affect the characteristics of production processes (like increasing returns, monopolistic competition, externalities, vertical linkage...) and focus on specific factors (like R&D, innovation, producer services, high tertiary activities, public infrastructures...). Then an agglomeration as a whole can be considered as a factor o f growth [START_REF] Baumont | Croissance endogène des régions et espace[END_REF]. Several authors have formalized the links between agglomeration and growth processes [START_REF] Englmann | Industrial Centers and Regional Growth in the Presence o f Local Inputs[END_REF][START_REF] Kubo | Scale Economies, Regional Externalities, and the Possibility o f Uneven Development[END_REF]Martin andOttaviano, 1996, 1999;[START_REF] Ottaviano | Dynamic and Strategic Considerations in International and Interregional Trade[END_REF]Pavilos and Wang, 1993;[START_REF] Walz | Transport Costs, Intermediate Goods and Localized Growth[END_REF]3 and they have obtained important results for the analysis o f regional growth mechanisms. On the one hand, it is shown that the spatial concentration o f economic activities favors economic growth. As a result, uneven spatial distribution o f economic activities is an efficient geographic equilibrium for economic growth. On the other hand, economic growth can be considered like another agglomeration force, that is to say that growth can reinforce polarization processes.

These theoretical approaches allow studying the way economic integration policies influence convergence processes between regional economies (Baumont, 1998a(Baumont, , 1998b)). For example, the intensification o f economic integration processes leads to lower costs o f transaction, higher labor migrations and the widening o f market size ; each o f these factors contributing to agglomeration process and uneven regional development. We also know that the effects o f vertical linkage and geographic spillovers on both firms location and productivity reinforce the strength o f the interactions between agglomeration and growth processes. But few empirical studies on regional economic convergence consider the effects of explanatory spatial factors like labor migrations, interaction costs or geographic spillovers.

If we focus on geographic spillover effects, some theoretical results are especially important. Geographic spillovers refer to positive knowledge external effects produced by some located firms and affecting the production processes o f firms located elsewhere. Local and global geographic spillovers must be distinguished. The former means that production processes o f the firms located in one region only benefit from the knowledge accumulation in this region. In this case, uneven spatial distributions o f economic activities and regional growth divergence are observed. The latter means that knowledge accumulation in one region improves productivity o f all the firms whatever the region where they are located. A global geographic spillover effect doesn't reinforce agglomeration processes and contributes to growth convergence [START_REF] Englmann | Industrial Centers and Regional Growth in the Presence o f Local Inputs[END_REF]. Intermediary spatial ranges can be considered if the concentration o f firms in one region produces both local and global knowledge spillovers o f different values [START_REF] Kubo | Scale Economies, Regional Externalities, and the Possibility o f Uneven Development[END_REF]. Uneven or equilibrium patterns o f regional growth appear according to the relative strengths o f this geographic spillover in a region and between the regions.

3 See [START_REF] Baumont | L'interaction agglomération-croissance en économie géographique[END_REF] for more details.

All these theoretical results show that geographical patterns can be ordered by economic growth processes and that they can orient regional growth patterns. Applying them to the analysis o f an integrated regional space would lead to the following observations. The third one refers to econometric methods we can use to estimate economic-geography phenomena since data are not spatially randomly distributed. The empirical research we present in this paper tries to answer these questions.

2. A spatial econometric approach of /¿-convergence

/¿-convergence concepts

The hypothesis o f convergence based on the neo-classical growth theories implies that a "poor" economy tends to grow more quickly than a "rich" economy, so that the "poor" This property corresponds to the concept o f /^-convergence [START_REF] Barro | Convergence across States and Regions[END_REF][START_REF] Barro | Convergence[END_REF][START_REF] Kubo | Scale Economies, Regional Externalities, and the Possibility o f Uneven Development[END_REF]. /^-convergence may be absolute (unconditional) or conditional. It is absolute when it is independent o f the initial conditions. It is conditional when, moreover, the economies are supposed to be identical in terms o f preferences, technologies and economic policies. The hypothesis o f absolute /^-convergence is usually tested on the following crosssectional model: where y u is the per capita GDP o f the region i ( i = l,...,N ) at the date t , T is the length o f the period, a and /? are unknown parameters to be estimated and e i an error term. There is /? -convergence when ¡3 is negative and statistically significant since in this case the average growth rate o f per capita GDP between dates 0 and T is negatively correlated with the initial level o f per capita GDP. The estimate o f ¡3 makes it possible to calculate the speed o f convergence: 0 = -ln(l + Tj3)/T. The time necessary for the economies to fill half o f the variation, which separates them from their stationary state, is called the half-life:

The test o f the hypothesis o f conditional ¡3 -convergence is based on the estimation of the following model where some variables, which differentiate the regions, are isolated: X t is a vector o f variables, maintaining constant the stationary-state o f economy i , including some state variables, like the stock o f physical capital and the stock o f human capital, and control or environment variables, like the ratio o f public consumption to GDP, the ratio o f domestic investment to GDP, the modification o f terms o f trade, the fertility rate, the degree economy catches up in the long run the level o f per capita income or production o f the "rich" economy.

-In = a + f i ln(yi0)+ £,• £i~i.i.d(0,<j 2 £ )
(1)

I l n 2 k . = a + p\n(yifi) + rX'i + s i ■ L y ì n i ei~i.i.d(0,<j2 e )
(2) o f political instability etc. [START_REF] Barro | Economic Growth Theory[END_REF]. Another way o f testing the assumption o f conditional convergence is still based on the equation ( 1) but it is estimated on subsamples o f economies for which the assumption o f similar stationary-states seems acceptable (construction o f convergence clubs, see for example [START_REF] Baumol | Productivity Growth, Convergence and Welfare: What the Long Rim Data Show[END_REF][START_REF] Jean-Pierre | La convergence régionale européenne : une approche empirique par les clubs et les panels[END_REF].

