Thomas Brihaye
email: thomas.brihaye@umons.ac.be

Gilles Geeraerts

Hsi-Ming Ho
email: hsi-ming.ho@umons.ac.be

Benjamin Monmege
email: benjamin.monmege@univ-amu.fr

Timed-automata-based verification of MITL over signals

Keywords: .4.1 Mathematical Logic, F.1.1 Models of Computation Keywords and phrases real-time temporal logic, timed automata, real-time systems

It has been argued that the most suitable semantic model for real-time formalisms is the nonnegative real line (signals), i.e. the continuous semantics, which naturally captures the continuous evolution of system states. Existing tools like Uppaal are, however, based on ω-sequences with timestamps (timed words), i.e. the pointwise semantics. Furthermore, the support for logic formalisms is very limited in these tools. In this article, we amend these issues by a compositional translation from Metric Temporal Interval Logic (MITL) to signal automata. Combined with an emptiness-preserving encoding of signal automata into timed automata, we obtain a practical automata-based approach to MITL model-checking over signals. We implement the translation in our tool MightyL and report on case studies using LTSmin as the back-end.

Introduction

Many computer programs nowadays control critical applications, and need to enforce complex requirements in order to guarantee safe, dependable and efficient operation of the whole system. Among these requirements, real-time specifications (such as 'every request is eventually followed by an acknowledgement within 3 time units') are common. In this framework, computer interact with an environment that is intrinsically continuous, and ensuring thin real-time constraints is known to be a very difficult task.

Different kinds of formalisms have been proposed over the past 30 years to specify those real-time models (often by means of automata) and requirements (usually by means of some logic language). On the automata side, the model of timed automata [START_REF] Alur | A theory of timed automata[END_REF] is arguably widely accepted today, a success which is due in part to the tool support provided by Uppaal [START_REF] Kim | Uppaal in a nutshell[END_REF] and other verification tools such as Kronos [START_REF] Bozga | KRONOS: A model-checking tool for real-time systems (tool-presentation)[END_REF], TiAMo [START_REF] Bouyer | Symbolic optimal reachability in weighted timed automata[END_REF], . . . As far as logics are concerned, several proposals have been made in the literature during the past 30 years (such as MTL [START_REF] Koymans | Specifying real-time properties with metric temporal logic[END_REF], TPTL [START_REF] Alur | A really temporal logic[END_REF], TCTL [START_REF] Alur | Model-checking in dense real-time[END_REF], . . .) but the recent research seems to focus mainly on MTL, for theoretical reasons (we think here of the works of Ouaknine and Worrell on the decidability of MTL [START_REF] Ouaknine | On the decidability of metric temporal logic[END_REF]); and on MITL [START_REF] Alur | The benefits of relaxing punctuality[END_REF] for more practical motivations [START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF][START_REF] Brihaye | On MITL and alternating timed automata[END_REF][START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF][START_REF] Bulychev | Efficient controller synthesis for a fragment of MTL 0,∞[END_REF][START_REF] Kindermann | Bounded model checking of an MITL fragment for timed automata[END_REF][START_REF] Maler | From MITL to timed automata[END_REF].

Indeed, since its introduction in 1996, MITL has been advocated as a good 'trade-off between realistic modelling of time and feasible verification of timing properties' [START_REF] Alur | The benefits of relaxing punctuality[END_REF]. MITL is at the same time a real-time extension of LTL, the most widely accepted logic in the non-real-time case; and a restriction of MTL, whose expressive power makes it undecidable in most practical cases [START_REF] Alur | Real-time logics: Complexity and expressiveness[END_REF][START_REF] Ouaknine | On the decidability of metric temporal logic[END_REF]. Unfortunately, tool support for MITL is still lacking today, ?:4

Timed-automata-based verification of MITL over signals

Signals. An interval I is a non-empty convex subset of R ≥0 . If I is bounded (sup(I) exists), we write |I| for sup(I) -inf(I). Let AP be a finite set of atomic propositions. A state σ over AP is a subset of AP, i.e. σ ∈ 2 AP . A signal γ over 2 AP is a function that maps each t ∈ R ≥0 to a state over AP. Throughout this work, we restrict ourselves to signals that are finitely variable, i.e. the number of discontinuities is finite in each bounded interval. We rely on timed state sequences to represent signals. Intuitively, a timed state sequence partitions the reals into a sequence of contiguous time intervals during which the state remains constant. A state sequence σ = σ 0 σ 1 σ 2 • • • over 2 AP is an infinite sequence of states σ i ∈ 2 AP . An interval sequence I = I 0 I 1 I 2 • • • is an infinite sequence of intervals such that: 1. for all i ≥ 0, I i and I i+1 are adjacent, i.e. sup(I i) = inf(I i+1) and I i ∩ I i+1 = ∅; 2. for each t ∈ R ≥0 , we have t ∈ I i for some i ≥ 0. An interval sequence is said bipartite if it alternates between singular and open intervals, i.e. I i is singular for all even i ≥ 0. Then, a timed state sequence over 2 AP is a pair κ = (σ, I) where σ is a state sequence over 2 AP and I is an interval sequence. We let κ(t) = σ i if t ∈ I i for some i ≥ 0. We write γ (respectively, γ bp) for the set of all timed state sequences (respectively, timed state sequences with bipartite interval sequences) κ such that κ(t) = γ(t) for all t ∈ R ≥0 .

Metric Interval Temporal Logic (MITL).

We consider the satisfiability and model-checking problems for Metric Interval Temporal Logic (MITL), a real-time extension of Linear Temporal Logic (LTL), allowing temporal operators to be labelled with non-singular intervals. Formally, MITL formulae over AP are generated by the grammar:

ϕ := | p | ϕ ∧ ϕ | ¬ϕ | ϕ U I ϕ,
where p ∈ AP and I is a non-singular interval with endpoints in N ≥0 ∪ {∞} (I is assumed to be (0, ∞) when omitted).

