
HAL Id: hal-01526986
https://hal.science/hal-01526986

Submitted on 23 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed-Automata-Based Verification of MITL over
Signals

Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, Benjamin Monmege

To cite this version:
Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, Benjamin Monmege. Timed-Automata-Based Veri-
fication of MITL over Signals. 24th International Symposium on Temporal Representation and Rea-
soning (TIME 2017), Oct 2017, Mons, France. pp.7:1–7:19, �10.4230/LIPIcs.TIME.2017.7�. �hal-
01526986�

https://hal.science/hal-01526986
https://hal.archives-ouvertes.fr

Timed-automata-based verification of MITL over
signals
Thomas Brihaye1, Gilles Geeraerts2, Hsi-Ming Ho1, and Benjamin
Monmege3

1 Université de Mons, Belgium, {thomas.brihaye,hsi-ming.ho}@umons.ac.be
2 Université libre de Bruxelles, Belgium, gigeerae@ulb.ac.be
3 Aix Marseille Univ, CNRS, LIF, France, benjamin.monmege@univ-amu.fr

Abstract
It has been argued that the most suitable semantic model for real-time formalisms is the non-
negative real line (signals), i.e. the continuous semantics, which naturally captures the continuous
evolution of system states. Existing tools like Uppaal are, however, based on ω-sequences with
timestamps (timed words), i.e. the pointwise semantics. Furthermore, the support for logic
formalisms is very limited in these tools. In this article, we amend these issues by a compositional
translation from Metric Temporal Interval Logic (MITL) to signal automata. Combined with an
emptiness-preserving encoding of signal automata into timed automata, we obtain a practical
automata-based approach to MITL model-checking over signals. We implement the translation
in our tool MightyL and report on case studies using LTSmin as the back-end.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.1.1 Models of Computation

Keywords and phrases real-time temporal logic, timed automata, real-time systems

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.?

1 Introduction

Many computer programs nowadays control critical applications, and need to enforce complex
requirements in order to guarantee safe, dependable and efficient operation of the whole
system. Among these requirements, real-time specifications (such as ‘every request is
eventually followed by an acknowledgement within 3 time units’) are common. In this
framework, computer interact with an environment that is intrinsically continuous, and
ensuring thin real-time constraints is known to be a very difficult task.

Different kinds of formalisms have been proposed over the past 30 years to specify those
real-time models (often by means of automata) and requirements (usually by means of some
logic language). On the automata side, the model of timed automata [2] is arguably widely
accepted today, a success which is due in part to the tool support provided by Uppaal
[35] and other verification tools such as Kronos [12], TiAMo [11], . . . As far as logics are
concerned, several proposals have been made in the literature during the past 30 years (such
as MTL [33], TPTL [7], TCTL [1], . . .) but the recent research seems to focus mainly on
MTL, for theoretical reasons (we think here of the works of Ouaknine and Worrell on the
decidability of MTL [38]); and on MITL [4] for more practical motivations [10,13,14,16,31,36].

Indeed, since its introduction in 1996, MITL has been advocated as a good ‘trade-off
between realistic modelling of time and feasible verification of timing properties’ [4]. MITL
is at the same time a real-time extension of LTL, the most widely accepted logic in the
non-real-time case; and a restriction of MTL, whose expressive power makes it undecidable
in most practical cases [6, 38]. Unfortunately, tool support for MITL is still lacking today,

© Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, Jef Wijsen; Article No. ?; pp. ?:1–?:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.?
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

?:2 Timed-automata-based verification of MITL over signals

albeit MITL’s clear practical interest (and indeed, the need for such tool support is repeatedly
emphasised in several papers [4, 10, 36]). Uppaal, the most prominent real-time model
checker, supports only a restricted subset of TCTL; and the alternatives are either not
publicly available, or too restricted, or too experimental (see the related work hereinafter for
a more comprehensive picture). We believe this is due to the relative lack of maturity of
automata-based support for MITL, at least when compared with LTL.

Another point of debate in the community is the choice of the semantics for real-time
models. The two different options are known as the pointwise and continuous semantics. In
the pointwise semantics, executions of the system are timed words, i.e. sequences of pairs
(timestamp, system state). That is, the system’s states can only be observed at selected
timestamps (which are non-negative real values). In the continuous semantics, executions are
signals, i.e. sequences of contiguous intervals during which the states of the system does not
change and can be continuously observed. While the pointwise semantics is the most common
today (probably due to the success of timed automata which have initially been defined
in this framework), it has been argued [8, 29] that the continuous semantics models time
more faithfully, and it is indeed adopted in many works about control of hybrid systems [41],
synthetic biology [9], etc. Apart from these practical considerations, the difference between
these two semantics matters as it changes the expressive power of the logic1. For example, the
following formula (asking that p holds exactly in an interval of the form [0, a] for some a ≥ 0)
is satisfiable in the continuous semantics only: p ∧ F(¬p) ∧G

(
¬p⇒ G(¬p)

)
∧ ¬
(
p U (¬p)

)
.

Contribution. In order to remedy the lack of comprehensive tool support for MITL in
the pointwise semantics, we have recently introduced MightyL [15], an efficient tool that
turns MITL formulae into a network of timed automata (expressed in the Uppaal language)
accepting the same language. These timed automata can then be used to perform satisfiabilty
or model-checking, using off-the-shelf model checkers such as Uppaal or LTSMin. The
central point of the efficiency of our construction is its compositional feature: we output a
network of timed automata (one per subformula) instead of a single, monolithic, one. In
the present work, we extend this line of research to the realm of continuous semantics by
revisiting the compositional translation of MITL into signal automata (i.e. automata akin to
timed automata, but that accept signals instead of timed words).

More precisely, we introduce, in Section 3, a compositional translation that turns an MITL
formula ϕ into a network of signal automata Cinit ×

∏
χ Cχ, one for each subformula χ in ϕ,

plus an extra signal automaton Cinit (extending the ideas of our previous work [15] to the
continuous setting). However, as is, this translation would not allow us to rely on the currently
available tools for timed systems since most of them (and in particular, Uppaal) rely on the
pointwise semantics. So, in Section 4, we present an emptiness-preserving and compositional
transformation from signal automata to timed automata (see Theorem 11). Concretely, given
a signal automaton A modelling a system, and a property ϕ to be checked on A, we can
perform model-checking by: (i) building the network of signal automata Cinit ×

∏
χ Cχ from

¬ϕ using the procedure of Section 3; (ii) translating, using the techniques of Section 4, A,
Cinit and all Cχ into corresponding timed automata BA, Binit and Bχ (for all subformulae χ)
respectively; and (iii) checking (using a model-checker for timed automata) whether the
language BA×Binit×

∏
χ Bχ is empty. If this is the case, then the properties of our translation

ensure that this emptiness holds if and only if the language of A× Cinit ×
∏
χ Cχ is empty,

which holds if and only if A |= ϕ, by construction. We have implemented this approach as

1 As for MTL, for instance, which becomes decidable on finite words in the pointwise semantics [38].

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:3

an extension of MightyL and report on experiments in Section 5. The preliminary results
are very encouraging, as our approach compares well or outperforms previous approaches
from the literature.

Related work. The most similar work to ours is [32] where the authors propose a composi-
tional translation from MITL with past operators [5] to signal automata. The translation
works by rewriting the input formula into one with only past operators using projections [22].
Each past subformula can then be handled by a simple component, and the resulting auto-
maton is obtained by synchronising the components via newly introduced propositions.
An advantage of this approach is that it directly supports past operators. Unfortunately,
the rewriting step does not work for unbounded future operators; this severely limits the
applicability of the translation (for example, the liveness property GFp cannot be expressed
in the bounded-future fragment). Also, as far as we know, it has never been implemented.
By contrast, while our translation deals only with future MITL, one may use projections to
remove past operators from the input formula.

Compositional translations that support unbounded future operators also exist in the
literature [21,36,37]. One difference of these with our translation is that they are formulated
in terms of non-standard models such as timed signal transducers or hierarchical timed
automata. This deviation from the more common models, we believe, has contributed to the
lack of implementation of these translations.2 Another difference is that the components
constructed by these approaches are testers whereas those constructed by ours are positive
testers [17, 40]; that is, suppose we introduce a new proposition pχ for the subformula
χ = ϕ1 U ϕ2, a tester enforces pχ ⇔ ϕ1 U ϕ2 to hold at all times while a positive tester
only enforces the weaker formula pχ ⇒ ϕ1 U ϕ2 to hold at all times. This may affect the
performance of verification algorithms [43]. Moreover, the weaker condition allows us to
impose some minimality criteria on transitions for further performance gains (see Section 5).

The original translation from MITL to signal automata in [4] is a monolithic tableau-
based procedure which follows roughly the same lines as the tableau-based translation from
LTL to Büchi automata [27]: the locations of the resulting automaton are labelled by sets
of subformulae, and the transitions between them are obtained by ‘expanding’ the labels.
Like our translation, it also enforces minimality when generating transitions. However, the
procedure is much more involved than the LTL counterpart and seems difficult to realise in
practice. A simplified tableau-based translation is given in [25,26] where an implementation—
the only implementation of an MITL to signal automata translation we are aware of—is also
reported. Nevertheless, the translation only works for the upper-bound fragment of MITL,
and the tool is not publicly available.