We can observe that two effects on economic growth are estimated in the conditional P -convergence model. The first one is an expected negative effect o f the initial per capita GDP through the estimated value o f /? in order to capture the convergence phenomenon. The second one corresponds to all other effects on growth o f each explanatory variable introduced in X t. As a result, estimating equation ( 2) provides information on a more general process o f growth than in equation ( 1). We can deduce from the estimates, which variables contribute or weaken economic growth and the way the convergence process is constrained by some explanatory variables. Nevertheless, the appropriate choice o f these explanatory variables is problematic because we can't be sure conceptually to include all the variables differentiating steady states. Even in this case data on some o f these variables may not be easily accessible and reliable for international comparisons (Caselli, Esquivel and Lefort, 1996;[START_REF] Fingleton | Estimates o f Time to Convergence: An Analysis o f Regions o f European Union[END_REF]). In addition some o f these variables, including the initial per capita GDP, can be correlated with the error term invalidating estimation by Ordinary Least Squares and associated statistical inference [START_REF] Quah | Galton' s Fallacy and Tests o f the Convergence Hypothesis[END_REF][START_REF] Evans | Using Cross-Country Variances to Evaluate Growth Theories[END_REF].

Let us finally underline that in the convergence tests presented above, the analysis relates to regions observed in cross-sections by supposing implicitly that each one o f them is a geographically independent entity and by neglecting the possibility o f spatial interactions.

Indeed the independence hypothesis on the error terms may be very restrictive and should be tested. If rejected, the estimation o f these models by Ordinary Least Squares will be inefficient though unbiased and the statistical inference will not be reliable. The spatial dimension o f the data should then be carefully integrated in the study and estimation o f convergence processes.

Spatial dependence and econometric tools

Spatial dependence means that observations are geographically correlated due to some processes, which connect different areas: for example diffusion and dispersion processes or trade process, transfers or other social and economic interactions. Several economic factors, like labor force mobility, capital mobility, transportation costs or transaction costs are especially important because they directly affect trade between regions. Indeed, these various processes induce a particular organization o f economic activity in space.

Spatial autocorrelation can be defined as the coincidence o f value similarity and locational similarity [START_REF] Anselin | Companion to Econometrics[END_REF]. Therefore there is positive spatial autocorrelation when high or low values o f a random variable tend to cluster in space and there is negative spatial autocorrelation when geographical areas tend to be surrounded by neighbors with very dissimilar values.

Three kinds o f model can be used to deal with spatial dependence o f observations: the spatial autoregressive model, the spatial cross-regressive model and the spatial error model [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF]Anselin and Bera, 1995;Cliff and Ord, 1981).

The spatial autoregressive model

In this model, spatial correlation o f observations is handled by the endogenous spatial lag variable fF[(l/r)ln(z)]:

\jT\n(z) = aS + fi\r(y0)+ pW[(}jT)\n(z)]+u m~N(0,<t27) (3) 
where z is the (« x 1) vector o f the dependent variable in the unconditional ¡3 -convergence model, i.e. the vector o f per capita GDP ratios for each region i between dates T and 0, is then the vector o f average growth rates for each region i between dates T and 0; yQ is the (wxl) vector o f per capita GDP level for each region i at date 0 and s the(nxl) vector o f normal i.i.d. error terms; S is the sum vector; a, ¡3 and p are the unknown parameters to be estimated, p is the spatial autoregressive parameter indicating the extent o f interaction between the observations according to the spatial pattern, which is exogenously introduced in the weight matrix W o f dimension (nxn). This weight matrix is standardized such that the elements o f a row sum up to one. The endogenous spatial lag variable H /[(l/7,)ln(z)] is then a vector containing the growth rates premultiplied by the weight matrix: for a region i o f the vector, the corresponding line o f the spatial lag vector contains the spatially weighted average o f the growth rates o f the neighboring regions. This weight matrix is o f fundamental interest in spatial econometrics so we will specify its properties more deeply below.

Estimation o f this model by Ordinary Least Squares (OLS) produces inconsistent estimators due to the presence o f a stochastic regressor Wy, which is always correlated with s , even if the residuals are identically and independently distributed [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF], chap 6).

Hence it is to be estimated by the Maximum Likelihood Method (ML) or the Instrumental

Variables Method.

This specification can be interpreted in two ways. From the convergence perspective, it yields some information on the nature of convergence through the/? parameter once spatial effects are controlled for and thus it can be interpreted like a minimal conditional /? -convergence model allowing for spatially lagged endogenous effects. From the economic geography perspective, it indicates how the growth rate o f per capita GDP in a region is affected by those o f neighboring regions through the p parameter after conditioning on the initial per capita GDP levels. It may thus help to highlight a spatial spillover effect.

In addition, let us stress also that this model can be rewritten as following:

(

l -PWi(]/T)\n(zjl = aS + p]x{yQ )+u

[(yr)ln (z)] = a(l -p W f S + & I -p W Y InU )+ ( / -pW f u

Concerning the error process this expression means that a random shock in a specific region does not only affect the growth rate o f this region, but also has an impact on the growth rates o f all other regions through the inverse spatial transformation ( / -pW~)'x. Moreover, it means as well that the growth rate o f a given region is affected not only by its own per capita GDP initial level but also by those o f all other regions through the same inverse spatial transformation. The second interpretation is rather disturbing when we consider this specification from the pure convergence perspective: it is hard to say if it is really consistent with the basic ft -convergence concept. For the least, we think that this specification should be interpreted carefully in terms o f convergence processes.