In this work, we focus on the continuous semantics for MITL, in which formulae are interpreted over signals. Given a signal γ over 2 AP , t ∈ R ≥0 , and an MITL formula ϕ, the satisfaction relation γ, t |= ϕ is defined as follows (following [START_REF] Alur | The benefits of relaxing punctuality[END_REF], we adopt the strict-future semantics for the temporal operators):

γ, t |= ; γ, t |= p if p ∈ γ(t); γ, t |= ϕ 1 ∧ ϕ 2 if γ, t |= ϕ 1 and γ, t |= ϕ 2 ; γ, t |= ¬ϕ if γ, t |= ϕ; γ, t |= ϕ 1 U I ϕ 2 if there exists t > t such that t -t ∈ I, γ, t |= ϕ 2 and γ, t |= ϕ 1 for all t ∈ (t, t).
We write S(ϕ) for the set of all signals γ such that γ |= ϕ.

We will use standard syntactic sugar, e.g.

ϕ 1 ∨ ϕ 2 ≡ ¬(¬ϕ 1 ∧ ¬ϕ 2), ⊥ ≡ ¬ , ϕ 1 ⇒ ϕ 2 ≡ ¬ϕ 1 ∨ ϕ 2 ,
the 'eventually' operator F I ϕ ≡ U I ϕ, the 'globally' operator G I ϕ ≡ ¬F I ¬ϕ, and the 'release' operator ϕ 1 R I ϕ 2 ≡ ¬((¬ϕ 1) U I (¬ϕ 2)). Hence, the semantics of the release operator can be defined as follows:

γ, t |= ϕ 1 R I ϕ 2 if for all t > t such that t -t ∈ I, γ, t |= ϕ 2 or there exists t ∈ (t, t) such that γ, t |= ϕ 1 .
In particular, we can make use of these operators to transform every formula ϕ into its negative normal form where the negations are pushed inwards so that they range on atomic propositions only.

Signal automata. Our tool support for MITL will be based on automata. We first give a formal definition of signal automata, and we will also present the classical timed automata afterwards. Like [START_REF] Alur | The benefits of relaxing punctuality[END_REF], we equip these automata with generalised Büchi acceptance conditions. From now on, a propositional constraint φ over AP is a set of states over AP; that we denote by means of a Boolean formula over AP. For example, assuming AP = {p, q, r}, the propositional constraint p ∧ ¬q denotes {{p, r}, {p}}. Let X be a finite set of clocks. The set G(X) of clock constraints g over X is generated by the grammar g :

= | ⊥ | g ∧ g | x c where ∈ {≤, <, ≥, >}, x ∈ X and c ∈ N. A valuation v of X is a mapping v : X → R ≥0 .
We denote by 0 the valuation that maps every clock to 0. The satisfaction of a constraint g by a valuation v is defined in the usual way and noted v |= g. For t ∈ R ≥0 , let v + t be the valuation defined by

(v + t)(x) = v(x) + t for all x ∈ X. For λ ⊆ X, let v[λ ← 0] be the valuation defined by (v[λ ← 0])(x) = 0 if x ∈ λ, and (v[λ ← 0])(x) = v(x) otherwise. Definition 1. A signal automaton (SA) over 2 AP is a tuple A = (L, L 0 , α, X, β, ∆, F)
where L is a finite set of locations; L 0 ⊆ L is the set of initial locations; α is the location labelling function that assigns to each location ∈ L a propositional constraint α() ⊆ 2 AP ; X is a finite set of clocks; β is the location labelling function that assigns to each location ∈ L a clock constraint β() ∈ G(X); ∆ ⊆ L × 2 X × L is the set of transitions where each transition consists of the source location, the clocks to be reset with this transition, and the target location; F ⊆ 2 L is the family of sets of accepting locations. A run π of A on a signal γ over 2 AP is an infinite sequence of the following form:

-→ v0 (0 , I 0) λ1 -→ v1 (1 , I 1) λ2 -→ v2 (2 , I 2) λ3 -→ v3 . . .
where: 1. for all i ≥ 0, i is a locations of A; 2. the sequence I 0 I 1 I 2 • • • is an interval sequence; 3. for all i ≥ 0: λ i ⊆ X; 4. for all i ≥ 0: v i is a valuation of X; and that satisfies the following:

[Initiality] 0 ∈ L 0 and v 0 = 0; and [Consecution] For all i ≥ 0:

(i , λ i+1 , i+1) ∈ ∆ and v i+1 = (v i + |I i |)[λ i+1 ← 0]; and [Timing] v π (t) |= β(π (t)) for all t ≥ 0, assuming v π (t) = v i + (t -sup(I i)) and π (t) = i if t ∈ I i for some i ≥ 0; and [Adequation] γ(t) ∈ α(π (t)) for all t ≥ 0. We say that π is bipartite if I 0 I 1 I 2 • • • is bipartite. We say that π is accepting if for all F ∈ F: {i | i ∈ F } is infinite. A signal γ is accepted by A if
there is an accepting run of A on γ. We write S(A) for the set of signals accepted by A. For two SAs A 1 and A 2 , we denote by A 1 × A 2 their (asynchronous) product, defined in a manner similar to [START_REF] Alur | The benefits of relaxing punctuality[END_REF]: intuitively, in each location of this product, we can either fire only a transition of A 1 (provided that that the guard in the current location of A 2 is consistent with the one in destination of the transition), or only a transition of A 2 , or fire a transition in both signal automata in case their guards need to evolve synchronously. In particular, we have S(A 1 × A 2) = S(A 1) ∩ S(A 2).

We focus on the class of bipartite SA whose runs are bipartite by construction. An

SA A = (L, L 0 , α, X, β, ∆, F) is bipartite if
L 0 ⊆ L sing ; if (1 , λ, 2) ∈ ∆ then 1 ∈ L sing if and only if 2 ∈ L open ;
for each ∈ L 0 , β() has x = 0 as a conjunct for some clock x ∈ X; if (1 , λ, 2) ∈ ∆ with 1 ∈ L open (and thus 2 ∈ L sing), then there is a clock x ∈ X such that x ∈ λ and β(2) has x = 0 as a conjunct. In the rest of the paper, we will assume that all SAs are bipartite. 3 There is no loss of generality, thanks to the following proposition [START_REF] Alur | The benefits of relaxing punctuality[END_REF] (see Appendix A for a proof): Proposition 2. Every SA A can be turned into a bipartite SA A bp such that S(A) = S(A bp).

From now on, when depicting bipartite SA, we use rectangle and rounded rectangles for the locations from L sing and L open respectively. Figure 1 shows an example of bipartite SA.

Satisfiability and model-checking problems.