Besides automata-based approaches, there are also proposals to apply SMT (Satisfiability
Modulo Theories) solvers [19] to satisfiability/model-checking for MITL over signals [10,31].
The SMT approach is straightforward to implement and there are publicly available tools.
However, it is essentially a ‘bounded model-checking’ approach and therefore is inherently
incomplete, unless very large (impractical) bounds are used.

2 Model-checking signal automata against MITL

This section introduces the main objects we study—the logic MITL over signals and signal
automata—as well as the model-checking problem we tackle.

2 These models are, however, not more expressive than signal automata.

TIME 2017

?:4 Timed-automata-based verification of MITL over signals

Signals. An interval I is a non-empty convex subset of R≥0. If I is bounded (sup(I) exists),
we write |I| for sup(I)− inf(I). Let AP be a finite set of atomic propositions. A state σ over
AP is a subset of AP, i.e. σ ∈ 2AP. A signal γ over 2AP is a function that maps each t ∈ R≥0
to a state over AP. Throughout this work, we restrict ourselves to signals that are finitely
variable, i.e. the number of discontinuities is finite in each bounded interval. We rely on timed
state sequences to represent signals. Intuitively, a timed state sequence partitions the reals
into a sequence of contiguous time intervals during which the state remains constant. A state
sequence σ = σ0σ1σ2 · · · over 2AP is an infinite sequence of states σi ∈ 2AP. An interval
sequence I = I0I1I2 · · · is an infinite sequence of intervals such that: 1. for all i ≥ 0, Ii and
Ii+1 are adjacent, i.e. sup(Ii) = inf(Ii+1) and Ii ∩ Ii+1 = ∅; 2. for each t ∈ R≥0, we have
t ∈ Ii for some i ≥ 0. An interval sequence is said bipartite if it alternates between singular
and open intervals, i.e. Ii is singular for all even i ≥ 0. Then, a timed state sequence over
2AP is a pair κ = (σ, I) where σ is a state sequence over 2AP and I is an interval sequence.
We let κ(t) = σi if t ∈ Ii for some i ≥ 0. We write JγK (respectively, JγKbp) for the set of all
timed state sequences (respectively, timed state sequences with bipartite interval sequences)
κ such that κ(t) = γ(t) for all t ∈ R≥0.

Metric Interval Temporal Logic (MITL). We consider the satisfiability and model-checking
problems for Metric Interval Temporal Logic (MITL), a real-time extension of Linear Temporal
Logic (LTL), allowing temporal operators to be labelled with non-singular intervals. Formally,
MITL formulae over AP are generated by the grammar:

ϕ := > | p | ϕ ∧ ϕ | ¬ϕ | ϕ UI ϕ,

where p ∈ AP and I is a non-singular interval with endpoints in N≥0 ∪ {∞} (I is assumed to
be (0,∞) when omitted).

In this work, we focus on the continuous semantics for MITL, in which formulae are
interpreted over signals. Given a signal γ over 2AP, t ∈ R≥0, and an MITL formula ϕ, the
satisfaction relation γ, t |= ϕ is defined as follows (following [4], we adopt the strict-future
semantics for the temporal operators):

γ, t |= >;
γ, t |= p if p ∈ γ(t);
γ, t |= ϕ1 ∧ ϕ2 if γ, t |= ϕ1 and γ, t |= ϕ2;
γ, t |= ¬ϕ if γ, t 6|= ϕ;
γ, t |= ϕ1 UI ϕ2 if there exists t′ > t such that t′ − t ∈ I, γ, t′ |= ϕ2 and γ, t′′ |= ϕ1 for all
t′′ ∈ (t, t′).

We write S(ϕ) for the set of all signals γ such that γ |= ϕ.
We will use standard syntactic sugar, e.g. ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ⊥ ≡ ¬>, ϕ1 ⇒ ϕ2 ≡

¬ϕ1 ∨ ϕ2, the ‘eventually’ operator FIϕ ≡ > UI ϕ, the ‘globally’ operator GIϕ ≡ ¬FI¬ϕ,
and the ‘release’ operator ϕ1 RI ϕ2 ≡ ¬((¬ϕ1) UI (¬ϕ2)). Hence, the semantics of the release
operator can be defined as follows:

γ, t |= ϕ1 RI ϕ2 if for all t′ > t such that t′ − t ∈ I, γ, t′ |= ϕ2 or there exists t′′ ∈ (t, t′)
such that γ, t′′ |= ϕ1.

In particular, we can make use of these operators to transform every formula ϕ into its
negative normal form where the negations are pushed inwards so that they range on atomic
propositions only.

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:5

Signal automata. Our tool support for MITL will be based on automata. We first give a
formal definition of signal automata, and we will also present the classical timed automata
afterwards. Like [4], we equip these automata with generalised Büchi acceptance conditions.
From now on, a propositional constraint φ over AP is a set of states over AP; that we
denote by means of a Boolean formula over AP. For example, assuming AP = {p, q, r}, the
propositional constraint p∧¬q denotes {{p, r}, {p}}. Let X be a finite set of clocks. The set
G(X) of clock constraints g over X is generated by the grammar g := > | ⊥ | g ∧ g | x ./ c
where ./ ∈ {≤, <,≥, >}, x ∈ X and c ∈ N. A valuation v of X is a mapping v : X → R≥0.
We denote by 0 the valuation that maps every clock to 0. The satisfaction of a constraint g
by a valuation v is defined in the usual way and noted v |= g. For t ∈ R≥0, let v + t be the
valuation defined by (v + t)(x) = v(x) + t for all x ∈ X. For λ ⊆ X, let v[λ ← 0] be the
valuation defined by (v[λ← 0])(x) = 0 if x ∈ λ, and (v[λ← 0])(x) = v(x) otherwise.

I Definition 1. A signal automaton (SA) over 2AP is a tuple A = (L,L0, α,X, β,∆,F) where

L is a finite set of locations;
L0 ⊆ L is the set of initial locations;
α is the location labelling function that assigns to each location ` ∈ L a propositional
constraint α(`) ⊆ 2AP;
X is a finite set of clocks;
β is the location labelling function that assigns to each location ` ∈ L a clock constraint
β(`) ∈ G(X);
∆ ⊆ L × 2X × L is the set of transitions where each transition consists of the source
location, the clocks to be reset with this transition, and the target location;
F ⊆ 2L is the family of sets of accepting locations.

A run π of A on a signal γ over 2AP is an infinite sequence of the following form:

−→
v0

(`0, I0) λ1−→
v1

(`1, I1) λ2−→
v2

(`2, I2) λ3−→
v3

. . .

where: 1. for all i ≥ 0, `i is a locations of A; 2. the sequence I0I1I2 · · · is an interval sequence;
3. for all i ≥ 0: λi ⊆ X; 4. for all i ≥ 0: vi is a valuation of X; and that satisfies the
following:

[Initiality] `0 ∈ L0 and v0 = 0; and
[Consecution] For all i ≥ 0: (`i, λi+1, `i+1) ∈ ∆ and vi+1 = (vi + |Ii|)[λi+1 ← 0]; and
[Timing] vπ(t) |= β(`π(t)) for all t ≥ 0, assuming vπ(t) = vi + (t− sup(Ii)) and `π(t) = `i
if t ∈ Ii for some i ≥ 0; and
[Adequation] γ(t) ∈ α(`π(t)) for all t ≥ 0.

We say that π is bipartite if I0I1I2 · · · is bipartite. We say that π is accepting if for all F ∈ F :
{i | `i ∈ F} is infinite. A signal γ is accepted by A if there is an accepting run of A on γ.
We write S(A) for the set of signals accepted by A. For two SAs A1 and A2, we denote by
A1×A2 their (asynchronous) product, defined in a manner similar to [4]: intuitively, in each
location of this product, we can either fire only a transition of A1 (provided that that the
guard in the current location of A2 is consistent with the one in destination of the transition),
or only a transition of A2, or fire a transition in both signal automata in case their guards
need to evolve synchronously. In particular, we have S(A1 ×A2) = S(A1) ∩ S(A2).

We focus on the class of bipartite SA whose runs are bipartite by construction. An
SA A = (L,L0, α,X, β,∆,F) is bipartite if there exists a partition of L into Lsing, Lopen

respecting the conditions given hereinafter. Intuitively, when reading a bipartite signal, A is
in a location of Lsing (Lopen) when it traverses a singular (respectively open) interval of γ:

TIME 2017

?:6 Timed-automata-based verification of MITL over signals

L0 ⊆ Lsing;
if (`1, λ, `2) ∈ ∆ then `1 ∈ Lsing if and only if `2 ∈ Lopen;
for each ` ∈ L0, β(`) has x = 0 as a conjunct for some clock x ∈ X;
if (`1, λ, `2) ∈ ∆ with `1 ∈ Lopen (and thus `2 ∈ Lsing), then there is a clock x ∈ X such
that x ∈ λ and β(`2) has x = 0 as a conjunct.

