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Dirichlet-to-Neumann or Poincaré-Steklov operator

on fractals described by d -sets

KEVIN ARFI∗, ANNA ROZANOVA-PIERRAT†

May 23, 2017

Abstract

In the framework of the Laplacian transport, describing by a Robin boundary-

valued problem in an exterior domain in Rn , we generalize the definition of the

Poincaré-Steklov operator to d -set boundaries, n−1 ≤ d < n , and give its spectral

properties to compared to a the spectrum of the interior domain and also to a

truncated domain, considered as an approximation of the exterior case. The well-

posedness of the Robin boundary-valued problems for the truncated and exterior

domains are obtained in the general framework of n -sets.

1 Introduction

Laplacian transports to and across irregular and fractal interfaces are ubiquitous in nature
and industry: properties of rough electrodes in electrochemistry, heterogeneous cataly-
sis, steady-state transfer across biological membranes (see [19, 20, 14, 18] and references
therein). To model it there is a usual interest to consider truncated domains as an ap-
proximation of the exterior unbounded domain case.

Thus, in this paper, we consider Ω a domain of Rn which can be

1. unbounded, and then we suppose that Ω = Rn \ Ω0 for a bounded domain Ω0 in
Rn ( i.e. Ω is the exterior of a bounded domain);

2. bounded, and then we suppose that Ω = (Rn \ Ω0) ∩ Ω1 for bounded domains
Ω0 ⊂ Ω1 in Rn ( i.e. Ω is the exterior domain of Ω0 bounded by the boundary of
Ω1 ).

In what following for the boundaries of ∂Ω0 and ∂Ω1 (which are supposed to be disjoint
∂Ω0 ∩ ∂Ω1 = ∅ ) are denoted by Γ and S respectively. Let us notice that Γ ∪ S = ∂Ω
(for the unbounded case S = ∅ ), see Fig. 1. To distinct the exterior Ω and the truncated
domain, we will also denote it by ΩS . The phenomenon of Laplacian transports to Γ
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Figure 1: Example of the considered domains: Ω0 (the Von Koch snowflake) is the
bounded domain, bounded by a compact boundary Γ , which is a d -set (see Definition 3)
with d = log 4/ log 3 > n − 1 = 1 . The truncated domain ΩS is between the boundary
Γ and the boundary S (presented by the same Von Koch fractal as Γ ). The boundaries
Γ and S have no an intersection and here are separated by the boundary of a ball Br of
a radius r > 0 . The domain, bounded by S , is called Ω1 = Ω0 ∪ ΩS , and the exterior
domain is Ω = Rn \ Ω0 .

can be described by the following boundary-valued problem:

−∆u = 0, x ∈ Ω,

λu+ ∂νu = ψ on Γ,

u = 0 on S,

(1)

where ∂νu denotes the normal derivative of u , in some appropriate sense, λ ∈ [0,∞) is
the resistivity of the boundary and ψ ∈ L2(Γ) . For S = ∅ we impose Dirichlet boundary
conditions at infinity. The case of a bounded Ω corresponds to the approximation of the
exterior problem by a problem on a truncated domain in the sense of Theorem 8.

When ∂Ω is regular (C∞ or at least Lipschitz), what are the trace of u ∈ H1(Ω)
and the normal derivative ∂νu on Γ are well-known [30, 32]. The same thing with
the properties of the Poincaré-Steklov or the Dirichlet-to-Neumann operator defined at
manifolds with C∞ boundaries [16, 40]. In the aim to generalize the Poincaré-Steklov
operator to d -sets n − 1 ≤ d < n (the case n − 1 < d < n contains the self-similar
fractals), we firstly study the most general context (see Section 3), when the problem (1)
is well-defined and its bounded variant (physically corresponding to a source at finite
distance) can be viewed as an approximation of the unbounded case (corresponding to
a source at infinity). The main extension and trace theorems recently obtained in the
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framework of d -sets theory are presented and discussed in Section 2. After a short survey
in Section 4 of known results on the spectral properties of the Poincaré-Steklov operator
for a bounded domain, we introduce the Poincaré-Steklov operator A on d -sets for a
bounded domain, its exterior domain and a truncated domain and relate their spectral
properties (see Section 5). The two dimensional case differs from Rn with n ≥ 3 by
the functional reason (see Subsection 3.2) and gives different properties of the spectrum
of A (see Theorem 9), defined as an elliptic self-adjoint positive operator on L2(Γ) ,
and in particular, different domains of its definition (see also Proposition 6 in Section 6).
Specially, for the case of a d -set Γ (see Theorems 11 and 12), we justify the method,
developed in [19], true for smooth boundaries, to find the total flux Φ across the interface
Γ using the spectral decomposition of 1Γ (belonging to the domain of A by Proposition 6)
on the basis of eigenfunctions of the Dirichlet-to-Neumann operator (Vk)k∈N in L2(Γ) and
its eigenvalues (µk)k∈N :