In this work, we consider two classical problems: satisfiability and model-checking of MITL. The satisfiability problem asks, given an MITL formula φ, whether S(φ) = ∅ (if it is the case, we say that φ is satisfiable). The model-checking problem asks, given an SA A and an MITL formula φ whether S(A) ⊆ S(ϕ). If it is the case, we write A |= ϕ.

3

From MITL to signal automata

Our approach to MITL model-checking over signals is based upon a compositional translation from MITL to signal automata. The core idea is similar to the translation for the pointwise semantics reported in our previous work [START_REF] Brihaye | MightyL: A compositional translation from MITL to timed automata[END_REF]: we keep track of the satisfiability of each temporal subformula (i.e. a subformula whose outermost operator is temporal) χ with an SA C χ . From now on, we fix a set AP of atomic propositions and a negative normal form MITL formula ϕ over AP. To simplify the exposition, we restrict ourselves to a fragment of MITL in which only untimed and upper-bound operators are allowed, i.e. each bounding interval I is either (0, ∞) or (0, a), or (0, a] for some positive integer a. This fragment, however, is already expressively complete for the full MITL [START_REF] Henzinger | The regular real-time languages[END_REF][START_REF] Nickovic | Vérification de propriétés temporisées et hybrides: théorie et applications)[END_REF]. We further assume that each temporal subformula χ of ϕ appears only once in ϕ.

Triggers. Let Φ be the set of temporal subformulae of ϕ. We introduce a new atomic proposition p χ for each subformula χ ∈ Φ and we let AP Φ = {p χ | χ ∈ Φ}. Each p χ is called a trigger (for χ). Intuitively, pulling the trigger p χ (i.e. setting p χ to true) at some point means that χ is required to hold at that point. On the other hand, p χ being false at some point does not mean that χ must not hold at that point-its satisfaction is simply not required there. The point of the triggers is to enable communication between the different component automata: when a formula ϕ is a subformula of ψ, the component SA C ψ will pull the trigger of ϕ whenever the satisfaction of ϕ is needed to check the value of ψ. A key point of our construction is to avoid unnecessary pulling of triggers, in order to reduce the number of behaviours of the product automaton and mitigate the state explosion problem during the model checking phase. This is the point of the formulae ψ, * ψ, ∼ ψ and ψ that we introduce hereinafter. Concretely, the outcome of our construction for an MITL formula ϕ is a network of SA that accepts an AP φ -decorated version of S(ϕ). In other words, the signals accepted our construction are over AP ∪ AP φ and their projections on AP yields S(ϕ), as stated in Theorem 8 at the end of the section.

For each (not necessarily temporal) subformula ψ of φ, we denote by P ψ the set of atomic propositions p χ ∈ AP Φ such that χ is a top-level temporal subformula of ψ, i.e. the outermost operator of χ is U I or R I , yet χ does not occur under the scope of another U I or R I in ψ. For instance, P pU I q∨rU I (sRt) = {p pU I q , p rU I (sRt) }. For a signal γ over 2 P (where P is a set of atomic propositions) and P ⊆ P , we denote by proj P (γ) the projection of γ onto P, i.e. the signal obtained from γ by hiding all the atomic propositions p / ∈ P. For a set of signals S over 2 P and P ⊆ P , we write proj P (S) = {proj P (γ) | γ ∈ S}. Conversely, we say a signal γ over 2 P extends a signal γ over 2 P (P ⊆ P) if proj P (γ) = γ.

Formulae over AP ∪ AP Φ . We define some syntactic operations on Boolean combinations over AP ∪ AP Φ that will be used in the components that we describe later. Specifically, for a subformula ψ of ϕ, we define formulae ψ (that introduces the trigger variables in subformulae), * ψ (that ensures that we do not pull any trigger of ψ), ∼ ψ (that checks that ψ does not hold, while none of its triggers are pulled), and ψ (that checks ψ while triggering a minimal set of triggers).

The formula ψ is obtained from ψ by replacing all top-level temporal subformulae with their corresponding triggers. Formally, ψ is defined inductively as follows (where p ∈ AP):

ψ 1 ∧ ψ 2 = ψ 1 ∧ ψ 2 ψ = ψ when ψ is or ⊥ or p or ¬p ψ 1 ∨ ψ 2 = ψ 1 ∨ ψ 2 ψ = p ψ when ψ is ψ 1 U I ψ 2 or ψ 1 R I ψ 2 .
The formula * ψ, read as "do not pull the triggers of ψ", is used to ensure that our components only follow the 'minimal models' of ψ. It is defined as the conjunction of the negations of all p χ ∈ P ψ . As a concrete example, * ((¬p ∨

ψ 1 U ψ 2) ∧ (q ∨ ψ 3 R (ψ 4 U ψ 5))) = ¬p ψ1U ψ2 ∧ ¬p ψ3R(ψ4U ψ5) .
The formula ∼ ψ asserts that ψ is false and none of its triggers are pulled: ∼ ψ = ¬ψ ∧ * ψ. Finally, the formula ψ is defined as mm(ψ) where mm(φ) is defined inductively as follows:

mm() = mm(⊥) = ⊥ mm(p) = p mm(¬p) = ¬p mm(φ 1 ∨ φ 2) = mm(φ 1) ∧ ∼ φ 2 ∨ mm(φ 2) ∧ ∼ φ 1 ∨ (φ 1 ∧ φ 2) ∧ * φ 1 ∧ * φ 2 mm(φ 1 ∧ φ 2) = mm(φ 1) ∧ mm(φ 2) .
First of all, we notice that formulae ψ and ψ are equivalent, once we have projected away the propositions that are not in AP, in the following sense: Proposition 3. For a subformula ψ of ϕ, if σ |= ψ for some state σ over AP ∪ P ψ , there is a state σ over AP ∪ P ψ such that σ |= ψ and proj AP (σ) = proj AP (σ) (and vice versa).