In the rest of the paper, we will assume that all SAs are bipartite.3 There is no loss of
generality, thanks to the following proposition [4] (see Appendix A for a proof):

I Proposition 2. Every SA A can be turned into a bipartite SA Abp such that S(A) = S(Abp).

From now on, when depicting bipartite SA, we use rectangle and rounded rectangles for the
locations from Lsing and Lopen respectively. Figure 1 shows an example of bipartite SA.

Satisfiability and model-checking problems. In this work, we consider two classical prob-
lems: satisfiability and model-checking of MITL. The satisfiability problem asks, given an
MITL formula φ, whether S(φ) 6= ∅ (if it is the case, we say that φ is satisfiable). The
model-checking problem asks, given an SA A and an MITL formula φ whether S(A) ⊆ S(ϕ).
If it is the case, we write A |= ϕ.

3 From MITL to signal automata

Our approach to MITL model-checking over signals is based upon a compositional translation
from MITL to signal automata. The core idea is similar to the translation for the pointwise
semantics reported in our previous work [15]: we keep track of the satisfiability of each
temporal subformula (i.e. a subformula whose outermost operator is temporal) χ with an
SA Cχ. From now on, we fix a set AP of atomic propositions and a negative normal form
MITL formula ϕ over AP. To simplify the exposition, we restrict ourselves to a fragment
of MITL in which only untimed and upper-bound operators are allowed, i.e. each bounding
interval I is either (0,∞) or (0, a), or (0, a] for some positive integer a. This fragment,
however, is already expressively complete for the full MITL [28, 37]. We further assume that
each temporal subformula χ of ϕ appears only once in ϕ.

Triggers. Let Φ be the set of temporal subformulae of ϕ. We introduce a new atomic
proposition pχ for each subformula χ ∈ Φ and we let APΦ = {pχ | χ ∈ Φ}. Each pχ is
called a trigger (for χ). Intuitively, pulling the trigger pχ (i.e. setting pχ to true) at some
point means that χ is required to hold at that point. On the other hand, pχ being false at
some point does not mean that χ must not hold at that point—its satisfaction is simply not
required there. The point of the triggers is to enable communication between the different
component automata: when a formula ϕ is a subformula of ψ, the component SA Cψ will
pull the trigger of ϕ whenever the satisfaction of ϕ is needed to check the value of ψ. A key
point of our construction is to avoid unnecessary pulling of triggers, in order to reduce the
number of behaviours of the product automaton and mitigate the state explosion problem
during the model checking phase. This is the point of the formulae ψ, ∗ψ, ∼ψ and ψ̂ that
we introduce hereinafter. Concretely, the outcome of our construction for an MITL formula
ϕ is a network of SA that accepts an APφ-decorated version of S(ϕ). In other words, the
signals accepted our construction are over AP∪APφ and their projections on AP yields S(ϕ),
as stated in Theorem 8 at the end of the section.

3 Note that a product of bipartite SAs is a bipartite SA.

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:7

For each (not necessarily temporal) subformula ψ of φ, we denote by Pψ the set of atomic
propositions pχ ∈ APΦ such that χ is a top-level temporal subformula of ψ, i.e. the outermost
operator of χ is UI or RI , yet χ does not occur under the scope of another UI or RI in
ψ. For instance, PpUIq∨rUI(sRt) = {ppUIq, prUI(sRt)}. For a signal γ′ over 2P′ (where P′ is a
set of atomic propositions) and P ⊆ P′, we denote by projP (γ′) the projection of γ′ onto P,
i.e. the signal obtained from γ′ by hiding all the atomic propositions p /∈ P. For a set of
signals S over 2P′ and P ⊆ P′, we write projP (S) = {projP (γ′) | γ′ ∈ S}. Conversely, we say
a signal γ′ over 2P′ extends a signal γ over 2P (P ⊆ P′) if projP (γ′) = γ.

Formulae over AP ∪ APΦ. We define some syntactic operations on Boolean combinations
over AP ∪ APΦ that will be used in the components that we describe later. Specifically,
for a subformula ψ of ϕ, we define formulae ψ (that introduces the trigger variables in
subformulae), ∗ψ (that ensures that we do not pull any trigger of ψ), ∼ψ (that checks that
ψ does not hold, while none of its triggers are pulled), and ψ̂ (that checks ψ while triggering
a minimal set of triggers).

The formula ψ is obtained from ψ by replacing all top-level temporal subformulae with
their corresponding triggers. Formally, ψ is defined inductively as follows (where p ∈ AP):

ψ1 ∧ ψ2 = ψ1 ∧ ψ2 ψ = ψ when ψ is > or ⊥ or p or ¬p
ψ1 ∨ ψ2 = ψ1 ∨ ψ2 ψ = pψ when ψ is ψ1 UI ψ2 or ψ1 RI ψ2 .

The formula ∗ψ, read as “do not pull the triggers of ψ”, is used to ensure that our components
only follow the ‘minimal models’ of ψ. It is defined as the conjunction of the negations of all
pχ ∈ Pψ. As a concrete example,

∗((¬p ∨ ψ1 U ψ2) ∧ (q ∨ ψ3 R (ψ4 U ψ5))) = ¬pψ1Uψ2 ∧ ¬pψ3R(ψ4Uψ5).

The formula ∼ψ asserts that ψ is false and none of its triggers are pulled: ∼ψ = ¬ψ ∧ ∗ψ.
Finally, the formula ψ̂ is defined as mm(ψ) where mm(φ) is defined inductively as follows:

mm(>) = > mm(⊥) = ⊥ mm(p) = p mm(¬p) = ¬p
mm(φ1 ∨ φ2) =

(
mm(φ1) ∧ ∼φ2

)
∨
(
mm(φ2) ∧ ∼φ1

)
∨
(
(φ1 ∧ φ2) ∧ ∗φ1 ∧ ∗φ2

)
mm(φ1 ∧ φ2) = mm(φ1) ∧mm(φ2) .

First of all, we notice that formulae ψ and ψ̂ are equivalent, once we have projected away
the propositions that are not in AP, in the following sense:

I Proposition 3. For a subformula ψ of ϕ, if σ |= ψ for some state σ over AP ∪ Pψ, there
is a state σ′ over AP ∪ Pψ such that σ′ |= ψ̂ and projAP (σ) = projAP (σ′) (and vice versa).

Proof. By induction on the structure of ψ. For the direct implication, if ψ = ψ1 ∨ ψ2 then
one of the following must hold:

σ |= ψ1 and σ 6|= ψ2: apply the induction hypothesis on σ \ Pψ2 and ψ1 (note that
Pψ1 ∩ Pψ2 = ∅, and ψ2 is in negative normal form).
σ 6|= ψ1 and σ |= ψ2: apply the induction hypothesis on σ \ Pψ1 and ψ2.
σ |= ψ1 and σ |= ψ2: If σ \ Pψ2 6|= ψ2, apply the induction hypothesis on σ \ Pψ2 and ψ1.
Otherwise if σ \ Pψ1 6|= ψ1, apply the induction hypothesis on σ \ Pψ1 and ψ2. Otherwise
let σ′ = σ \ (Pψ1 ∪ Pψ2).

The other cases of ψ are immediate. The other implication of the proof is simpler. J

TIME 2017

?:8 Timed-automata-based verification of MITL over signals

Minimality of triggers. The real impact of ψ̂ with respect to ψ is to ensure the minimality
of triggers pulled during an execution. Indeed, we now show that if ϕ is satisfied by a signal γ
(over 2AP), then there must be a way to extend γ into a signal γ′ over 2AP∪APΦ such that the
triggers APΦ are only pulled when necessary in γ′, and vice versa. This will be crucial to
make our approach efficient in practice, as it reduces the behaviours of the product SA that
accepts the whole formula ϕ. This observation is formalised in the following two propositions.

I Proposition 4. For a signal γ over 2AP, we have γ, 0 |= ϕ if and only if there exists a
signal γ′ over 2AP∪Pϕ extending γ such that γ′, 0 |= ϕ̂, and for all χ ∈ Pϕ and t ∈ R≥0,
projAP∪{pχ} (γ′) , t |= (pχ ⇒ χ).