Φ ∝
∑

k

µk(1Γ, Vk)
2
L2(Γ)

1 + µk

λ

. (2)

2 Elements of functional analysis and traces theorems

on d -sets

Before to proceed to the generalization results, let us define the main notions and explain
the functional context of d -sets. For instance, for the well-posedness result of problem (1)
on “the most general” domains Ω in Rn , we need to be able to say that for this Ω the
extension operator E : H1(Ω) → H1(Rn) is continuous and the trace operator (to be
defined, see Definition 6) Tr : H1(Ω) → Im(Tr(H1(Ω))) ⊂ L2(∂Ω) is continuous and
surjective.

Therefore, let us introduce the existing results about traces and extension domains in
the framework of Sobolev spaces.

Definition 1 (W k
p -extension domains) A domain Ω ⊂ Rn is called a W k

p -extension
domain ( k ∈ N∗ ) if there exists a bounded linear extension operator E : W k

p (Ω) →
W k

p (R
n) . This means that for all u ∈ W k

p (Ω) there exists a v = Eu ∈ W k
p (R

n) with
v|Ω = u and it holds

‖v‖W k
p (R

n) ≤ C‖u‖W k
p (Ω) with a constant C > 0.

The classical results of Calderon-Stein [10, 39] say that every Lipschitz domain Ω is
an extension domain for W k

p (Ω) with 1 ≤ p ≤ ∞ , k ∈ N∗ .
This result was generalized by Jones [24] in the framework of (ε, δ) -domains:

Definition 2 ( (ε, δ) -domain [24, 26, 42]) An open connected subset Ω of Rn is an
(ε, δ) -domain, ε > 0 , 0 < δ ≤ ∞ , if whenever x, y ∈ Ω and |x − y| < δ , there is a
rectifiable arc γ ⊂ Ω with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x−y|
ε

and

2. d(z, ∂Ω) ≥ ε|x− z| |y−z|
|x−y|

for z ∈ γ .
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This kind of domains are also called locally uniform domains [22]. For bounded do-
mains, locally uniform domains, or (ε, δ) -domains, are equivalent (see [22] point 3.4) to
the uniform domains, firstly defined by Martio and Sarvas in [34], for which there are no
more restriction |x− y| < δ for two points of Ω .

Thanks to Jones [24], it is known that any (ε, δ) -domain in Rn is a W k
p -extension

domain for all 1 ≤ p ≤ ∞ and k ∈ N∗ . Moreover, for a bounded finitely connected
domain Ω ⊂ R2 , Jones [24] proved that Ω is a W k

p -extension domain ( 1 ≤ p ≤ ∞ and
k ∈ N∗ ) iff Ω is a (ε,∞) -domain for some ε > 0 iff the boundary ∂Ω consists of finite
number of points and quasi-circles. However, it is no more true for n ≥ 3 , i.e. there are
W 1

p -extension domains which are not locally uniform [24] (in addition, a (ε, δ) -domain
in Rn with n ≥ 3 is not necessary a quasi-sphere).

To discuss general properties of locally uniform domains, let us introduce Ahlfors
d -regular sets or d -sets:

Definition 3 (Ahlfors d -regular set or d -set [26, 42, 27]) Let Γ be a closed subset
of Rn and 0 < d ≤ n . A positive Borel measure md with support Γ is called a d -measure
of Γ if, for some positive constants c1 , c2 > 0 ,

c1r
d ≤ md(Γ ∩ Br(x)) ≤ c2r

d, for ∀ x ∈ Γ, 0 < r ≤ 1,

where Br(x) ⊂ Rn denotes the Euclidean ball centered at x and of radius r . The set Γ
is a d -set if there exists a d -measure on Γ .