Proof. By induction on the structure of ψ. For the direct implication, if ψ = ψ 1 ∨ ψ 2 then one of the following must hold: σ |= ψ 1 and σ |= ψ 2 : apply the induction hypothesis on σ \ P ψ2 and ψ 1 (note that P ψ1 ∩ P ψ2 = ∅, and ψ 2 is in negative normal form). σ |= ψ 1 and σ |= ψ 2 : apply the induction hypothesis on σ \ P ψ1 and ψ 2 . σ |= ψ 1 and σ |= ψ 2 : If σ \ P ψ2 |= ψ 2 , apply the induction hypothesis on σ \ P ψ2 and ψ 1 . Otherwise if σ \ P ψ1 |= ψ 1 , apply the induction hypothesis on σ \ P ψ1 and ψ 2 . Otherwise let σ = σ \ (P ψ1 ∪ P ψ2). The other cases of ψ are immediate. The other implication of the proof is simpler.

T I M E 2 0 1 7

?:8 Timed-automata-based verification of MITL over signals Minimality of triggers. The real impact of ψ with respect to ψ is to ensure the minimality of triggers pulled during an execution. Indeed, we now show that if ϕ is satisfied by a signal γ (over 2 AP), then there must be a way to extend γ into a signal γ over 2 AP∪AP Φ such that the triggers AP Φ are only pulled when necessary in γ , and vice versa. This will be crucial to make our approach efficient in practice, as it reduces the behaviours of the product SA that accepts the whole formula ϕ. This observation is formalised in the following two propositions.

if χ = ψ 1 U I ψ 2 then, for each t ∈ R ≥0 , γ , t |= p χ ⇒ Expand χ with Expand χ = (ψ 1 ∧ ∼ ψ 2) U I (* ψ 1 ∧ ψ 2) ∨ (ψ 1 ∧ ψ 2) U ∨ F I ψ 2 ∧ ψ 1 ∧ ∼ ψ 2 U ψ 1 ∧ ∼ ψ 2 ∧ (ψ 1 ∧ ψ 2) U if χ = ψ 1 R I ψ 2 then, for each t ∈ R ≥0 , γ , t |= p χ ⇒ Expand χ with Expand χ = (∼ ψ 1 ∧ ψ 2) U I (ψ 1 ∧ ψ 2) ∨ (ψ 1 ∧ * ψ 2) U ∨ G I (∼ ψ 1 ∧ ψ 2) ∨ F I ψ 1 ∧ ∼ ψ 1 ∧ ψ 2 U ∼ ψ 1 ∧ ψ 2 ∧ (ψ 1 ∧ * ψ 2) U
for each p θ ∈ P ψ1 ∪ P ψ2 , we have proj AP∪{p θ } (γ) , t |= (p θ ⇒ θ) for all t ∈ R ≥0 .

Proof. Assume that χ = ψ 1 U I ψ 2 and let ζ be a signal over 2 The components. We are now ready to present the components C χ for χ ∈ Φ.

?:9 s 0 , ¬p χ ∧ * ψ 1 ∧ * ψ 2 s 3 , ¬p χ ∧ * ψ 1 ∧ ψ 2 s 1 , p χ ∧ * ψ 1 ∧ * ψ 2 s 2 , ψ 1 ∧ ∼ ψ 2 s 4 , p χ ∧ * ψ 1 ∧ ψ 2 o 0 , ¬p χ ∧ * ψ 1 ∧ * ψ 2 o 3 , ψ 1 ∧ ψ 2 o 1 , p χ ∧ ψ 1 ∧ ∼ ψ 2 o 2 , ¬p χ ∧ ψ 1 ∧ ∼ ψ 2
The component C χ for χ = ψ 1 U ψ 2 is given in Figure 1. We now explain how it has been produced. Thanks to Proposition 2, we provide a bipartite SA (in particular, we will read timed sequences with bipartite interval sequences only), where 'singular' locations are on top, and 'open' locations at the bottom. First, we focus on locations s 0 and o 0 , that are used as long as trigger p χ is not pulled: then, there is no need to pull any trigger of ψ 1 nor ψ 2 , which is ensured via the use of formula * ψ 1 ∧ * ψ 2 . Consider then the first time when trigger p χ is pulled (by another component automaton): it is either in a singular interval in which case we jump into location s 1 (this creates a pending obligation, since such an 'until' with our strict semantics cannot be fulfilled right away in a singular interval: this means, in particular, that we do not need to pull any trigger for ψ 1 or ψ 2 , thus checking * ψ 1 ∧ * ψ 2), or in an open interval in which case we jump either into location o 1 if ψ 2 does not hold (i.e. if ∼ ψ 2 holds), or into location o 3 if ψ 2 holds (i.e. if ψ 2 is in the guard) which fulfils right away the new obligation (notice that, in the figure, we did not put p χ in the guard of this location, for simplification: we will discuss this point more in detail afterwards).

When p χ is first pulled in an open interval (which means we jump into location o 1 or o 3), by the semantics of the 'until' operator, ψ 1 must also hold in that interval. When in o 3 , the successors are the same as in o 0 . When in o 1 with a pending obligation, there are two cases for the next jump: either ψ 2 holds in the next singular interval, and then no trigger of ψ 1 needs to be pulled (i.e. guard * ψ 1 ∧ ψ 2): if there are no new pulled trigger p χ , we jump into location s 3 ; otherwise, we jump into location s 4 where we still have a new pending obligation, but the location is still made accepting to record the fact that the previous obligation has been fulfilled. or ψ 2 does not hold, in which case ψ 1 should hold (i.e. guard ψ 1 ∧ ∼ ψ 2): we then jump into location s 2 whether or not a new trigger p χ is pulled.

When p χ is first pulled in a singular interval (which means we jump into location s 1), there is no need to pull any trigger of ψ 1 nor ψ 2 . Then, while in one of the 'singular' locations

, ¬p χ ∧ * ψ 1 ∧ * ψ 2 s 3 , g, ¬p χ ∧ * ψ 1 ∧ ψ 2 s 1 , p χ ∧ * ψ 1 ∧ * ψ 2 s 2 , g, ψ 1 ∧ ∼ ψ 2 s 4 , g, p χ ∧ * ψ 1 ∧ ψ 2 o 0 , ¬p χ ∧ * ψ 1 ∧ * ψ 2 o 3 , p χ ∧ ψ 1 ∧ ψ 2 o 3 , ¬p χ ∧ ψ 1 ∧ ψ 2 o 1 , x < a, p χ ∧ ψ 1 ∧ ∼ ψ 2 o 4 , x < a, ¬p χ ∧ ψ 1 ∧ ∼ ψ 2
no pending obligations some pending obligations

sing. interval open interval

Figure 2 The component SA Cχ for ψ1 U (0,a) ψ2. We use a Boolean variable si to signify whether the oldest pending obligation has been pulled in a singular interval or not. The transitions with or reset x; the ones with (resp.) set si to true (resp. false). The clock constraint g is defined as (si ∧ x < a) ∨ (¬si ∧ x ≤ a).

same successors as o

1 but we still need to distinguish them since o 1 must check that a new pending obligation is pulled.