Proof. For the direct implication, let ζ be a signal over 2AP∪Pϕ extending γ such that
pχ ∈ ζ(t) if and only if γ, t |= χ for each χ ∈ Pϕ and t ∈ R≥0 (note that ζ is necessarily
finitely-variable as γ is finitely-variable [4]). If ζ, 0 |= ϕ̂, simply let γ′ = ζ and we are done.
If ζ, 0 6|= ϕ̂, apply Proposition 3 to ζ(0) and ϕ to obtain a state σ such that σ |= ϕ̂. Finally,
let γ′(0) = σ and γ′(t) = ζ(t) \ Pϕ for all t ∈ R>0. The other implication is immediate. J

I Proposition 5. For a signal γ over 2AP∪{pχ} where χ ∈ Φ and either χ = ψ1 UI ψ2 or
χ = ψ1 RI ψ2, we have γ, t |= (pχ ⇒ χ) for all t ∈ R≥0 if and only if there exists a signal γ′
over 2AP∪{pχ}∪Pψ1∪Pψ2 extending γ such that

if χ = ψ1 UI ψ2 then, for each t ∈ R≥0, γ′, t |= pχ ⇒ Expandχ with

Expandχ =
[
(ψ̂1 ∧ ∼ψ2) UI (∗ψ1 ∧ ψ̂2)

]
∨
[
(ψ̂1 ∧ ψ̂2) U >

]
∨
[
FI ψ̂2 ∧

(
ψ̂1 ∧ ∼ψ2

)
U
(
ψ̂1 ∧ ∼ψ2 ∧ (ψ̂1 ∧ ψ̂2) U >

)]
if χ = ψ1 RI ψ2 then, for each t ∈ R≥0, γ′, t |= pχ ⇒ Expandχ with

Expandχ =
[
(∼ψ1 ∧ ψ̂2) UI (ψ̂1 ∧ ψ̂2)

]
∨
[
(ψ̂1 ∧ ∗ψ2) U >

]
∨
[
GI(∼ψ1 ∧ ψ̂2)

]
∨
[
FI ψ̂1 ∧

(
∼ψ1 ∧ ψ̂2

)
U
(
∼ψ1 ∧ ψ̂2 ∧ (ψ̂1 ∧ ∗ψ2) U >

)]
for each pθ ∈ Pψ1 ∪ Pψ2 , we have projAP∪{pθ} (γ′) , t |= (pθ ⇒ θ) for all t ∈ R≥0.

Proof. Assume that χ = ψ1 UI ψ2 and let ζ be a signal over 2AP∪{pχ}∪Pψ1∪Pψ2 extending γ
such that pθ ∈ ζ(t) if and only if γ, t |= θ for each pθ ∈ Pψ1 ∪ Pψ2 and t ∈ R≥0. For each
t ∈ R≥0 such that γ, t |= pχ, since γ, t |= χ also holds, exactly one of the following must be
true (note that inf(I) = 0):

there is t′ > t, t′ − t ∈ I such that γ, t′ |= ψ2 and γ, t′′ |= ψ1 ∧ ¬ψ2 for all t′′ ∈ (t, t′);
there is t′ > t such that γ, t′′ |= ψ1 ∧ ψ2 for all t′′ ∈ (t, t′);
there are t′ > t and t′′ > t′ such that in γ, ψ1 ∧ ¬ψ2 always holds in (0, t′] and ψ1 ∧ ψ2
always holds in (t′, t′′).

It follows that we can obtain a ‘minimal labelling’ from ζ via Proposition 3. More precisely,
we apply Proposition 3 to constant segments of ζ and ψ1, ψ2, or both ψ1 and ψ2, as required
by the interpretation of pχ in γ. For example, in the first case above, γ′(t′′) for each t′′ ∈ (t, t′)
is obtained by applying Proposition 3 to ζ(t′′) \ Pψ2 and ψ1; γ′(t′) is obtained by applying
Proposition 3 to ζ(t′) \ Pψ1 and ψ2. Similar arguments can be made for χ = ψ1 R ψ2. The
other implication is simpler. J

I Corollary 6. For a signal γ over 2AP, we have γ, 0 |= ϕ if and only if there exists a
signal γ′ over 2AP∪APΦ extending γ such that γ′, 0 |= ϕ̂, and for all χ ∈ Φ and t ∈ R≥0,
γ′, t |= pχ ⇒ Expandχ (where Expandχ is one of the formulae in Proposition 5).

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:9

`s0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`s3,¬pχ ∧
∗ψ1 ∧ ψ̂2

`s1, pχ ∧
∗ψ1 ∧ ∗ψ2

`s2, ψ̂1 ∧ ∼ψ2
`s4, pχ ∧
∗ψ1 ∧ ψ̂2

`o0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`o3, ψ̂1 ∧ ψ̂2
`o1, pχ ∧
ψ̂1 ∧ ∼ψ2

`o2,¬pχ ∧
ψ̂1 ∧ ∼ψ2

no pending obligations some pending obligations

sing. interval

open interval

Figure 1 The component SA Cχ for χ = ψ1 U ψ2.

The components. We are now ready to present the components Cχ for χ ∈ Φ.
The component Cχ for χ = ψ1 U ψ2 is given in Figure 1. We now explain how it has been

produced. Thanks to Proposition 2, we provide a bipartite SA (in particular, we will read
timed sequences with bipartite interval sequences only), where ‘singular’ locations are on
top, and ‘open’ locations at the bottom. First, we focus on locations `s0 and `o0, that are
used as long as trigger pχ is not pulled: then, there is no need to pull any trigger of ψ1 nor
ψ2, which is ensured via the use of formula ∗ψ1 ∧ ∗ψ2. Consider then the first time when
trigger pχ is pulled (by another component automaton): it is either in a singular interval in
which case we jump into location `s1 (this creates a pending obligation, since such an ‘until’
with our strict semantics cannot be fulfilled right away in a singular interval: this means, in
particular, that we do not need to pull any trigger for ψ1 or ψ2, thus checking ∗ψ1 ∧∗ψ2), or
in an open interval in which case we jump either into location `o1 if ψ2 does not hold (i.e. if
∼ψ2 holds), or into location `o3 if ψ2 holds (i.e. if ψ̂2 is in the guard) which fulfils right away
the new obligation (notice that, in the figure, we did not put pχ in the guard of this location,
for simplification: we will discuss this point more in detail afterwards).

When pχ is first pulled in an open interval (which means we jump into location `o1 or `o3),
by the semantics of the ‘until’ operator, ψ1 must also hold in that interval. When in `o3, the
successors are the same as in `o0. When in `o1 with a pending obligation, there are two cases
for the next jump:

either ψ2 holds in the next singular interval, and then no trigger of ψ1 needs to be pulled
(i.e. guard ∗ψ1 ∧ ψ̂2): if there are no new pulled trigger pχ, we jump into location `s3;
otherwise, we jump into location `s4 where we still have a new pending obligation, but
the location is still made accepting to record the fact that the previous obligation has
been fulfilled.
or ψ2 does not hold, in which case ψ1 should hold (i.e. guard ψ̂1 ∧ ∼ψ2): we then jump
into location `s2 whether or not a new trigger pχ is pulled.

When pχ is first pulled in a singular interval (which means we jump into location `s1),
there is no need to pull any trigger of ψ1 nor ψ2. Then, while in one of the ‘singular’ locations
`s1, `s2 or `s4, with a pending obligation, in the next jump, there are two cases:

either ψ2 holds in the next open interval, in which case ψ1 should still hold (because
of the semantics of the ‘until’ operator): we can jump into the previously introduced
location `o3.
or ψ2 does not hold (then, ψ1 should hold anyway) and we jump either in location `o1 if
a new trigger pχ is pulled, or in `o2 is no new trigger pχ is pulled. Location `o2 has the

TIME 2017

?:10 Timed-automata-based verification of MITL over signals

`s0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`s3, g,¬pχ ∧
∗ψ1 ∧ ψ̂2

`s1, pχ ∧
∗ψ1 ∧ ∗ψ2

`s2, g, ψ̂1 ∧ ∼ψ2
`s4, g, pχ ∧
∗ψ1 ∧ ψ̂2

`o0,¬pχ ∧
∗ψ1 ∧ ∗ψ2

`o3, pχ ∧
ψ̂1 ∧ ψ̂2

`o3′ ,¬pχ ∧
ψ̂1 ∧ ψ̂2

`o1, x < a, pχ ∧
ψ̂1 ∧ ∼ψ2

`o4, x < a,¬pχ ∧
ψ̂1 ∧ ∼ψ2

no pending obligations some pending obligations

sing. interval

open interval

Figure 2 The component SA Cχ for ψ1 U(0,a) ψ2. We use a Boolean variable si to signify whether
the oldest pending obligation has been pulled in a singular interval or not. The transitions with I
or B reset x; the ones with I (resp. B) set si to true (resp. false). The clock constraint g is defined
as (si ∧ x < a) ∨ (¬si ∧ x ≤ a).

same successors as `o1 but we still need to distinguish them since `o1 must check that a
new pending obligation is pulled.

Initially, we do not want to pull any trigger of ψ1 or ψ2, therefore, `s0 and `s1 are the
two initial locations, depending on whether trigger pχ is initially pulled or not. Accepting
locations are the one where either there are no more pending obligations, or a pending
obligation has been fulfilled while a new trigger is being pulled (location `s4).

Notice that, thanks to the use of ∗ψi and ψ̂i formulas, only the necessary triggers in
Pψ1 ∪ Pψ2 are pulled during an execution of this component. Indeed, this is not true for
location `o3: when going from locations `s0 or `s3, to pull only minimal sets of triggers, we
must make sure to go in `o3 only when a new trigger pχ is pulled. This requires to split this
location into two (one where pχ holds, the other where it does not). For simplicity, we did
not do it in the figure, but we apply this splitting in the next component we present.