Thanks to Ref. [[33], p.30], any two d -measures on Γ are equivalent. Henceforth, Γ
is endowed with the d -dimensional Hausdorff measure and Lp(Γ) is defined with respect
to this measure as well.

From [42], it is known that

• All (ε, δ) domains in Rn are n -sets ( d -set with d = n ):

∃c > 0 ∀x ∈ Ω, ∀r ∈]0, δ[∩]0, 1] µ(Br(x) ∩ Ω) ≥ Cµ(Br(x)) = crn,

where µ(A) denotes the Lebesgue measure of a set A . This property is also called
the measure density condition [21]. Let us notice that a n -set Ω cannot be “thin”
close to its boundary ∂Ω .

• If Ω is an (ε, δ) -domain and ∂Ω is a d -set ( d < n ) then Ω = Ω∪∂Ω is an n -set.

In particular, a Lipschitz domain Ω of Rn is an (ε, δ) -domain and also an n -set [42].
But not every n -set is an (ε, δ) -domain: adding an in-going cusp to an (ε, δ) -domain we
obtain an n -set which is not an (ε, δ) -domain anymore. Self-similar fractals (e.g., von
Koch’s snowflake domain) are examples of (ε,∞) -domains with the d -set boundary [12,
42], d > n − 1 . From [26] p.39, it is also known that all closed d -sets with d > n − 1
preserve Markov’s local inequality:

Definition 4 (Markov’s local inequality) A closed subset V in Rn preserves Markov’s
local inequality if for every fixed k ∈ N∗ , there exists a constant c = c(V, n, k) > 0 , such
that

max
V ∩Br(x)

|∇P | ≤
c

r
max

V ∩Br(x)
|P |

for all polynomials P ∈ Pk and all closed balls Br(x) , x ∈ V and 0 < r ≤ 1 .
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For instance, self-similar sets that are not a subset of any (n − 1) -dimensional sub-
space of Rn , the closure of a domain Ω with Lipschitz boundary and also Rn itself
preserve Markov’s inequality (see Refs. [42, 28]). The geometrical characterization of sets
preserving Markov’s local inequality was initially given in [25] (see Theorem 1.3) and can
be simply interpreted as sets which are not too flat anywhere. It can be illustrated by the
following theorem of Wingren [43]

Theorem 1 A closed subset V in Rn preserves Markov’s local inequality if and only
if there exists a constant c > 0 such that for every ball Br(x) centered in x ∈ V
and with the radius 0 < r ≤ 1 , there are n + 1 affinely independent points yi ∈ V ∩
Br(x) , i = 1, . . . , n+ 1 , such that the n -dimensional ball inscribed in the convex hull of
y1, y2, . . . , yn+1 , has radius not less than cr .

Smooth manifolds in Rn of dimension less than n are examples of “flat” sets not preserv-
ing Markov’s local inequality.

The interest to work with d -sets boundaries preserving Markov’s inequality (thus
0 < d < n ), related in [9] with Sobolev-Gagliardo-Nirenberg inequality, is to ensure the
regular extensions W k

p (Ω) → W k
p (R

n) with k ≥ 2 (actually the condition applies the
continuity of the extension C∞(Ω) → C∞(Rn) ). For the extensions of minimal regularity
k = 1 (see in addition the Definition of Besov space Def.3.2 in [23] with the help of the
normalized local best approximation in the class of polynomials Pk−1 of the degree equal
to k − 1 ) Markov’s inequality is trivially satisfied.

Recently, Hajłasz, Koskela and Tuominen [21] have proved that every W k
p -extension

domain in Rn for 1 ≤ p < ∞ and k ≥ 1 , k ∈ N is a n -set. In addition, they proved
that any n -set, for which W k

p (Ω) = Ck
p (Ω) (with norms’ equivalence), is W k

p -extension
domain for 1 < p < ∞ (see [21] also for the results for p = 1 and p = ∞ ). By Ck

p (Ω)
is denoted the space of the fractional sharp maximal functions:

Definition 5 For a set Ω ⊂ Rn of positive Lebesgue measure,

Ck
p (Ω) = {f ∈ Lp(Ω)|f

♯
k,Ω(x) = sup

r>0
r−k inf

P∈Pk−1

1

µ(Br(x))

∫

Br(x)∩Ω

|f − P |dy ∈ Lp(Ω)}

with the norm ‖f‖Ck
p (Ω) = ‖f‖Lp(Ω) + ‖f ♯

k,Ω‖Lp(Ω).