Initially, we do not want to pull any trigger of ψ 1 or ψ 2 , therefore, s 0 and s 1 are the two initial locations, depending on whether trigger p χ is initially pulled or not. Accepting locations are the one where either there are no more pending obligations, or a pending obligation has been fulfilled while a new trigger is being pulled (location s 4). Notice that, thanks to the use of * ψ i and ψ i formulas, only the necessary triggers in P ψ1 ∪ P ψ2 are pulled during an execution of this component. Indeed, this is not true for location o 3 : when going from locations s 0 or s 3 , to pull only minimal sets of triggers, we must make sure to go in o 3 only when a new trigger p χ is pulled. This requires to split this location into two (one where p χ holds, the other where it does not). For simplicity, we did not do it in the figure, but we apply this splitting in the next component we present.

This next component C χ is the one for χ = ψ 1 U (0,a) ψ 2 (Figure 2), that is obtained by adding a clock x and suitable clock constraints. Intuitively, it suffices to use only one clock because for I = (0, a), all new obligations are implied by the oldest pending obligation. This means that the clock should be reset when entering in a location where a trigger is pulled while all the previous obligations have been fulfilled: this is a priori the case when entering in locations s 1 , o 1 , and s 4 from locations { s 0 , s 3 , o 0 , o 3 , o 3 }. Now, the valuation of x would fix a deadline for the satisfaction of ψ 2 . Indeed, as long as ψ 2 does not hold, we must check that x < a. When ψ 2 is next fulfilled, we also check that x < a. However, this is not correct for two reasons.

First, when checking the requirements x < a, this is not correct if the oldest pending obligations appeared in an open interval: indeed, it is still correct to fulfil ψ 2 in a singular interval where x = a. This requires that we register, when resetting clock x, if the trigger is pulled in a singular interval or not. To ease the presentation, we use a Boolean variable si to record that the trigger has been pulled in a singular interval. Pictorially, we use transitions with heads to reset the clock x and setting si to true, while transitions with heads reset clock x and set si to false. Then, the clock constraint that must be checked in singular interval (whether or not ψ 2 is currently fulfilled) is not x < a but g defined by (si ∧ x < a) ∨ (¬si ∧ x ≤ a): in particular, the guard g in location s

2 models the fact that if the oldest obligation has been triggered in an open interval (si is false), it is not a contradiction to not yet fulfil ψ 2 at time x = a, but then, the only fireable transitions are the one towards o 3 and o 3 where ψ 2 then holds. This also explains why guard g does not need to be checked when entering in o 3 and o 3 . Second, this cannot be done as such when entering location s 4 since the guard g must be checked before resetting clock x that records the deadline of the next pending obligation. Indeed, we simply delay the reset and modification of variable si to the next transition towards o 1 or o 4 . The component for ψ 1 U (0,a] ψ 2 is similar and hence omitted. The components for 'release' operators follow the same pattern as the ones for 'until'. Due to lack of place, we present them in Appendix B. Then: Proposition 7. For each χ ∈ Φ, the component C χ accepts exactly all signals γ over 2 AP∪AP Φ such that γ, t |= p χ ⇒ Expand χ for all t ∈ R ≥0 (where Expand χ is one of the formulae in Proposition 5).

Finally, we need a simple initial component C init which enforces ϕ at t = 0 and * ϕ at all t > 0, as suggested by Proposition 5. We can now state the main theorem of this section.

Theorem 8. proj AP S(C init × χ∈Φ C χ) = S(ϕ).

4

From signal automata to timed automata

In this section, we provide a new approach to check the emptiness of automata that can be implemented by relying on existing tools for timed automata. To this end, we explain how to encode an SA A into a timed automaton B A that accepts exactly the 'time words' counterparts of the signals accepted by A. Moreover, the construction can be used in a compositional manner: if A is the product of a number of component SAs, B A can be obtained as the product of the TAs that result from applying the construction to the components of A. As the construction is emptiness-preserving, it can serve as a bridge between the MITL-to-SA translation in the previous section and existing TA-based tools. We start by recalling formally what are timed automata.

Timed words and timed automata.

A time sequence is an infinite sequence τ = τ 0 τ 1 τ 2 . . . of timestamps such that 1. τ 0 = 0; 2. for all i ≥ 0, τ i ≤ τ i+1 ; 3. for all t ∈ R ≥0 , there is some i ≥ 0 such that τ i > t. A timed word ρ = (σ, τ) over 2 AP is a pair of a state sequence σ over 2 AP and a time sequence τ . Alternatively, we may see ρ as an infinite sequence (σ

0 , τ 0)(σ 1 , τ 1)(σ 2 , τ 2) • • • of events (σ i , τ i).
We now define timed automata, with generalised acceptance conditions as before (used by [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF] in the untimed setting).

Definition 9. A timed automaton (TA) over 2 AP is a tuple A = (L, L 0 , X, ∆, F) where L is a finite set of locations; L 0 ⊆ L is the set of initial locations; X is a finite set of clocks; ∆ ⊆ L × 2 2 AP × G(X) × 2 X × L is the set of transitions; F ⊆ 2 L is the family of sets of accepting locations. A run π of A on a timed word ρ = (σ 0 , τ 0)(σ 1 , τ 1)(σ 2 , τ 2) • • • over 2 AP is an infinite sequence (0 , v 0) λ1 ---→ σ0,d0 (1 , v 1) λ2 ---→ σ1,d1 (2 , v 2) λ3 ---→ σ2,d2 • • • T I M E 2 0 1 7 0 1 1 ¬p χ ∧ * ψ 1 ∧ * ψ 2 ¬p sing ∧ p χ ∧ ψ 1 ∧ ψ 2 p sing ∧ ψ 1 ∧ ∼ ψ 2 ∧ g ¬p sing ∧ ψ 1 ∧ ∼ ψ 2 p sing ∧ p χ ∧ * ψ 1 ∧ * ψ 2 , x := 0, ¬p sing ∧ p χ ∧ ψ 1 ∧ ∼ ψ 2 , x := 0, p sing ∧ ¬p χ ∧ * ψ 1 ∧ ψ 2 ∧ g ¬p sing ∧ ψ 1 ∧ ψ 2 p sing ∧ p χ ∧ * ψ 1 ∧ ψ 2 ∧ g, x := 0, ψ 1 ∧ ∼ ψ 2 ψ 1 ∧ ψ 2