The spatial cross-regressive model

Another way to deal with spatial dependence is to introduce exogenous spatial lag variables:

\/T ln(z) = aS + P ln(y0) + WZy + u u~ N(0, cr21) (4)
Here, the influence o f h spatially lagged exogenous variables contained in the An interesting special case appears when Z includes only ln(y0), we have then:

1/T \n(z) = aS + J3 ln(>»0)+ yW ln(.y0) + u w ~N (0,(r27) (5) in which only the spatially lagged initial per capita GDP levels affect growth rates. This model can be interpreted as the minimal specification allowing spatially lagged exogenous effects in a conditional /? -convergence model.

The spatial error model

This specification is accurate when we think that spatial dependence works through omitted variables. It is then handled by the error process with errors from different regions displaying spatial covariance. When the errors follow a first order process, the model is: This model has two interesting properties. First, spatially correlated errors imply that a random shock in a specific region is propagated to all the regions o f the sample [START_REF] Rey | Convergence: a Spatial Econometric Perspective[END_REF].

Indeed, since: s = XWe + u , then s = (I -XW)~! u and the model ( 6) is:

(l/r)ln (z) = aS + p\n(y0)+ (I -XWy'u (7) This expression means that a random shock in a specific region does not only affect the growth rate o f this region, but also has an impact on the growth rates o f other regions through the inverse spatial transformation (I -X W )"'. Moreover, even if a given region has a limited number o f neighbors, the inverse operator in the transformation defines an error covariance diffusing the shocks not only to his neighbors but also to all the system.

Second, this model can be rewritten in another form, which can be interpreted like a minimal model o f conditional P -convergence integrating two spatial environment variables.

Indeed, let us note that premultiplying equation ( 7) by ( / -AW) we get:

( /m \\/T)\n(z) = c { l -AW)S + p ( l -XW )h(y0)+ u (9) then: with the restriction y = -X p (13) This model can be estimated by ML and the restriction ( 13) can be tested by the common factor test [START_REF] Burridge | Testing for a Common Factor in a Spatial Autoregresion Model[END_REF]. If the restriction y + XP = 0 cannot be rejected then model ( 12) reduces to model ( 6).

It should be stressed that model (11) encompasses model ( 3) and ( 5 

Tests of spatial autocorrelation

Three tests o f spatial autocorrelation can be carried out on the absolute P -convergence model (3). The Moran' s / test adapted to the regression residuals by Cliff and Ord (1981) is very powerful against all forms o f spatial dependence but it does not allow discriminating between them [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF]. In this purpose, we can use two Lagrange Multiplier tests [START_REF] Anselin | Spatial Econometrics: Methods and Models[END_REF] as well as their robust counterparts [START_REF] Anselin | Simple Diagnostic Tests for Spatial Dependence[END_REF], which allow testing the presence o f the two possible forms o f autocorrelation: LMLAG for an autoregressive spatial lag variable and LMERR for a spatial autocorrelation o f errors.

The two robust tests have a good power against their specific alternative. The decision rule suggested by [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF] can then be used to decide which specification is the more appropriate.

The spatial weight matrix

Let us now detail the properties o f the weight matrix W . This matrix contains the information about the relative spatial dependence between the n regions i . The elements wu on the diagonal are set to zero whereas the elements wtj indicate the way the region i is spatially connected to the region j . In order to normalize the outside influence upon each region, the weight matrix is standardized such that the elements o f a row sum up to one In the second case, we assume that the intensity o f interactions depends on the distance between the centroids o f these regions or between the regional capitals. Various indicators can be used depending on the definition o f the distance dtj (great circle distance or distance by roads, including transportation cost or time considerations) and depending on the functional form (the inverse o f the distance or the inverse o f the squared distance...) we choose:

Wy = \Jdy or Wy = \fdy . We can also define a cutoff above which wy = 0 assuming that above that distance the interactions are negligible.

Although W is exogenously defined by the researcher, the choice o f a specific method to introduce spatial dependence means that specific assumptions are made. For example, if we calculate distance between regional centroids it means that economic activity is homogeneously distributed on the whole region whereas if we prefer evaluating distance between regional capitals it means that economic activity is concentrated in these regional capitals. Each functional form allows bringing out slight differences in the way spillovers affect pairs o f regions. Finally, the kind o f economic interactions we try to estimate may give information and help to choose a specific weight matrix.

Using a contiguity weight matrix, we have shown in a previous work [START_REF] Baumont | Convergence des régions européennes : une approche par l'économétrie spatiale[END_REF] that a strong positive spatial autocorrelation characterizes both per capita GDP levels and growth rates for a slightly different sample o f European Union regions for the 1980-1995 period using Exploratory Spatial Data Analysis (ESDA) and Local Indicators o f Spatial Association (LISA). We have also found strong positive spatial autocorrelation for the error process in the /? -convergence model and estimated the various spatial specifications with a contiguity matrix. In this paper we want to compare the effects o f geographic spillovers relative to the choice o f a particular weight matrix and assess the robustness o f our previous results using a more complete sample.

Estimation results stressing spatial spillover effects

We use spatial econometrics techniques briefly described above to detect and to treat where (l/r )ln (z ) is the vector o f dimension N=122 o f the average per capita GDP growth rates for each region i between 1995 and 1980, T = 1 5 , y ]980 is the vector containing the observations o f per capita GDP for all the regions in 1980, a and ¡3 are the unknown parameters to be estimated, S is the unit vector and s is the vector o f errors with the usual properties.