This next component Cχ is the one for χ = ψ1 U(0,a) ψ2 (Figure 2), that is obtained by
adding a clock x and suitable clock constraints. Intuitively, it suffices to use only one clock
because for I = (0, a), all new obligations are implied by the oldest pending obligation. This
means that the clock should be reset when entering in a location where a trigger is pulled
while all the previous obligations have been fulfilled: this is a priori the case when entering
in locations `s1, `o1, and `s4 from locations {`s0, `s3, `o0, `o3, `o3′}. Now, the valuation of x would
fix a deadline for the satisfaction of ψ2. Indeed, as long as ψ2 does not hold, we must check
that x < a. When ψ2 is next fulfilled, we also check that x < a. However, this is not correct
for two reasons.

First, when checking the requirements x < a, this is not correct if the oldest pending
obligations appeared in an open interval: indeed, it is still correct to fulfil ψ2 in a singular
interval where x = a. This requires that we register, when resetting clock x, if the trigger
is pulled in a singular interval or not. To ease the presentation, we use a Boolean variable
si to record that the trigger has been pulled in a singular interval. Pictorially, we use
transitions with I heads to reset the clock x and setting si to true, while transitions with
B heads reset clock x and set si to false. Then, the clock constraint that must be checked
in singular interval (whether or not ψ2 is currently fulfilled) is not x < a but g defined
by (si ∧ x < a) ∨ (¬si ∧ x ≤ a): in particular, the guard g in location `s2 models the fact

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:11

that if the oldest obligation has been triggered in an open interval (si is false), it is not a
contradiction to not yet fulfil ψ2 at time x = a, but then, the only fireable transitions are
the one towards `o3 and `o3′ where ψ2 then holds. This also explains why guard g does not
need to be checked when entering in `o3 and `o3′ .

Second, this cannot be done as such when entering location `s4 since the guard g must
be checked before resetting clock x that records the deadline of the next pending obligation.
Indeed, we simply delay the reset and modification of variable si to the next transition
towards `o1 or `o4.

The component for ψ1 U(0,a] ψ2 is similar and hence omitted. The components for ‘release’
operators follow the same pattern as the ones for ‘until’. Due to lack of place, we present
them in Appendix B. Then:

I Proposition 7. For each χ ∈ Φ, the component Cχ accepts exactly all signals γ over
2AP∪APΦ such that γ, t |= pχ ⇒ Expandχ for all t ∈ R≥0 (where Expandχ is one of the
formulae in Proposition 5).

Finally, we need a simple initial component Cinit which enforces ϕ̂ at t = 0 and ∗ϕ at all
t > 0, as suggested by Proposition 5. We can now state the main theorem of this section.

I Theorem 8. projAP

(
S(Cinit ×

∏
χ∈Φ Cχ)

)
= S(ϕ).

4 From signal automata to timed automata

In this section, we provide a new approach to check the emptiness of signal automata that
can be implemented by relying on existing tools for timed automata. To this end, we explain
how to encode an SA A into a timed automaton BA that accepts exactly the ‘time words’
counterparts of the signals accepted by A. Moreover, the construction can be used in a
compositional manner: if A is the product of a number of component SAs, BA can be obtained
as the product of the TAs that result from applying the construction to the components
of A. As the construction is emptiness-preserving, it can serve as a bridge between the
MITL-to-SA translation in the previous section and existing TA-based tools. We start by
recalling formally what are timed automata.

Timed words and timed automata. A time sequence is an infinite sequence τ = τ0τ1τ2 . . .

of timestamps such that 1. τ0 = 0; 2. for all i ≥ 0, τi ≤ τi+1; 3. for all t ∈ R≥0, there
is some i ≥ 0 such that τi > t. A timed word ρ = (σ, τ) over 2AP is a pair of a state
sequence σ over 2AP and a time sequence τ . Alternatively, we may see ρ as an infinite
sequence (σ0, τ0)(σ1, τ1)(σ2, τ2) · · · of events (σi, τi). We now define timed automata, with
generalised acceptance conditions as before (used by [27] in the untimed setting).

I Definition 9. A timed automaton (TA) over 2AP is a tuple A = (L,L0, X,∆,F) where

L is a finite set of locations;
L0 ⊆ L is the set of initial locations;
X is a finite set of clocks;
∆ ⊆ L× 22AP × G(X)× 2X × L is the set of transitions;
F ⊆ 2L is the family of sets of accepting locations.

A run π of A on a timed word ρ = (σ0, τ0)(σ1, τ1)(σ2, τ2) · · · over 2AP is an infinite sequence

(`0, v0) λ1−−−→
σ0,d0

(`1, v1) λ2−−−→
σ1,d1

(`2, v2) λ3−−−→
σ2,d2

· · ·

TIME 2017

?:12 Timed-automata-based verification of MITL over signals

where, for all i ≥ 0: 1. `i is a locations of A; 2. vi is a valuation of X; 3. di = τi − τi−1
(assuming τ−1 = 0) 4. λi ⊆ X; and that satisfies the following:

[Initiality] `0 ∈ L0; and
[Consecution] for all i ≥ 0: (`i, φ, g, λi+1, `i+1) ∈ ∆ with σi ∈ φ and vi + di |= g; and
[Timing] for all i ≥ 0, vi+1 = (vi + di)[λi+1 ← 0].

We say that π is accepting if for all accepting sets F ∈ F , the set {i | `i ∈ F} is infinite. A
timed word ρ is accepted by A if there is an accepting run of A on ρ. We write L(A) for
the set of timed words accepted by A. For two TAs A1 and A2, we denote by A1 ×A2 their
(synchronous) product [3]. In particular, we have L(A1 ×A2) = L(A1) ∩ L(A2).

Translation from SA to TA. We first explain how we map signals to timed words. To
do so, we select a bipartite state sequence κ corresponding to γ, and we express the state
changes along κ in a timed word. Formally, for a signal γ and a timed state sequence
κ = (σ0, I0)(σ1, I1) · · · s.t. κ ∈ JγKbp (i.e., Ii is singular for all even i ≥ 0), we define:

[κ]tw = (σ0, sup(I0))(σ1, inf(I1))(σ2, sup(I2))(σ3, inf(I3)) · · · .

Note that we represent a state change at time t by two events with timestamp t (note that
sup(Ii) = inf(Ii+1) for each even i ≥ 0). Abusing notations, we write [γ]tw = {[κ]tw | κ ∈
JγKbp} and [S]tw =

⋃
γ∈S [γ]tw for a set S of signals.

I Proposition 10. Given a (bipartite) SA A, we can construct a TA BA such that L(BA) =
[S(A)]tw. In particular, if A = A1 × · · · × An then L(BA1 × · · · × BAn) = [S(A)]tw.

Proof (sketch). For a clock constraint g ∈ G(X), let g← be the clock constraint obtained
from g by replacing all clauses of the form ‘x ≤ c’ with ‘x < c’ and all ‘x > c’ with ‘x ≥ c’.
Likewise, let g→ be the clock constraint obtained from g by replacing all ‘x < c’ with ‘x ≤ c’
and all ‘x ≥ c’ with ‘x > c’. The following statements hold (for a valuation v of X):

v |= g← if and only if for some δ ∈ R>0, we have v + t |= g for all t ∈ (0, δ].
v |= g→ if and only if for some δ ∈ R>0, we have v′ |= g for all valuations v′ of X such
that v′ + t = v for some t ∈ (0, δ].

In what follows, we write g[λ← 0] for the clock constraint obtained from g by replacing all
occurrences of clocks x ∈ λ with 0. For A = (L,L0, α,X, β,∆,F) (which by assumption is
bipartite and L = Lsing] Lopen), define B = (LA, LA0 , XA,∆A,FA) where

LA = {`sing | ` ∈ Lsing} ∪ { ˙̀sing, `open, ˙̀open | ` ∈ Lopen} ∪ {`init};
LA0 = {`init};
XA = X ∪ {y} where y is a fresh clock;
∆A = {(`init, α(`), β(`) ∧ y = 0, ∅, `sing) | ` ∈ L0}

∪ {(`sing
1 , α(`2), β(`2)←[λ← 0] ∧ y = 0, λ, `open

2) | (`1, λ, `2) ∈ ∆}
∪ {(`open

1 , α(`2), β(`1)→ ∧ β(`2)[λ← 0] ∧ y > 0, λ ∪ {y}, `sing
2) | (`1, λ, `2) ∈ ∆}

∪ {(`open, α(`), β(`)→ ∧ β(`)[λ← 0] ∧ y > 0, λ ∪ {y}, ˙̀sing) | ` ∈ Lopen}
∪ {(˙̀sing, α(`), β(`)←[λ← 0] ∧ y = 0, λ, ˙̀open) | ` ∈ Lopen}
∪ {(˙̀open, α(`), β(`)→ ∧ β(`)[λ← 0] ∧ y > 0, λ ∪ {y}, ˙̀sing) | ` ∈ Lopen}
∪ {(˙̀open