Figure 3

The component TA Bχ for χ = ϕ1 U (0,a) ϕ2. We use a Boolean variable si to signify whether the current pχ-interval is left-closed. The transitions with (respectively,) set si to true (respectively, false). The clock constraint g is defined as

(si ∧ x < a) ∨ (¬si ∧ x ≤ a).
suitable modifications to B to obtain a strongly non-Zeno TA B A (i.e. a TA in which time progresses), as in [START_REF] Pnueli | Controller synthesis for timed automata[END_REF].

The proposition above works for any (bipartite) SA. For C init or each component C χ (χ ∈ Φ) in the previous section, however, we can suppress all the 'dotted' locations ˙ sing , ˙ open and build a much simpler TA (which we denote by B init or B χ , respectively). 4 Our main result can then be stated as the following theorem, where the projection operator proj is defined in a similar way as in the setting of signals.

Theorem 11. proj AP L(B A × B init × χ∈Φ B χ) = proj AP S(A × C init × χ∈Φ C χ)
tw for any given SA A over 2 AP∪AP Φ whose propositional constraints can be written as Boolean combinations over AP (i.e. do not involve atomic propositions in AP Φ).

As an example, the component TA B χ for χ = ψ 1 U (0,a) ψ 2 (in which we use a new atomic proposition p sing that holds on 'singular' transitions) is depicted in Figure 3.

Implementation and experiments

We have implemented the translation as an extension of our tool MightyL [START_REF] Brihaye | MightyL: A compositional translation from MITL to timed automata[END_REF]. Given a formula ϕ over AP in MITL, 5 the tool generates the model TA B A where A is a universal SA over 2 AP∪AP Φ , the initial component TA B init , and the corresponding component TAs B χ for each temporal subformula χ of ϕ in the Uppaal xml format. The user can, of course, replace B A with the model TA M of their choice and perform model-checking with existing TA-based tools. 6 Our implementation is publicly available and can be executed directly on the webpage: http://www.ulb.ac.be/di/verif/mightyl. In the following experiments, we use LTSmin [START_REF] Kant | LTSmin: High-performance language-independent model checking[END_REF] (with opaal [START_REF] Laarman | Multi-core emptiness checking of timed Büchi automata using inclusion abstraction[END_REF], which enables support for Uppaal xml files) as the back-end model checker and report its execution times (using only a single core) on a Pentium B970 (2.3GHz) machine with 6GB RAM running Ubuntu 17.04. We omit the execution times for MightyL as it is less than 0.1s on all our benchmarks.

Table 1 Execution times for the 'parametric formulae' benchmark set. The columns 'Pointwise' correspond to the approach of [START_REF] Brihaye | MightyL: A compositional translation from MITL to timed automata[END_REF] and the columns 'Continuous' correspond to the approach of this article (where OOM stands for out-of-memory). The three numbers of each entry correspond to the time taken by opaal to translate Uppaal xml into C++, the time taken by the g++ compiler, and the actual model-checking time taken by LTSmin, respectively. Satisfiability of parametric formulae. We consider the satisfiability of a set of parametric MITL formulae modified from [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF][START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF]. The goal of this benchmark set is to give a rough comparison between the performance of our approach in the pointwise semantics (the original aim of MightyL; we refer the reader to [START_REF] Brihaye | MightyL: A compositional translation from MITL to timed automata[END_REF]39] for more details) with that in the continuous semantics (this article). For k ≥ 2 and an interval I, let:

F (k, I) = k i=1 F w I p i , G(k, I) = k i=1 G w I p i , U (k, I) = (. . . (p 1 U w I p 2) U w I . . .) U w I p k , R(k, I) = (. . . (p 1 R w I p 2) R w I . . .) R w I p k ,
where F w I , G w I , etc., are weak-future temporal operators [39]. The formulae in the benchmark set are given in Table 1. For the pointwise case, these are the actual formulae that we pass to MightyL; for the continuous case, standard rewriting rules are applied to handle the lower-bound temporal operators (e.g. F (5,∞) p ⇐⇒ G (0,5] Fp). 7 From the execution times in Table 1, it is evident that opaal and g++ are not performance bottlenecks. For smaller formulae, the times taken by LTSmin are very short. For larger formulae, however, as LTSmin uses depth-first search for opaal-generated models, it sometimes goes very deep into the state space and results in out-of-memory.

Validity and redundancy of specifications. We say an MITL formula ϕ is valid if ¬ϕ is not satisfiable. If ϕ is of the form 1≤i≤k ϕ i , we say that the conjunct ϕ i is redundant in ϕ if the formula (1≤j≤k j =i ϕ j) ⇒ ϕ i is valid. In [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF], MITL specifications created by non-expert users are checked for satisfiability, validity and redundancy. We report the execution times of our approach on some of their checks in Table 2. To see the effect of forcing minimal triggers, we also give the execution times when this is not imposed. We also reproduce the execution times reported in [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF] in the table; since we do not impose a priori bounds on state changes (as opposed to [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF]) and we use a much less powerful CPU, these numbers are not meant for direct comparison but rather for reference.

Table 2 Execution times for the satisfiability, validity and redundancy checks in [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF].

Formula

Our approach Our approach w/o minimality [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF]

φ1 = F [0,30] p1 ∧ F [0,20] p1 5.95s 8.67s 14s φ2 = F [0,30] (p1 ⇒ G [0,20] p1) 3.05s 5.3s 7s φ4 = G [0,40] p1 ∧ G [0,40] F [0,10] p1 7.23s 52.43s 29s φ5 = F [0,40] (p1 ∨ p3) ∧ F [0,40] p2 ∧ F [0,40] G [0,30] p1 12.12s >1200s 126s ¬ ∧ ¬on ∧ ¬off ¬ ∧ ¬on ∧ ¬off ¬ ∧ ¬on ∧ ¬off ∧ x = 5 ¬ ∧ ¬on ∧ off ∧ on ∧ ¬off ∧ ¬on ∧ ¬off ∧ x < 5 ∧ ¬on ∧ ¬off ∧ x < 5
Figure 4 The SA A lamp . The transitions with solid tips reset clock x.