The question about W k
p -extension domains is equivalent to the question of the conti-

nuity of the trace operator Tr : W k
p (R

n) →W k
p (Ω) .

Let us generalize of the notion of the trace:

Definition 6 For an arbitrary open set Ω of Rn , the trace operator Tr is defined [26,
8, 29] for u ∈ Lloc

1 (Ω) by

Tru(x) = lim
r→0

1

m(Ω ∩Br(x))

∫

Ω∩Br(x)

u(y)dy,

where m denotes the Lebesgue measure. The trace operator Tr is considered for all x ∈ Ω
for which the limit exists.

5



We summarize useful in the following results (see [26, 42, 27, 21]) for the trace and
the extension operators (see [38] for more general results for the case p > n ):

Theorem 2 Let 1 < p <∞ , k ∈ N∗ be fixed. Let Ω be a domain in Rn such that

• if n = 2 , Ω is a locally uniform domain (the boundary ∂Ω consists of finite number
of points and quasi-circles),

• if n ≥ 3 , Ω is a n -set, such that W k
p (Ω) = Ck

p (Ω) as sets with equivalent norms
(for example, a (ε, δ) -domain), with a closed d -set boundary ∂Ω , 0 < d < n ,
preserving local Markov’s inequality.

Then, for β = k − (n− d)/p > 0 , the following trace operators (see Definition 6)

1. Tr : Wk
p(R

n) → Bp,p
β (∂Ω) ⊂ Lp(∂Ω) ,

2. TrΩ : Wk
p(R

n) → Wk
p(Ω) ,

3. Tr∂Ω : Wk
p(Ω) → Bp,p

β (∂Ω)

are linear continuous and surjective with linear bounded right inverse, i.e. extension,
operators E : Bp,p

β (∂Ω) → W k
p (R

n) , EΩ : W k
p (Ω) → W k

p (R
n) and E∂Ω : Bp,p

β (∂Ω) →

W k
p (Ω) .

Note that for d = n−1 , one has β = 1
2

and B2,2
1

2

(∂Ω) = H
1

2 (∂Ω) as usual in the case

of the classical results [30, 32] for Lipschitz boundaries ∂Ω . In addition, for u, v ∈ H1(Ω)
with ∆u ∈ L2(Ω) , the Green formula still holds in the framework of dual Besov spaces
on a closed d -set boundary of Ω (see also [29, 11] for the von Koch case in R2 ):

∫

Ω

v∆udx = 〈
∂u

∂ν
,Trv〉((B2,2

β
(∂Ω))′,B2,2

β
(∂Ω)) −

∫

Ω

∇v∇udx, (3)

where the dual Besov space (B2,2
β (∂Ω))′ = B2,2

−β(∂Ω) is introduced in [27].

Proposition 1 Let Ω be a domain of Rn either satisfying the conditions of Theorem 2
or be truncated domain of a domain Ω0 by a domain Ω1 such that Ωi satisfies the
conditions of Theorem 2 for i = 0, 1 (Ω0 ⊂ Ω1 , Ω = Ω1 ∩ (Rn \ Ω0) ). Then H1(Ω) is
compactly embedded in L2(Ω) : H1(Ω) ⊂⊂ L2(Ω) .