1 , α(`2), β(`1)→ ∧ β(`2)[λ← 0] ∧ y > 0, λ ∪ {y}, `sing
2) | (`1, λ, `2) ∈ ∆}

FA = {{`sing | ` ∈ Lsing ∩ F} ∪ {`open | ` ∈ Lopen ∩ F} | F ∈ F}.
Intuitively, the ‘dotted’ locations ˙̀sing, ˙̀open are used to allow interleaving and stuttering as
A stays in ` ∈ Lopen: this is crucial to make the asynchronous product A1 × · · · × An and
the synchronous product BA1 × · · · × BAn match. Finally, for pragmatic reasons, we make

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:13

0

1

1′

¬pχ ∧ ∗ψ1 ∧ ∗ψ2
¬psing ∧ pχ ∧ ψ̂1 ∧ ψ̂2

psing ∧ ψ̂1 ∧ ∼ψ2 ∧ g
¬psing ∧ ψ̂1 ∧ ∼ψ2

psing ∧ pχ ∧ ∗ψ1 ∧ ∗ψ2, x := 0,I
¬psing ∧ pχ ∧ ψ̂1 ∧ ∼ψ2, x := 0,B

psing ∧ ¬pχ ∧ ∗ψ1 ∧ ψ̂2 ∧ g
¬psing ∧ ψ̂1 ∧ ψ̂2

psing ∧ pχ ∧ ∗ψ1 ∧ ψ̂2 ∧ g, x := 0,I

ψ̂1 ∧ ∼ψ2

ψ̂1 ∧ ψ̂2

Figure 3 The component TA Bχ for χ = ϕ1 U(0,a) ϕ2. We use a Boolean variable si to signify
whether the current pχ-interval is left-closed. The transitions with I (respectively, B) set si to true
(respectively, false). The clock constraint g is defined as (si ∧ x < a) ∨ (¬si ∧ x ≤ a).

suitable modifications to B to obtain a strongly non-Zeno TA BA (i.e. a TA in which time
progresses), as in [23]. J

The proposition above works for any (bipartite) SA. For Cinit or each component Cχ
(χ ∈ Φ) in the previous section, however, we can suppress all the ‘dotted’ locations ˙̀sing,
˙̀open and build a much simpler TA (which we denote by Binit or Bχ, respectively).4 Our
main result can then be stated as the following theorem, where the projection operator proj
is defined in a similar way as in the setting of signals.

I Theorem 11. projAP

(
L(BA × Binit ×

∏
χ∈Φ Bχ)

)
= projAP

([
S(A× Cinit ×

∏
χ∈Φ Cχ)

]
tw

)
for any given SA A over 2AP∪APΦ whose propositional constraints can be written as Boolean
combinations over AP (i.e. do not involve atomic propositions in APΦ).

As an example, the component TA Bχ for χ = ψ1 U(0,a) ψ2 (in which we use a new atomic
proposition psing that holds on ‘singular’ transitions) is depicted in Figure 3.

5 Implementation and experiments

We have implemented the translation as an extension of our tool MightyL [15]. Given a
formula ϕ over AP in MITL,5 the tool generates the model TA BA where A is a universal
SA over 2AP∪APΦ , the initial component TA Binit, and the corresponding component TAs Bχ
for each temporal subformula χ of ϕ in the Uppaal xml format. The user can, of course,
replace BA with the model TA M of their choice and perform model-checking with existing
TA-based tools.6 Our implementation is publicly available and can be executed directly on
the webpage: http://www.ulb.ac.be/di/verif/mightyl. In the following experiments,
we use LTSmin [30] (with opaal [34], which enables support for Uppaal xml files) as
the back-end model checker and report its execution times (using only a single core) on
a Pentium B970 (2.3GHz) machine with 6GB RAM running Ubuntu 17.04. We omit the
execution times for MightyL as it is less than 0.1s on all our benchmarks.

4 The product of these TAs corresponds to the synchronous product (in which interleaving and stuttering
are disallowed [8]) of Cinit and Cχ for all χ ∈ Φ.

5 More precisely, our tool accepts all temporal operators that are labelled with intervals of the form
(0,∞), [0,∞), (0, a), [0, a), (0, a] or [0, a]. If 0 is included in the interval, the temporal operator is
given a weak-future interpretation [39], e.g. ψ1 Uw[0,a) ψ2 ⇐⇒ ψ2 ∨ (ψ1 ∧ ψ1 U(0,a) ψ2). Remember that
general MITL formulae can be rewritten into formulae of this fragment, e.g., F(a,∞)ψ ⇐⇒ G(0,a]Fψ.

6 We require M to be strongly non-Zeno and L(M) = [S(A)]tw where A is an SA over 2AP∪APΦ that
satisfies the conditions in Theorem 11.

TIME 2017

http://www.ulb.ac.be/di/verif/mightyl

?:14 Timed-automata-based verification of MITL over signals

Table 1 Execution times for the ‘parametric formulae’ benchmark set. The columns ‘Pointwise’
correspond to the approach of [15] and the columns ‘Continuous’ correspond to the approach of this
article (where OOM stands for out-of-memory). The three numbers of each entry correspond to the
time taken by opaal to translate Uppaal xml into C++, the time taken by the g++ compiler, and
the actual model-checking time taken by LTSmin, respectively.

Formula Continuous Pointwise
F (5, [0,∞)) 0.43s/1.03s/0.32s 0.35s/0.98s/0.21s
F (10, [0,∞)) 0.74s/1.28s/0.31s 0.61s/1.20s/0.60s
F (5, [0, 5]) 0.62s/1.14s/0.16s 0.41s/1.01s/0.19s
F (10, [0, 5]) 1.16s/1.48s/0.41s 0.71s/1.26s/2.89s
F (2, (5,∞)) 0.67s/1.15s/0.20s 0.21s/0.85s/0.09s
F (5, (5,∞)) 1.48s/1.69s/17.06s 0.36s/0.99s/0.21s
F (10, (5,∞)) OOM 0.62s/1.20s/0.64s
U(5, [0,∞)) 0.36s/0.98s/0.16s 0.31s/0.96s/0.11s
U(10, [0,∞)) 0.65s/1.22s/0.29s 0.57s/1.21s/0.50s
U(5, [0, 5]) 0.53s/1.10s/0.11s 0.34s/0.97s/0.07s
U(10, [0, 5]) 1.04s/1.42s/0.36s 0.66s/1.36s/0.53s
U(2, (5,∞)) 0.42s/0.97s/0.14s 0.18s/0.82s/0.05s
U(5, (5,∞)) 1.34s/1.60s/6.93s 0.32s/0.95s/0.09s
U(10, (5,∞)) OOM 0.56s/1.17s/0.93s

Formula Continuous Pointwise
G(5, [0,∞)) 0.45s/1.04s/0.39s 0.34s/0.99s/0.54s
G(10, [0,∞)) 0.78s/1.28s/39.43s 0.59s/1.18s/28.71s
G(5, [0, 5]) 1.11s/1.43s/0.56s 0.49s/1.06s/0.32s
G(10, [0, 5]) OOM 0.89s/1.37s/14.75s
G(2, (5,∞)) 0.45s/1.05s/0.20s 0.20s/0.86s/0.09s
G(5, (5,∞)) 0.94s/1.41s/3.62s 0.35s/0.98s/0.31s
G(10, (5,∞)) OOM 0.61s/1.17s/45.67s
R(5, [0,∞)) 0.42s/1.04s/0.29s 0.30s/0.97s/0.25s
R(10, [0,∞)) 0.70s/1.28s/2.77s 0.54s/1.17s/9.71s
R(5, [0, 5]) 0.93s/1.31s/0.27s 0.42s/1.01s/0.11s
R(10, [0, 5]) 1.97s/1.94s/11.52s 0.83s/1.31s/18.83s
R(2, (5,∞)) 0.31s/0.92s/0.07s 0.17s/0.82s/0.05s
R(5, (5,∞)) 0.92s/1.37s/2.88s 0.30s/0.94s/0.27s
R(10, (5,∞)) OOM 0.54s/1.17s/12.45s

Satisfiability of parametric formulae. We consider the satisfiability of a set of parametric
MITL formulae modified from [14, 24]. The goal of this benchmark set is to give a rough
comparison between the performance of our approach in the pointwise semantics (the original
aim of MightyL; we refer the reader to [15,39] for more details) with that in the continuous
semantics (this article). For k ≥ 2 and an interval I, let:

F (k, I) =
∧k
i=1FwI pi, G(k, I) =

∧k
i=1Gw

I pi,

U(k, I) = (. . . (p1 UwI p2) UwI . . .) UwI pk, R(k, I) = (. . . (p1 RwI p2)RwI . . .)RwI pk,

where FwI , Gw
I , etc., are weak-future temporal operators [39]. The formulae in the benchmark

set are given in Table 1. For the pointwise case, these are the actual formulae that we
pass to MightyL; for the continuous case, standard rewriting rules are applied to handle
the lower-bound temporal operators (e.g. F(5,∞)p ⇐⇒ G(0,5]Fp).7 From the execution
times in Table 1, it is evident that opaal and g++ are not performance bottlenecks. For
smaller formulae, the times taken by LTSmin are very short. For larger formulae, however,
as LTSmin uses depth-first search for opaal-generated models, it sometimes goes very deep
into the state space and results in out-of-memory.