Model-checking a timed lamp. We consider a case study of a timed lamp from [START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF]. The lamp is controlled by two buttons 'on' and 'off', which can only be pressed instantaneously but not simultaneously. The buttons turn the lamp on and off as expected, and the lamp turns off automatically 5 time units after the last time 'on' was pressed. In [START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF], the system is given as an MITL formula (with past temporal operators) over atomic propositions { , on, off}.

While we can make use of projections to remove the past temporal operators [START_REF] Henzinger | The regular real-time languages[END_REF][START_REF] Wilke | Specifying timed state sequences in powerful decidable logics and timed automata[END_REF], it turned out that the resulting formula is too large. For this reason, we model the system directly as an SA A lamp (Figure 4). Then, via Proposition 10 and Theorem 11, we perform the same verification tasks as [START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF]: 1. checking the emptiness of A lamp ; 2. model-checking A lamp against ϕ 1 = G [0,∞) F [0,5] (¬) , i.e. the lamp never stays lit for more than 5 time units; 3. model-checking A lamp against ϕ 2 = F [0,∞) G [0,5] ⇒ F [0,∞) on ∧ F (0,5] on , i.e. if at some point the light stays on for more than 5 time units, then there is an instant when 'on' is pressed, and then it is pressed again before 5 time units. The execution times (with and without minimality criteria) are given in Table 3, where we also reproduce the execution times reported in [START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF]. Again, these numbers are not meant to be compared directly.

Conclusion and future work

We proposed a translation from MITL to signal automata based on the same principles as our previous work in the pointwise setting [START_REF] Brihaye | MightyL: A compositional translation from MITL to timed automata[END_REF]. The main advantages of this translation over the existing ones are that it is compositional and integrates easily with existing tools.

To the best of our knowledge, this is the first practical automata-based approach to MITL model-checking over signals. We plan to add to MightyL support for general MITL operators (either via rewriting or directly by components) and other temporal operators (such as those from ECL [START_REF] Henzinger | The regular real-time languages[END_REF]). On the theoretical side, a possible future direction is to investigate whether the translation can be generalised (possibly with the techniques in [START_REF] Cristau | Automata and temporal logic over arbitrary linear time[END_REF] or [START_REF] Reynolds | The complexity of the temporal logic with "until" over general linear time[END_REF]) to deal with signals that are not necessarily finitely-variable.

¬p χ ∧ * ψ 1 ∧ * ψ 2 ¬p χ ∧ ψ 1 ∧ ψ 2 p χ ∧ * ψ 1 ∧ * ψ 2 p χ ∧ ∼ ψ 1 ∧ ψ 2 p χ ∧ ψ 1 ∧ ψ 2 ¬p χ ∧ ∼ ψ 1 ∧ ψ 2 ¬p χ ∧ * ψ 1 ∧ * ψ 2 p χ ∧ ψ 1 ∧ * ψ 2 ¬p χ ∧ ψ 1 ∧ * ψ 2 p χ ∧ ∼ ψ 1 ∧ ψ 2

 there exists a partition of L into L sing , L open respecting the conditions given hereinafter. Intuitively, when reading a bipartite signal, A is in a location of L sing (L open) when it traverses a singular (respectively open) interval of γ:

Figure 1

 1 Figure 1The component SA Cχ for χ = ψ1 U ψ2.

Figure 5 Figure 6

 56 Figure 5The component SA Cχ for χ = ψ1 R ψ2.

Proposition 4 .

 4 For a signal γ over 2 AP , we have γ, 0 |= ϕ if and only if there exists a signal γ over 2 AP∪Pϕ extending γ such that γ , 0 |= ϕ, and for all χ ∈ P ϕ and t ∈ R ≥0 , proj AP∪{pχ} (γ) , t |= (p χ ⇒ χ). For the direct implication, let ζ be a signal over 2 AP∪Pϕ extending γ such that p χ ∈ ζ(t) if and only if γ, t |= χ for each χ ∈ P ϕ and t ∈ R ≥0 (note that ζ is necessarily finitely-variable as γ is finitely-variable [4]). If ζ, 0 |= ϕ, simply let γ = ζ and we are done. If ζ, 0 |= ϕ, apply Proposition 3 to ζ(0) and ϕ to obtain a state σ such that σ |= ϕ. Finally, let γ (0) = σ and γ (t) = ζ(t) \ P ϕ for all t ∈ R >0 . The other implication is immediate. For a signal γ over 2 AP∪{pχ} where χ ∈ Φ and either χ = ψ 1 U I ψ 2 or χ = ψ 1 R I ψ 2 , we have γ, t |= (p χ ⇒ χ) for all t ∈ R ≥0 if and only if there exists a signal γ over 2 AP∪{pχ}∪P ψ 1 ∪P ψ 2 extending γ such that

	Proof. Proposition 5.

 ∧ ¬ψ 2 always holds in (0, t] and ψ 1 ∧ ψ 2 always holds in (t , t). It follows that we can obtain a 'minimal labelling' from ζ via Proposition 3. More precisely, we apply Proposition 3 to constant segments of ζ and ψ 1 , ψ 2 , or both ψ 1 and ψ 2 , as required by the interpretation of p χ in γ. For example, in the first case above, γ (t) for each t ∈ (t, t) is obtained by applying Proposition 3 to ζ(t) \ P ψ2 and ψ 1 ; γ (t) is obtained by applying Proposition 3 to ζ(t) \ P ψ1 and ψ 2 . Similar arguments can be made for χ = ψ 1 R ψ 2 . The other implication is simpler. For a signal γ over 2 AP , we have γ, 0 |= ϕ if and only if there exists a signal γ over 2 AP∪AP Φ extending γ such that γ , 0 |= ϕ, and for all χ ∈ Φ and t ∈ R ≥0 , γ , t |= p χ ⇒ Expand χ (where Expand χ is one of the formulae in Proposition 5).

	Corollary 6.