Proof. By assumptions of the proposition, thanks to Theorem 2, if Ω = Rn \ Ω0 , then
there exists linear bounded operator EΩ : H1(Ω) → H1(Rn) (let us remark that, by
Jones [24], if Ω0 is a (ε, δ) -domain then Rn \ Ω0 is also a (ε, δ) -domain which applies
Theorem 2). By the same way, there exist linear bounded operators EΩi

: H1(Ωi) →
H1(Rn) and ERn\Ωi

: H1(Ωi) → H1(Rn) . Let us prove that for the truncated domain
ΩS the extension operator EΩS→Ω : H1(ΩS) → H1(Ω) is a linear bounded operator. It
follows from the fact that it is possible to extend Ω1 to Rn and that the properties of
the extension are local, i.e. depend on the properties of the boundary S = ∂Ω1 , which
has no intersection with Γ = ∂Ω0 . For instance, if S ∈ C1 , then we can use the standard
"reflection method" (as for instance in [1] Proposition 4.4.2). More precisely, we have to
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use a finite open covering (ωi)i of S such that for all i ωi ∩ Ω0 = ∅ . The compactness
of S and the fact that S ∩ Γ = ∅ ensure that such a covering exists. In the case of a
d -set boundary we use the Whitney extension method.

Hence, using Theorem 2, there exists a linear bounded operator A : H1(Ω) → H1(Ω1)
as a composition of the extension operator EΩ : H1(Ω) → H1(Rn) and the trace operator
TrΩ1

: H1(Rn) → H1(Ω1) (A = EΩ ◦ TrΩ1
) . Let define a parallelepiped Π in the way as

Ω ( Π, Π = {x = (x1, . . . , xn)| 0 < xi < di} . Let

Π = ⊔Nn

i=1Πi, where Πi = ⊗n
k=1[ai, ai +

dk
N

].

Consequently, the operator B = EΩS→Ω ◦ A ◦ EΩ1→Π : H1(ΩS) → H1(Π) is a linear
bounded operator as a composition of linear bounded operators. Thus, we can apply the
classical proof of the compact embedding of H1(ΩS) to L2(ΩS) , which we give for the
convenience [35]. Indeed, let (um) is a bounded sequence in H1(ΩS) . Thanks to the
boundness of B , we can extend um from ΩS to a parallelepiped Π , containing ΩS ,
such that the extensions ũm

ũm ∈ H1(Π), ũm|Ω = um, ‖um‖H1(ΩS) ≤ ‖ũm‖H1(Π)

and in addition there exists a constant C(Ω,Π) independing on um , such that

‖ũm‖H1(Π) ≤ C(Ω,Π)‖um‖H1(ΩS).

Thus, the sequence (ũm) is also a bounded sequence in H1(Π) . Since the embedding
H1(Π) to L2(Π) is continuous, the sequence (ũm) is also bounded in L2(Π) .

Thanks to [35] p. 283, in Π there holds the following inequality for all u ∈ H1(Π) :

∫

Π

u2dx ≤
Nn
∑

i=1

1

|Πi|

(
∫

Πi

udx

)2

+
n

2

∫

Π

n
∑

k=1

(

dk
N

)2(
∂u

∂xk

)2

dx. (4)

On the other hand, L2(Π) is a Hilbert space, thus weak ∗ topology on it is equal to the
weak topology. Moreover, as L2 is separable, all closed bounded sets in L2(Π) are weakly
sequentially compact (or compact in the weak topology since here the weak topology
is metrizable). To simplify the notations, we will simply write um for ũm ∈ L2(Π) .
Consequently, the sequence (um) is weakly sequentially compact in L2(Π) and we have

∃(umk
) ⊂ (um) : ∃u ∈ L2(Π) umk

⇀ u.

Here u is an element of L2 , not necessarily in H1 .
As (L2(Π))

∗ = L2(Π) , by the Riesz representation theorem,

umk
⇀ u ∈ L2(Π) ⇔ ∀v ∈ L2(Π)

∫

Π

(umk
− u)vdx→ 0.

Since (umk
) is a Cauchy sequence in weak topology on L2 , if we take v = 1Π , then

∫

Π

(umk
− umj

)dx→ 0 for k, j → +∞.
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Thus, using (4), for two members of the sub-sequence umk
with sufficiently large ranks

p and q , we have

‖up − uq‖
2
L2(ΩS)

≤ ‖up − uq‖
2
L2(Π)

≤
Nn
∑

i=1

1

|Πi|

(
∫

Πi

(up − uq)dx

)2

+
n

2N2

n
∑

k=1

d2k

∥

∥

∥

∥

∂up
∂xk

−
∂uq
∂xk

∥

∥

∥

∥

2

L2(Π)

<
ε

2
+
ε

2
= ε.