Validity and redundancy of specifications. We say an MITL formula ϕ is valid if ¬ϕ is
not satisfiable. If ϕ is of the form

∧
1≤i≤k ϕi, we say that the conjunct ϕi is redundant in ϕ

if the formula (
∧

1≤j≤k
j 6=i

ϕj)⇒ ϕi is valid. In [20], MITL specifications created by non-expert

users are checked for satisfiability, validity and redundancy. We report the execution times of
our approach on some of their checks in Table 2. To see the effect of forcing minimal triggers,
we also give the execution times when this is not imposed. We also reproduce the execution
times reported in [20] in the table; since we do not impose a priori bounds on state changes
(as opposed to [20]) and we use a much less powerful CPU, these numbers are not meant for
direct comparison but rather for reference.

7 Of course, the resulting formulae are interpreted over signals, in contrast to their pointwise counterparts;
but we expect the computational efforts needed to check their satisfiability to be similar.

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:15

Table 2 Execution times for the satisfiability, validity and redundancy checks in [20].

Formula Our approach Our approach w/o minimality [20]
φ1 = F[0,30]p1 ∧ F[0,20]p1 5.95s 8.67s 14s

φ2 = F[0,30](p1 ⇒ G[0,20]p1) 3.05s 5.3s 7s
φ4 = G[0,40]p1 ∧G[0,40]F[0,10]p1 7.23s 52.43s 29s

φ5 = F[0,40](p1 ∨ p3) ∧ F[0,40]p2 ∧ F[0,40]G[0,30]p1 12.12s >1200s 126s

¬` ∧ ¬on ∧ ¬off

¬` ∧ ¬on ∧ ¬off

¬` ∧ ¬on ∧ ¬off ∧
x = 5

¬` ∧ ¬on ∧ off ` ∧ on ∧ ¬off ` ∧ ¬on ∧ ¬off ∧
x < 5

`∧¬on∧¬off∧
x < 5

Figure 4 The SA Alamp. The transitions with solid tips reset clock x.

Model-checking a timed lamp. We consider a case study of a timed lamp from [10]. The
lamp is controlled by two buttons ‘on’ and ‘off’, which can only be pressed instantaneously
but not simultaneously. The buttons turn the lamp on and off as expected, and the lamp
turns off automatically 5 time units after the last time ’on’ was pressed. In [10], the system is
given as an MITL formula (with past temporal operators) over atomic propositions {`, on, off}.
While we can make use of projections to remove the past temporal operators [28, 44], it
turned out that the resulting formula is too large. For this reason, we model the system
directly as an SA Alamp (Figure 4). Then, via Proposition 10 and Theorem 11, we perform
the same verification tasks as [10]: 1. checking the emptiness of Alamp; 2. model-checking
Alamp against ϕ1 = G[0,∞)

(
F[0,5](¬`)

)
, i.e. the lamp never stays lit for more than 5 time

units; 3. model-checking Alamp against ϕ2 = F[0,∞)
(
G[0,5]`

)
⇒ F[0,∞)

(
on ∧ F(0,5]on

)
, i.e. if

at some point the light stays on for more than 5 time units, then there is an instant when
‘on’ is pressed, and then it is pressed again before 5 time units. The execution times (with
and without minimality criteria) are given in Table 3, where we also reproduce the execution
times reported in [10]. Again, these numbers are not meant to be compared directly.

6 Conclusion and future work

We proposed a translation from MITL to signal automata based on the same principles as
our previous work in the pointwise setting [15]. The main advantages of this translation
over the existing ones are that it is compositional and integrates easily with existing tools.
To the best of our knowledge, this is the first practical automata-based approach to MITL
model-checking over signals. We plan to add to MightyL support for general MITL operators
(either via rewriting or directly by components) and other temporal operators (such as those
from ECL [28]). On the theoretical side, a possible future direction is to investigate whether
the translation can be generalised (possibly with the techniques in [18] or [42]) to deal with
signals that are not necessarily finitely-variable.

Table 3 Execution times for the verification tasks in [10].

Task Our approach Our approach w/o minimality [10]
S(Alamp) = ∅? 1.15s - 4.24s

S(Alamp ×A¬ϕ1) = ∅? 1.79s 1.59s 17.2s
S(Alamp ×A¬ϕ2) = ∅? 2.53s 196s 257.1s

TIME 2017

?:16 Timed-automata-based verification of MITL over signals

References
1 Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-time.

Information and Computation, 104(1):2–34, 1993.
2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
3 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
4 Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality.

Journal of the ACM, 43(1):116–146, 1996.
5 Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of timed

regular languages. In 33rd Annual Symposium on Foundations of Computer Science, pages
177–186. IEEE, 1992.

6 Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expressiveness.
Information and Computation, 104(1):35–77, 1993. doi:10.1006/inco.1993.1025.

7 Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–203, January 1994. doi:10.1145/174644.174651.

8 Eugene Asarin, Paul Caspi, and Oded Maler. A kleene theorem for timed automata. In
LICS’97, pages 160–171. IEEE Computer Society Press, 1997.

9 Ezio Bartocci, Luca Bortolussi, and Laura Nenzi. A temporal logic approach to modular
design of synthetic biological circuits. In CMSB’13, volume 8130 of LNCS, pages 164–177.
Springer, 2013. doi:10.1007/978-3-642-40708-6.

10 Marcello M. Bersani, Matteo Rossi, and Pierluigi San Pietro. A tool for deciding the
satisfiability of continuous-time metric temporal logic. Acta Informatica, 53(2):171–206,
2016. doi:10.1007/s00236-015-0229-y.

11 Patricia Bouyer, Maximilien Colange, and Nicolas Markey. Symbolic optimal reachability
in weighted timed automata. In CAV’16, volume 9779 of LNCS, pages 513–530. Springer,
2016. doi:10.1007/978-3-319-41528-4.

12 Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Ser-
gio Yovine. KRONOS: A model-checking tool for real-time systems (tool-presentation).
In FTRTFT’98, volume 1486 of LNCS, pages 298–302. Springer, 1998. doi:10.1007/
BFb0055357.

13 Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating
timed automata. In FORMATS’13, volume 8053 of LNCS, pages 47–61. Springer, 2013.

14 Thomas Brihaye, Morgane Estiévenart, and Gilles Geeraerts. On MITL and alternating
timed automata of infinite words. In FORMATS’14, volume 8711 of LNCS. Springer, 2014.

15 Thomas Brihaye, Gilles Geeraerts, Hsi-Ming Ho, and Benjamin Monmege. MightyL: A
compositional translation from MITL to timed automata. In CAV’17, LNCS. Springer,
2017. URL: https://hal.archives-ouvertes.fr/hal-01525524.

16 Peter E. Bulychev, Alexandre David, Kim G. Larsen, and Guangyuan Li. Efficient controller
synthesis for a fragment of MTL0,∞. Acta Informatica, 51(3-4):165–192, 2014. doi:10.
1007/s00236-013-0189-z.

17 Koen Claessen, Niklas Een, and Baruch Sterin. A circuit approach to LTL model checking.
In FMCAD’13. IEEE, 2013.

18 Julien Cristau. Automata and temporal logic over arbitrary linear time. In FSTTCS’09,
volume 4 of LIPIcs, pages 133–144. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2009.

19 Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Communications of the ACM, 54(9):69–77, September 2011. doi:http:
//dx.doi.org/10.1145/1995376.1995394.

http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1145/174644.174651
http://dx.doi.org/10.1007/978-3-642-40708-6
http://dx.doi.org/10.1007/s00236-015-0229-y
http://dx.doi.org/10.1007/978-3-319-41528-4
http://dx.doi.org/10.1007/BFb0055357
http://dx.doi.org/10.1007/BFb0055357
https://hal.archives-ouvertes.fr/hal-01525524
http://dx.doi.org/10.1007/s00236-013-0189-z
http://dx.doi.org/10.1007/s00236-013-0189-z
http://dx.doi.org/http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/http://dx.doi.org/10.1145/1995376.1995394

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:17

20 Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. Formal requirement debugging
for testing and verification of cyber-physical systems. Research Report 1607.02549, arXiv,
2016.

21 Deepak D’Souza and RMMatteplackel. A clock-optimal hierarchical monitoring automaton
construction for mitl. Research Report 2013-1, IIS, 2013. URL: http://www.csa.iisc.
ernet.in/TR/2013/1/lics2013-tr.pdf.

22 Deepak D’Souza, M Raj Mohan, and Pavithra Prabhakar. Eliminating past operators in
metric temporal logic. Perspectives in Concurrency, pages 86–106, 2008.

23 A. Pnueli E. Asarin, O. Maler and J. Sifakis. Controller synthesis for timed automata. In
SSC’98, pages 469–474. Elsevier, 1998.

24 Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In CAV’01,
volume 2102 of LNCS, pages 53–65. Springer, 2001.