AP∪{pχ}∪P ψ 1 ∪P ψ 2 extending γ such that p θ ∈ ζ(t) if and only if γ, t |= θ for each p θ ∈ P ψ1 ∪ P ψ2 and t ∈ R ≥0 . For each t ∈ R ≥0 such that γ, t |= p χ , since γ, t |= χ also holds, exactly one of the following must be true (note that inf(I) = 0): there is t > t, t -t ∈ I such that γ, t |= ψ 2 and γ, t |= ψ 1 ∧ ¬ψ 2 for all t ∈ (t, t); there is t > t such that γ, t |= ψ 1 ∧ ψ 2 for all t ∈ (t, t); there are t > t and t > t such that in γ, ψ 1

0 1 7 ?:10 Timed-automata-based verification of MITL over signals

	s 1 , s 2 or s 4 , with a pending obligation, in the next jump, there are two cases:
	either ψ 2 holds in the next open interval, in which case ψ 1 should still hold (because
	of the semantics of the 'until' operator): we can jump into the previously introduced
	location o 3 .

or ψ 2 does not hold (then, ψ 1 should hold anyway) and we jump either in location o 1 if a new trigger p χ is pulled, or in o 2 is no new trigger p χ is pulled. Location o 2 has the T I M E 2 s 0

Table 3

 3 Execution times for the verification tasks in[START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF].

	Task	Our approach Our approach w/o minimality	[10]
	S(Alamp) = ∅?	1.15s	-	4.24s
	S(Alamp × A¬ϕ 1) = ∅?	1.79s	1.59s	17.2s
	S(Alamp × A¬ϕ 2) = ∅?	2.53s	196s	257.1s

Note that a product of bipartite SAs is a bipartite SA.

The product of these TAs corresponds to the synchronous product (in which interleaving and stuttering are disallowed[START_REF] Asarin | A kleene theorem for timed automata[END_REF]) of Cinit and Cχ for all χ ∈ Φ.

More precisely, our tool accepts all temporal operators that are labelled with intervals of the form (0, ∞), [0, ∞), (0, a), [0, a), (0, a] or [0, a]. If 0 is included in the interval, the temporal operator is given a weak-future interpretation [39], e.g. ψ1 U w [0,a) ψ2 ⇐⇒ ψ2 ∨ (ψ1 ∧ ψ1 U (0,a) ψ2). Remember that general MITL formulae can be rewritten into formulae of this fragment, e.g., F (a,∞) ψ ⇐⇒ G (0,a] Fψ.

We require M to be strongly non-Zeno and L(M) = [S(A)] tw where A is an SA over 2 AP∪APΦ that satisfies the conditions in Theorem 11.

Of course, the resulting formulae are interpreted over signals, in contrast to their pointwise counterparts; but we expect the computational efforts needed to check their satisfiability to be similar.

where, for all i ≥ 0: 1. i is a locations of A; 2. v i is a valuation of X; 3. d i = τ i -τ i-1 (assuming τ -1 = 0) 4. λ i ⊆ X; and that satisfies the following:

[Initiality] 0 ∈ L 0 ; and [Consecution] for all i ≥ 0: (i , φ, g, λ i+1 , i+1) ∈ ∆ with σ i ∈ φ and v i + d i |= g; and [Timing] for all i ≥ 0, v i+1 = (v i + d i)[λ i+1 ← 0]. We say that π is accepting if for all accepting sets F ∈ F, the set {i | i ∈ F } is infinite. A timed word ρ is accepted by A if there is an accepting run of A on ρ. We write L(A) for the set of timed words accepted by A. For two TAs A 1 and A 2 , we denote by A 1 × A 2 their (synchronous) product [START_REF] Alur | A theory of timed automata[END_REF]. In particular, we have

Translation from SA to TA. We first explain how we map signals to timed words. To do so, we select a bipartite state sequence κ corresponding to γ, and we express the state changes along κ in a timed word. Formally, for a signal γ and a timed state sequence κ = (σ 0 , I 0)(σ 1 , I 1) • • • s.t. κ ∈ γ bp (i.e., I i is singular for all even i ≥ 0), we define:

Note that we represent a state change at time t by two events with timestamp t (note that sup

Proof (sketch). For a clock constraint g ∈ G(X), let g ← be the clock constraint obtained from g by replacing all clauses of the form 'x ≤ c' with 'x < c' and all 'x > c' with 'x ≥ c'. Likewise, let g → be the clock constraint obtained from g by replacing all 'x < c' with 'x ≤ c' and all 'x ≥ c' with 'x > c'. The following statements hold (for a valuation v of X): v |= g ← if and only if for some δ ∈ R >0 , we have v + t |= g for all t ∈ (0, δ]. v |= g → if and only if for some δ ∈ R >0 , we have v |= g for all valuations v of X such that v + t = v for some t ∈ (0, δ].

In what follows, we write g[λ ← 0] for the clock constraint obtained from g by replacing all occurrences of clocks x ∈ λ with 0. For A = (L, L 0 , α, X, β, ∆, F) (which by assumption is bipartite and

where

Intuitively, the 'dotted' locations ˙ sing , ˙ open are used to allow interleaving and stuttering as A stays in ∈ L open : this is crucial to make the asynchronous product A 1 × • • • × A n and the synchronous product B A1 × • • • × B An match. Finally, for pragmatic reasons, we make

A Making signal automata bipartite

Proof of Proposition 2.

Intuitively, we create three copies s , ˙ s , o of each location of A and use the clock y to enforce the desired behaviour. In particular, the 'dotted' locations ˙ s are used to deal with the situation where the 'source' interval is right-closed. One can verify that A bp is bipartite (let L s = { s , ˙ s | ∈ L}) and S(A) = S(A bp).

B Signal components for the 'release' operators

The component C χ for χ = ψ 1 R ψ 2 (Figure 5) is based on similar ideas as the component for ψ 1 U ψ 2 . In this case, an obligation can be satisfied by either ψ 1 ∧ ψ 2 holding in a singular interval or ψ 1 ∧ * ψ 2 holding in an open interval. The component C χ for χ = ψ 1 R (0,a) ψ 2 is given in Figure 6. In this case, all old obligations are implied by the newest one. We therefore reset the clock x when p χ becomes false. The component for ψ 1 R (0,a] ψ 2 is similar and hence omitted.