The results o f the estimation by OLS o f this model are given in Table 1. The coefficient associated with the initial per capita GDP is significant and negative, which confirms the hypothesis o f convergence for the European regions. The speed o f convergence associated with this estimation is 1,37% and the half-life is 56 years. These results indicate that the process o f convergence is weak and are in conformity with other empirical studies on the convergence o f the European regions [START_REF] Barro | Economic Growth Theory[END_REF][START_REF] Jean-Pierre | La convergence régionale européenne : une approche empirique par les clubs et les panels[END_REF][START_REF] Neven | European Integration and Regional Growth[END_REF] [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF] these tests indicate the presence o f spatial autocorrelation rather than a spatial lag variable8.

Therefore model (I) is misspecified due to the omission o f spatial autocorrelation o f the errors. Actually, each region is not independent o f the others, as it is frequently supposed in the former studies at the regional level. The model o f absolute /^-convergence must thus be modified to integrate this spatial dependence explicitly.

To handle the spatial dependence found, we first estimate the spatial autoregressive model including the endogenous lag variable:

Model (II): (]/T)ln (z)= Sa + J3ln(^1980)+ pW\{}jT)ln(z)]+ u u ~ N(0,cr27)

The results o f estimation by maximum likelihood using the contiguity weight matrix are given in Table 1. The coefficients are all significant. Concerning the convergence hypothesis, we note that the estimated value o f the /? parameter is indeed negative but much smaller than in the preceding model and leads to a convergence speed o f 0.8% and a half-life of 91 years. The convergence process appears therefore to be even weaker. From the economic geography perspective, the estimated spatial autoregressive parameter p is highly significant and positive (/? = 0.631) and emphasizes a spatial spillover effect: the growth rate o f per capita GDP in a given region is influenced by those o f neighboring regions. The LMERR test does not reject the null hypothesis o f no additional spatial error autocorrelation.

The spatially adjusted Breusch-Pagan test is not significant indicating absence o f spatial heterogeneity. This model performs better than the previous one in terms o f information criteria [START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF][START_REF] Schwarz | Estimating the Dimension o f a Model[END_REF].

We estimate also the special case o f the spatial cross-regressive model with only the spatially lagged initial per capita GDP level:

Model (III): l/r in (z ) = o5, + /?ln(>'1980)+/fF ln(^1980)+M w~N(0,cr2/)

We saw that this specification can be interpreted as the minimal conditional /? -convergence model allowing for spatially lagged exogenous effects. The estimation results by OLS using the contiguity weight matrix are presented in Table 1. ¡3 is highly significant and bigger than in the two preceding models leading to a convergence speed o f 1.62% and a half-life o f 48 years. The coefficient associated with the exogenous lag variable is not significant: the initial per capita GDP o f neighboring regions doesn't influence the growth rate o f a given region.

There' s no spatial spillover effect associated with the exogenous lag variable in this model.

Moreover, there are some problems with spatial dependence tests, which indicate the presence o f spatial error autocorrelation (Moran' s I and LMERR) and presence o f a lagged endogenous variable (LMLAG). The Breusch-Pagan test is also significant pointing to heteroskedasticity.

The picture is worse than for model (I) and (II) according to information criteria. This model seems therefore to be strongly misspecified and is also the worst in terms o f information criteria.

The tests carried out on model (I) suggested the presence o f spatial error autocorrelation rather than an endogenous lag variable; we therefore estimate finally the spatial error model: Model (IV): (l/r)ln (z)= S a + ln(;y1980) + e e = XWe + u m~N(0,<727) Model (V): (l/r)ln (z) = a ( l -XW)S + /?ln(yl9J

+

AW[(]/T)\n(z)]+yiV\n(ymo)+u

The estimation results by maximum likelihood are given in Table 1. The coefficients are all significant. The coefficient associated with the level o f initial per capita GDP is higher This specification has two implications:

First, the speed o f convergence in the model with spatial autocorrelation is 1,73% and is thus higher than that o f all the preceding models; the half-life reduces to 45 years once the spatial effects are controlled for. This model reveals also a spatial spillover effect, when reformulated as model (V), in that the mean growth rate o f a region i is positively influenced by the mean growth rate o f contiguous regions, through the endogenous spatial lag variable ff[(l/r )ln(z)]. But it seems not to be influenced by the initial per capita GDP o f contiguous regions, through the exogenous spatial lag variable fFln(j>1980). This spillover effect indicates that the spatial association patterns are not neutral for the economic performances o f European regions. The more a region is surrounded by dynamic regions with high growth rates, the more its growth rate will be high. In other words, the geographical environment has an influence on growth processes. This corroborates the theoretical results highlighted by the New Economic Geography. From the pure perspective o f convergence processes, this first implication may seem qualitatively negligible, but we must underline that this is the only proper way o f estimating a conditional model o f ¡3 -convergence once spatially autocorrelated errors are detected and the only proper way of drawing reliable statistical inference.

The second implication is even more interesting. We saw that this specification has an interesting property concerning the diffusion o f a random shock. We present some simulation results to illustrate this property with a random shock affecting Burgundy, which is close to the centroid o f European regions included in our sample9. This shock has the largest relative impact on Burgundy where the estimated mean growth rate is 27,5% higher than the estimated mean growth rate without the shock. Nevertheless we observe a clear spatial diffusion pattern of this shock to all other regions o f the sample excepted United-Kingdom (due to the block-diagonal structure o f the contiguity weight matrix). The magnitude o f the impact o f this shock is between 1.8% and 5.5% for the regions neighboring Burgundy and gradually decreases when we move to peripheral regions (Figure 1). Therefore the spatially autocorrelated errors specification underlines that the geographical diffusion o f shocks are at least as important as the dynamic diffusion o f these shocks in the analysis o f convergence processes. Integration o f these two aspects may be studied in further research.