25 Marc Geilen. An improved on-the-fly tableau construction for a real-time temporal lo-
gic. In CAV’03, volume 2725 of LNCS, pages 394–406. Springer, 2003. doi:10.1007/
978-3-540-45069-6_37.

26 Marc Geilen and Dennis Dams. An on-the-fly tableau construction for a real-time temporal
logic. In FTRTFT, volume 1926 of LNCS, pages 276–290. Springer, 2000. doi:10.1007/
3-540-45352-0_23.

27 Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In PSTV’95, pages 3–18. Chapman & Hall, 1995.

28 Thomas A. Henzinger, Jean-François Raskin, and Pierre-Yves Schobbens. The regular
real-time languages. In ICALP’98, volume 1443 of LNCS, pages 580–591. Springer, 1998.
doi:10.1007/BFb0055086.

29 Yoram Hirshfeld and Alexander Moshe Rabinovich. Logics for real time: Decidability and
complexity. Fundamenta Informaticae, 62(1):1–28, 2004.

30 Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom, and Tom van
Dijk. LTSmin: High-performance language-independent model checking. In TACAS’15,
volume 9035 of LNCS, pages 692–707. Springer, 2015.

31 Roland Kindermann, Tommi A. Junttila, and Ilkka Niemelä. Bounded model checking
of an MITL fragment for timed automata. In ACSD’13, pages 216–225. IEEE Computer
Society, 2013.

32 Dileep Raghunath Kini, Shankara Narayanan Krishna, and Paritosh K. Pandya. On
construction of safety signal automata for MITL[U ,S] using temporal projections. In
FORMATS, volume 6919 of LNCS, pages 225–239. Springer, 2011. doi:10.1007/
978-3-642-24310-3_16.

33 Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

34 Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guldstrand
Larsen, and Jaco van de Pol. Multi-core emptiness checking of timed Büchi automata
using inclusion abstraction. In CAV’13, volume 8044 of LNCS, pages 968–983. Springer,
2013.

35 Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer, 1(1-2):134–152, 1997.

36 Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed automata. In
FORMATS’06, volume 4202 of LNCS, pages 274–289. Springer, 2006.

37 Dejan Nickovic. Checking Timed and Hybrid Properties: Theory and Applications. (Véri-
fication de propriétés temporisées et hybrides: théorie et applications). PhD thesis, Joseph
Fourier University, Grenoble, France, 2008.

38 Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In LICS’05,
pages 188–197. IEEE Computer Society Press, 2005.

TIME 2017

http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf
http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf
http://dx.doi.org/10.1007/978-3-540-45069-6_37
http://dx.doi.org/10.1007/978-3-540-45069-6_37
http://dx.doi.org/10.1007/3-540-45352-0_23
http://dx.doi.org/10.1007/3-540-45352-0_23
http://dx.doi.org/10.1007/BFb0055086
http://dx.doi.org/10.1007/978-3-642-24310-3_16
http://dx.doi.org/10.1007/978-3-642-24310-3_16

?:18 Timed-automata-based verification of MITL over signals

39 Joël Ouaknine and James Worrell. On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science, 3(1), 2007.

40 Amir Pnueli and Aleksandr Zaks. On the merits of temporal testers. In 25 Years of
Model Checking, volume 5000 of LNCS, pages 172–195. Springer, 2008. doi:10.1007/
978-3-540-69850-0_11.

41 Vasumathi Raman, Alexandre Donzé, Dorsa Sadigh, Richard M. Murray, and Sanjit A.
Seshia. Reactive synthesis from signal temporal logic specifications. In HSCC’15, pages
239–248. ACM, 2015.

42 Mark Reynolds. The complexity of the temporal logic with "until" over general linear time.
Journal of Computer and System Sciences, 66(2):393–426, 2003.

43 Kristin Y. Rozier and Moshe Y. Vardi. A multi-encoding approach for LTL symbolic
satisfiability checking. In FM’11, volume 6664 of LNCS, pages 417–431. Springer, 2011.
doi:10.1007/978-3-642-21437-0.

44 Thomas Wilke. Specifying timed state sequences in powerful decidable logics and timed
automata. In FTRTFT’94, volume 863 of LNCS, pages 694–715. Springer, 1994.

A Making signal automata bipartite

Proof of Proposition 2. ForA = (L,L0, α,X, β,∆,F), defineAbp = (Lbp, Lbp
0 , α

bp, Xbp, βbp,

∆bp,Fbp) where

Lbp = {`s, ˙̀s, `o | ` ∈ L};
Lbp

0 = {`s | ` ∈ L0};
αbp(`s) = αbp(˙̀s) = αbp(`o) = α(`) for every ` ∈ L;
Xbp = X ∪ {y} where y is a fresh clock;
βbp(`s) = βbp(˙̀s) = β(`) ∧ y = 0, βbp(`o) = β(`) for every ` ∈ L;
∆bp = {(`s1, λ, `o2), (˙̀s

1, λ, `
o
2), (`o1, λ ∪ {y}, `s2) | (`1, λ, `2) ∈ ∆}

∪ {(`o, {y}, ˙̀s), (`s, ∅, `o) | ` ∈ L};
Fbp = {{`s, `o | ` ∈ F} | F ∈ F}.

Intuitively, we create three copies `s, ˙̀s, `o of each location ` of A and use the clock y to
enforce the desired behaviour. In particular, the ‘dotted’ locations ˙̀s are used to deal with
the situation where the ‘source’ interval is right-closed. One can verify that Abp is bipartite
(let Ls = {`s, ˙̀s | ` ∈ L}) and S(A) = S(Abp). J

B Signal components for the ‘release’ operators

The component Cχ for χ = ψ1Rψ2 (Figure 5) is based on similar ideas as the component for
ψ1 U ψ2. In this case, an obligation can be satisfied by either ψ̂1 ∧ ψ̂2 holding in a singular
interval or ψ̂1 ∧ ∗ψ2 holding in an open interval.

The component Cχ for χ = ψ1R(0,a)ψ2 is given in Figure 6. In this case, all old obligations
are implied by the newest one. We therefore reset the clock x when pχ becomes false. The
component for ψ1 R(0,a] ψ2 is similar and hence omitted.

http://dx.doi.org/10.1007/978-3-540-69850-0_11
http://dx.doi.org/10.1007/978-3-540-69850-0_11
http://dx.doi.org/10.1007/978-3-642-21437-0

T. Brihaye, G. Geeraerts, H.-M. Ho, and B. Monmege ?:19

¬pχ ∧
∗ψ1 ∧ ∗ψ2

¬pχ ∧
ψ̂1 ∧ ψ̂2

pχ ∧
∗ψ1 ∧ ∗ψ2

pχ ∧
∼ψ1 ∧ ψ̂2

pχ ∧
ψ̂1 ∧ ψ̂2

¬pχ ∧
∼ψ1 ∧ ψ̂2

¬pχ ∧
∗ψ1 ∧ ∗ψ2

pχ ∧
ψ̂1 ∧ ∗ψ2

¬pχ ∧
ψ̂1 ∧ ∗ψ2

pχ ∧
∼ψ1 ∧ ψ̂2

¬pχ ∧
∼ψ1 ∧ ψ̂2

no pending obligations some pending obligations

sing. interval

open interval

Figure 5 The component SA Cχ for χ = ψ1 R ψ2.

TIME 2017

?:20 Timed-automata-based verification of MITL over signals

¬p
χ
∧

∗ψ
1
∧
∗ψ

2

x
=
a
,¬
p
χ
∧

∗ψ
1
∧
∗ψ

2

x
<
a
,¬
p
χ
∧

ψ̂
1
∧
ψ̂

2

p
χ
∧

∗ψ
1
∧
∗ψ

2

x
=
a
,p
χ
∧

∗ψ
1
∧
∗ψ

2

x
<
a
,p
χ
∧

∼
ψ

1
∧
ψ̂

2

x
<
a
,p
χ
∧

ψ̂
1
∧
ψ̂

2

x
<
a
,¬
p
χ
∧

∼
ψ

1
∧
ψ̂

2

¬p
χ
∧

∗ψ
1
∧
∗ψ

2

p
χ
∧

ψ̂
1
∧
∗ψ

2

¬p
χ
∧

ψ̂
1
∧
∗ψ

2

p
χ
∧

∼
ψ

1
∧
ψ̂

2

x
<
a
,¬
p
χ
∧

∼
ψ

1
∧
ψ̂

2

no
pe

nd
in
g
ob

lig
at
io
ns

so
m
e
pe

nd
in
g
ob

lig
at
io
ns

sin
g.

in
te
rv
al

op
en

in
te
rv
al

Fi
gu

re
6
T
he

co
m
po

ne
nt

SA
C χ

fo
r
χ

=
ψ

1
R

(0
,a

)
ψ

2
.
T
he

tr
an

si
tio

ns
w
ith

I
re
se
t
x
.

	Introduction
	Model-checking signal automata against MITL
	From MITL to signal automata
	From signal automata to timed automata
	Implementation and experiments
	Conclusion and future work
	Making signal automata bipartite
	Signal components for the `release' operators