We reestimate then all these specifications with 4 distance-based matrices, which are defined as following (k = 1,...,4) :

'wy = 0 if I = y ■ w ,= p i if d, < m W y = 0 if d y > D(k)
where dtj is the great circle distance between centroids o f regions The estimation results are presented in Tables 3 to 6. The overall picture is quite similar to those obtained with the contiguity matrix and indicates the robustness o f our results

to the choice o f the weight matrix. More specifically, in the cross-regressive model, the coefficient o f the exogenous lag variable is never significant and in the spatial autoregressive model, the half-life to convergence reaches always more than twice the value we find in other models. The spatial error model is the best one according to information criteria whatever the specification we adopt for the weight matrix and provides always a better fit than the absolute P -convergence model.

Conclusion

The aim o f this paper is to analyze the consequences o f spatial dependence on regional growth and convergence processes for European regions over the 1980-1995 period. Among all the specifications integrating spatial autocorrelation, the spatial error model is the best one according to test procedures and information criteria. This specification reveals spatial spillover effects in that the mean growth rate o f per capita GDP o f a region is affected by the mean growth rate o f neighboring regions. Moreover, we stress the importance o f the spatial diffusion process implied by this model. We interpret this specification as the minimal conditional /^-convergence model in the sense that it captures the effects o f all other variables that could explain differentiated steady states along the lines o f [START_REF] Haining | Spatial Data Analysis in the Social and Environmental Sciences[END_REF][START_REF] Fingleton | Estimates o f Time to Convergence: An Analysis o f Regions o f European Union[END_REF]. We could also suggest that standard conditional ^-convergence models should be tested for spatial dependence and if it is detected they should include at least the endogenous lagged variable and be estimated by the appropriate econometric method. (Cliff and Ord, 1981). LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust version o f this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial autocorrelation [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF][START_REF] Anselin | Simple Diagnostic Tests for Spatial Dependence[END_REF]. LR-com-fac is the likelihood ratio common factor test [START_REF] Burridge | Testing for a Common Factor in a Spatial Autoregresion Model[END_REF] (Cliff and Ord (1981). LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial autocorrelation [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF][START_REF] Anselin | Simple Diagnostic Tests for Spatial Dependence[END_REF]. LR-com-fac is the likelihood ratio common factor test [START_REF] Burridge | Testing for a Common Factor in a Spatial Autoregresion Model[END_REF] [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF][START_REF] Anselin | Simple Diagnostic Tests for Spatial Dependence[END_REF]. LR-com-fac is the likelihood ratio common factor test [START_REF] Burridge | Testing for a Common Factor in a Spatial Autoregresion Model[END_REF] (Cliff and Ord (1981). LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial autocorrelation [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF][START_REF] Anselin | Simple Diagnostic Tests for Spatial Dependence[END_REF]. LR-com-fac is the likelihood ratio common factor test [START_REF] Burridge | Testing for a Common Factor in a Spatial Autoregresion Model[END_REF]. BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially adjusted version of this test. (Cliff and Ord (1981). LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust version of this test and R-LMERR is the robust version of the Lagrange multiplier test for residual spatial autocorrelation [START_REF] Anselin | Small sample properties o f tests for spatial dependence in regression models[END_REF][START_REF] Anselin | Simple Diagnostic Tests for Spatial Dependence[END_REF]. LR-com-fac is the likelihood ratio common factor test [START_REF] Burridge | Testing for a Common Factor in a Spatial Autoregresion Model[END_REF]. BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially adjusted version of this test.

'b

Figure 1 Percent variation of mean growth rates due to a shock in Burgundy 1980Burgundy -1995 Diffusion in the spatial error model using a simple contiguity weight matrix (median: 0.044%; mean: 0.66%)

1/

  Since economic activities are unevenly distributed over space, cumulative processes o f agglomeration take place and most o f the economic activities tend to concentrate in a few numbers o f regions. 2/ Since economic growth is stimulated by geographic concentration o f economic activities, patterns o f uneven development are observed. 3/ The shadow effect contained in the cumulative agglomeration process and the spatial ranges o f geographic spillovers can now explain why rich and poor regions are or not regularly distributed4. Whereas all the regions could benefit from global geographic spillovers, cumulative processes o f concentration in one region empties its surroundings o f economic activities. As a result, rich regions can be close with each other if geographic spillovers are global and regularly distributed among them. On the contrary, the assumption o f local spillovers would explain a more regular juxtaposition o f rich and poor regions. 4/ Finally, since history matters through the initial conditions and the cumulative nature o f both growth and agglomeration processes, the observed geographic distribution o f rich and poor regions would be rather stable through time. We could easily observe such spatial orders in European Union regional area. Rich and attractive regions5 keep on being geographically concentrated in the south o f England, in Benelux, in the east o f France, in the west o f Germany and in the north o f Italy along the London-Munich-Turin axis. In Spain, Portugal and South-Italy, poor regions are numerous. These persistent empirical observations lead to three types o f issues. The first one refers to growth theories and investigates the convergence problem if poor regions don't catch up rich ones. The second one refers to economic geography theories and investigates the effect o f geographic spillovers on growth processes to explain spatial development patterns.

  (n x h) matrix Z is reflected by the parameter vector y . This general specification allows handling of spatial spillover effects explicitly and can be interpreted like a conditional convergence model integrating spatial environment variables possibly affecting growth rates. The set o f explanatory variables in Z can include or not ln(y0). If it is the case, then the model gives estimates o f both a direct and a spatially lagged effects o f initial per capita GDP levels on the growth rates, besides estimates o f spatially lagged effects o f other explanatory variables. If it is not the case then the model focuses only on the spatially lagged effects o f other explanatory variables. The estimation o f this model can be based on OLS.

  l/r in (z ) = aS + /?lnO;0)+ £ s = XWs + u u~N(0,<r2I) (6) where X is the scalar parameter expressing the intensity o f spatial correlation between regression residuals. Use o f OLS in the presence o f non-spherical errors would yield unbiased but inefficient estimators. In addition inference based on OLS may be misleading due to biased estimate o f the parameter' s variance. Therefore this model should be estimated by ML or General Methods o f Moments.

(

  y r)ln (z)-A W [(j/T )ln (z)] = a ( f -AW)S + p]n(y0)~ ApW In (y0)+ u ( 11) (y r)ln (z) = a{l -x w )s + p ln(y0) + AW[(]/T)ln (z)]+yW la{y0)+u(12) 

  ) in the sense that it incorporates either the spatially lagged endogenous and exogenous variables: fF[l/nn(z)] and W ln(y0). It reveals two types o f spatial spillover effects. Indeed, the growth rate o f a region i may be influenced by the growth rate o f neighboring regions, by the means o f the endogenous spatial lag variable. It may be as well influenced by the initial per capita GDP o f neighboring regions, by the means o f the exogenous spatial lag variable. Spatial econometric models appear thus useful to highlight spatial spillover effects.

  spatial autocorrelation in the model o f absolute ¡3 -convergence on the per capita GDP o f the European regions over the 1980-1995 period. The data are extracted from the EUROSTAT-REGIO databank. Our sample includes 122 regions (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in NUTS2 level)6.We first estimate the model o f absolute /^-convergence and carry out various tests aiming at detecting the presence o f spatial dependence. We then consider the specifications integrating these spatial effects explicitly and compare the results obtained for various weight matrices: a contiguity weight matrix and 4 distance-based weight matrices.Let us take as a starting point the following model o f absolute /^-convergence:

  than that o f the model (I) and a positive spatial autocorrelation o f the errors (A = 0,694) is found. The LMLAG test does not reject the null hypothesis o f the absence o f an additional autoregressive lag variable. The spatially adjusted Breusch-Pagan test is not significant indicating absence o f spatial heterogeneity. The common factor test indicates that the restriction y + Xfi = 0 cannot be rejected then model (V) reduces to model (IV) with y = -Xfi but this coefficient is not significant at the 5% significance level. According to information criteria this model seems to perform better than all the preceding specifications. It thus appears that the model with spatial autocorrelation o f the errors is the most appropriate specification.

  i and j ; D(\) = Q l, D(2) = M e , D(3) = Q3 and £>(4) = Max, where Ql, Me, Q3 and Max are respectively the lower quartile (436 km), the median (767 km), the upper quartile (1218 km) and the maximum (2496 km) o f the great circle distance distribution. D{k) is a cutoff parameter for k = 1,2,3 above which interactions are assumed negligible. For A : = 4 , the distance matrix is full without cutoff. The choice o f the cutoff can also be based on a residual correlogram with ranges defined by minimum, lower quartile, median, upper quartile and maximum great circle distances (see Table 2). The determination o f the cutoff that maximize the absolute value o f significant Moran's I or robust Lagrange Multiplier test statistics for spatial autocorrelation o f the errors lead to Ql or Q3: we could only retain a cutoff o f 436 km or 1218 km for the distance based weight matrix, but we prefer to maintain all 4 matrices for full robustness evaluation o f estimation results.

Model

  

  Wy . For a variable x , this transformation means that the expression Wx is simply the weighted average o f the neighboring observations.

	Two principal ways are used to evaluate geographical connections: a contiguity
	indicator or a distance indicator. In the first case, we assume that interactions can only exist if
	two regions share a common border: then

w' j = Wy/y] wÿ = 1 if regions i and j have a common border and Wy = 0 otherwise. This contiguity indicator can be refined by taking into account the length o f this common border assuming that the intensity o f interactions cannot be identical between regions sharing a border o f 10 kilometers and those sharing a border o f 100 kilometers. It is worth stressing that this later contiguity indicator is more relevant for European regions than for US States: the disparities in terms o f length o f common border are indeed more important for European regions than for US States.

  . It is worth mentioning that the Jarque-Bera test doesn't reject Normality: the reliability o f all subsequent testing procedures and the use o f Maximum Likelihood estimation method are then strengthened. We note also that the Breusch-Pagan test o f heteroskedasticity is not significant. Further consideration o f spatial heterogeneity is therefore omitted and we only take into account spatial dependence in this empirical analysis7.

Three tests o f spatial autocorrelation are then carried out: the test o f Moran' s / adapted to the regression residuals indicates the presence o f spatial dependence. To discriminate between the two forms o f spatial dependence -endogenous spatial lag or spatial autocorrelation o f errors -we perform two robust Lagrange Multiplier tests: respectively LMERR and LMLAG. Applying the decision rule suggested by

Table 1 :

 1 Contiguity MatrixNote: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in NUTS2 level). The contiguity matrix is block diagonal due to the presence of United-Kingdom, whose regions don't share any common border with any other region from another state in the sample. P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the[START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF] information criterion. BIC is theSchwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated residuals Normality test. MORAN is the Moran's I test adapted to estimated residuals

	Estimation	OLS	ML-cont	ML-cont	OLS-cont
		a	0.170 (0.000)	0.196 (0.000)	0.089 (0.000)	0.164 (0.000)
			-0.01239	-0.01523	-0.00761	-0.01439
		f i	(0.000)	(0.000)	(0.000)	(0.000)
	conv. speed	1.37%	1.73%	0.8%	1.62%
			(0.000)	(0.000)	(0.000)	(0.000)
	half-life	56	45	91	48
		/K	-	0.694	-	-
		A		(0.000)		
			-	-	0.631	-
		P			(0.000)	
		f	-	-	-	0.0026 (0.557)
	Adi-/?2 or R 2 '	0.253	0.39*	0.44*	0.249
	U K	406.72	436.70	431.89	406.90
	AIC	-809.44	-869.40	-857.79	-807.80
	BIC	-803.83	-863.79	-849.37	-799.38
	<72	7.569. lO'5	3.931.10'5	4.389. lO'5	7.610.10'5
	Tests					
		JB	2.429	-	-	3.348
			(0.297)			(0.187)
	BP or BP-S*	0.0156	1.084*	0.286*	11.904
			(0.901)	(0.298)	(0.593)	(0.003)
	Moran's I (error)	8.812	-	-	8.695
			(0.000)			(0.000)
	LMERR	69.255	-	1.686	68.199
			(0.000)		(0.194)	(0.000)
	R-LMERR	11.563	-	-	8.777
			(0.000)			(0.003)
	LMLAG	58.046	0.113	-	69.330
			(0.000)	(0.737)		(0.000)
	R-LMLAG	0.353	-	-	9.909
			(0.552)			(0.001)
	LR-com-fac	-	0.00060	-	-
				(0.980)		
	ii	i	-	(0.822) 0.0106	-	-

Table 3 :

 3 Ql-distance weight matrixNote: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in NUTS2 level). P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the[START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF] information criterion. BIC is theSchwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated residuals Normality test. MORAN is the Moran's I test adapted to estimated residuals

	Model	P -convergence (D	Spatial error (IV) and (V)	Spatial lag-dep (II)	Spatial lag-ex (HI)
	Estimation	OLS	ML-cont	ML-cont	OLS-cont
	a	0.170 (0.000)	0.175 (0.000)	0.069 (0.000)	0.163 (0.000)
			-0.01239	-0.01316	-0.00578	-0.01523
	p	(0.000)	(0.000)	(0.002)	(0.000)
	conv. speed	1.37%	1.47%	0.6%	1.41%
			(0.000)	(0.000)	(0.000)	(0.000)
	half life	56	53	120	55
		/\	-	0.747	"	-
		X		(0.000)		
			-	-	0.696	-
	p			(0.000)	
		f	-	-	-	0.0035 (0.436)
	Adi-R 2 or R2'	0.253	0.29*	0.43*	0.250
	U K	406.72	434.28	430.41	407.03
	AIC	-809.44	-864.57	-854.82	-808.07
	BIC	-803.83	-858.96	-846.41	-799.65
	<T2	7.569.10"5	4.235.10-5	4.600.10 s	7.593.10 s
	Tests					
	JB	2.429	-	-	3.887
			(0.297)			(0.143)
	BP or BP-S*	0.0156	3.268*	2.200*	13.898
			(0.901)	(0.0706)	(0.138)	(0.000)
	Moran's I (error)	10.157	-	-	9.970
			(0.000)			(0.000)
	LMERR	87.065	-	3.099	84.108
			(0.000)		(0.078)	(0.000)
	R-LMERR	21.170	-	-	2.601
			(0.000)			(0.107)
	LMLAG	66.520	0.0068	-	85.631
			(0.000)	(0.935)		(0.000)
	R-LMLAG	0.624	-	-	4.124
			(0.429)			(0.042)
	LR-com-fac	-	0.00015	-	-
				(0.990)		
	II	1	-	(0.861) 0.0098	-	-

. BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially adjusted version of this test.

Table 4 :

 4 Q2-distance weight matrixNote: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in NUTS2 level). P-values are in parentheses. LIK is value o f the maximum likelihood function. AIC is the[START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF] information criterion. BIC is theSchwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated residuals Normality test. MORAN is the Moran's I test adapted to estimated residuals(Cliff and Ord (1981). LMLAG is the Lagrange multiplier test for spatially lagged endogenous variable, R-LMLAG is the robust version o f this test and R-LMERR is the robust version o f the Lagrange multiplier test for residual spatial autocorrelation

	Model	¡3 -convergence (D	Spatial error (TV) and (V)	Spatial lag-dep (H)	Spatial lag-ex (HI)
	Estimation	OLS	ML-cont	ML-cont	OLS-cont
		A a	0.170	0.174	0.065	0.164
			(0.000)	(0.000)	(0.001)	(0.000)
	p	-0.01239 (0.000)	-0.01307 (0.000)	-0.00577 (0.003)	-0.01421 (0.000)
	conv. speed	1.37%	1.45%	0.6%	1.6%
			(0.000)	(0.000)	(0.001)	(0.000)
	half life	56	53	120	49
		X	-	(0.000) 0.813	-	-
		A P	-	-	(0.000) 0.761	-
		A y				0.00242 (0.616)
	Adi-i?2 or R 2 *	0.253	0.29*	0.41*	0.248
	LIK	406.72	432.04	428.79	406.85
	AIC	-809.44	-860.09	-851.58	-807.70
	BIC	-803.83	-854.48	-843.16	-799.28
	<72	7.569.10'5	4.416.10'5	4.741.10'5	7.616.10'5
	Tests				
	JB	2.429	-	-	3.190
			(0.297)			(0.203)
	BP or BP-S*	0.0156	2.423*	1.964*	11.189
			(0.901)	(0.119)	(0.161)	(0.004)
	Moran's I (error)	9.944	-	-	9.869
			(0.000)			(0.000)
	LMERR	80.082	-	3.309	78.526
			(0.000)		(0.069)	(0.000)
	R-LMERR	19.469	-	-	0.675
			(0.000)			(0.411)
	LMLAG	60.871	0.154	-	79.127
			(0.000)	(0.694)		(0.000)
	R-LMLAG	0.259	-	-	1.276
			(0.611)			(0.258)
	LR-com-fac	-	0.08833	-	-
				(0.766)	
	II	1	-	0,0106		-
				(0.859)	

. BP is the Breusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially adjusted version of this test.

Table 5 :

 5 . BP is theBreusch-Pagan (1979) test for heteroskedasticity and BP-S is the spatially adjusted version o f this test. Q3-distance weight matrix Note: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in NUTS2 level). P-values are in parentheses. LIK is value of the maximum likelihood function. AIC is the[START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF] information criterion. BIC is theSchwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated residuals Normality test. MORAN is the Moran's I test adapted to estimated residuals

	Model	¡3 -convergence (D	Spatial error (TV) and (V)	Spatial lag-dep (II)	Spatial lag-ex (IH)
	Estimation	OLS	ML-cont	ML-cont	OLS-cont
	â	0.170	0.169	0.063	0.166
			(0.000)	(0.000)	(0.000)	(0.000)
	P	-0.01239 (0.000)	-0.01271 (0.000)	-0.00588 (0.002)	-0.01334 (0.001)
	conv. speed	1.37%	1.41%	0.6%	1.50%
			(0.000)	(0.000)	(0.000)	(0.000)
	half life	56	55	118	52
	i	-	(0.000) 0.857	-	-
	p	-	-	(0.000) 0.811	-
	f	-	-	-	0.00135 (0.791)
	Adj-R 2 or R 2 *	0.253	0.27*	0.41*	0.247
	LIK	406.72	431.25	428.64	406.757
	AIC	-809.44	-858.50	-851.27	-807.514
	BIC	-803.83	-852.89	-842.86	-799.10
	<72	7.569.1 O'5	4.461. IO'5	4.731.10-5	7.628. IO5
	Tests				
	JB	2.429	-	-	2.815
			(0.297)			(0.245)
	BP or BP-S'	0.0156	2.072*	2.321*	11.617
			(0.901)	(0.150)	(0.128)	(0.003)
	Moran	9.579	-	-	9.557
			(0.000)			(0.000)
	LMERR	73.374	-	2.680	72.661
			(0.000)		(0.102)	(0.000)
	R-LMERR	16.124	-	-	0.437
			(0.000)			(0.508)
	LMLAG	57.322	0.312	-	72.895
			(0.000)	(0.576)		(0.000)
	R-LMLAG	0.072	-	-	0.671
			(0.788)			(0.412)
	LR-com-fac	-	0.2389	-
				(0.625)	
	II	1	-	(0.846) 0,0109	-

Table 6 :

 6 full-distance weight matrixNote: The data are extracted from the EUROSTAT-REGIO databank: 122 regions (Denmark, Luxembourg and United Kingdom in NUTS1 level and Belgium, Spain, France, Germany, Italy, Netherlands and Portugal in NUTS2 level). P-values are in parentheses. LIK is value o f the maximum likelihood function. AIC is the[START_REF] Akaike | A New Look at the Statistical Model Identification[END_REF] information criterion. BIC is theSchwarz information criterion (1978). JB is the Jarque-Bera (1980) estimated residuals Normality test. MORAN is the Moran's I test adapted to estimated residuals

	Estimation	OLS	ML-cont	ML-cont	OLS-cont
		â	0.170	0.173	0.068	0.156
			(0.000)	(0.000)	(0.000)	(0.000)
		R P	-0.01239 (0.000)	-0.01323 (0.000)	-0.00669 (0.000)	-0.01491 (0.000)
	conv. speed	1.37%	1.47%	0.7%	1.69
			(0.000)	(0.000)	(0.000)	(0.000)
		half life X p Y	56 ---	52 0.868 (0.000) --	104 -0.841 (0.000) -	47 --0.0041 (0.464)
	Adj-i?2 or R 2 *	0.253	0.29*	0.39*	0.249
		LIK	406.72	430.43	428.03	407.00
		AIC	-809.44	-856.87	-850.06	-807.99
		BIC	-803.83	-851.26	-841.65	-799.58
		<T2	7.569.10-5	4.542.10"5	4.768.1 O'5	7.600.1 O'5
	Tests	JB	2.429	-	-	3.603
			(0.297)			(0.165)
	BP or BP-S*	0.0156	1.498*	1.695*	11.170
		Moran	(0.901) 9.408	(0.221) -	(0.193) -	(0.004) 9.175
		LMERR	(0.000) 71.137	-	2.640	(0.000) 67.072
	R-LMERR	(0.000) 17.636	-	(0.104) -	(0.000) 3.545
			(0.000)			(0.060)
		LMLAG	54.050	0.446		68.913
	R-LMLAG	(0.000) 0.549	(0.504) -		(0.000) 5.386
	LR-com-fac	(0.458) -	0.2099	-	(0.020) -
		<C^S 1 II	-	(0.650) (0.849) 0,0115	-	

See Duranton (1997) and[START_REF] Fujita | Economie géographique. Problèmes anciens et nouvelles perspectives[END_REF] for more details.

like for example black and white cases on a chessboard.

With per capita GDP above the mean of per capita GDP of European regions.

This sample implies a block-diagonal pattern for the simple contiguity weight matrix due to the presence of United Kingdom, which doesn't share a common border with any other state of the sample.

It is not the case of[START_REF] Fingleton | Estimates o f Time to Convergence: An Analysis o f Regions o f European Union[END_REF] who rejects Normality and homoskedasticity for his sample.

All estimations were carried out using SpaceStat 1.90.

This shock is set equal to two times the residual variance of the estimated spatial error model (IV).

Range (Km)

[Min; Ql[ [15;436[ [Qi;Me[ [436;767[ [Me;Q3[ [767;1218[ [Q3;Max[ [1218;2496[ Moran'