Here we have chosen N such that

n

2N2

n
∑

k=1

d2k

∥

∥

∥

∥

∂up
∂xk

−
∂uq
∂xk

∥

∥

∥

∥

2

L2(Π)

<
ε

2
.

Consequently, (umk
) is a Cauchy sequence in L2(ΩS) , and thus converges strongly in

L2(ΩS) .
�

Theorem 3 (Compactness of the trace) Let Ω0 and Ω1 be bounded domains of
Rn , satisfying conditions of Theorem 2, with d -sets boundaries Γ and S respectively
(n− 1 ≤ dΓ, dS < n ) such that Ω0 ⊂ Ω1 and Γ ∩ S = ∅ . Let Ω be the exterior or the
truncated (by Ω1 ) domain to Ω0 . Then there exist linear trace operators

TrΓ : H1(Ω) → L2(Γ) and TrS : H1(Ω) → L2(S)

which are compact. Moreover, Im(TrΓ(H
1(Ω))) = B2,2

βΓ
(Γ) for βΓ = 1 − n−dΓ

2
> 0 and

Im(TrS(H
1(Ω))) = B2,2

βS
(S) for βS = 1− n−dS

2
> 0 .

Proof. To prove the compactness of the trace operator, we can apply the proof of
Arendt [5] Proposition 8.1. We consider Tr ≡ TrΓ . For TrS the proof is identically
the same.

Let (un)n∈N be a bounded sequence in (H1(Ω), ‖.‖H1(Ω)) . Passing to a sub-sequence if

necessary, there exists u ∈ H1(Ω) such that un
H1(Ω)
⇀ u and un

L2(Ω)
→ u since the compact

embedding H1(Ω) ⊂⊂ L2(Ω) . Without loss of generality, we can assume that u = 0 .

Let us now show that Trun
L2(Γ)
→ 0 .

Let ǫ > 0 and M > 0 such that for all n ∈ N ‖∇un‖
2
L2(Ω) ≤ M . Thanks to

Theorem 2, since ImTr ⊂ L2(Γ) , we know the continuity of the trace, which can be
read: there exists C > 0 such that for all u ∈ H1(Ω) ‖Tru‖L2(Γ) ≤ C‖u‖H1(Ω) , or
equivalently [5], for all fixed β > 0 there exists c(β) > 0 such that

∀u ∈ H1(Ω) β‖Tru‖2L2(Γ) ≤ ‖∇u‖2L2(Ω) + c(β)‖u‖2L2(Ω).

Therefore, with β = M
ǫ

we have for all n ∈ N ‖Tru‖2L2(Γ)
≤ ǫ + c‖un‖

2
L2(Ω) for some

c > 0 , and consequently lim sup ‖Trun‖
2
L2(Γ)

≤ ǫ . Therefore Trun
L2(Γ)
→ 0 which completes

the proof. �
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3 Well-posedness of Robin boundary problem for the

Laplace equation

3.1 Well-posedness on a truncated domain

Let us start by a well-posedness of problem (1) for a truncated domain Ω introduced in
Section 1. Therefore, Ω is a bounded domain with a dΓ -set boundary Γ , n−1 ≤ dΓ < n
(n ≥ 2 ), with the Robin boundary condition for λ > 0 and ψ ∈ L2(Γ) , and a dS -set
boundary S , n− 1 ≤ dS < n , with the homogeneous Dirichlet boundary condition.

Let us denote H̃1(Ω) := {u ∈ H1(Ω) : TrSu = 0} . Note that, thanks to Theorem 3,
the continuity of the map TrS ensures that H̃1(Ω) is a Hilbert space. Therefore, thanks
to Proposition 1, as H1(Ω) ⊂⊂ L2(Ω) , following for instance the proof of Evans [13] (see
section 5.8.1 Theorem 1) we obtain

Proposition 2 (Poincaré inequality) For all v ∈ H̃1(Ω) there exists C > 0 , depend-
ing only on Ω and n , such that

‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω).

Therefore the semi-norm ‖ · ‖H̃1(Ω) , defined by ‖v‖H̃1(Ω) = ‖∇v‖L2(Ω) , is a norm, which

is equivalent to ‖ · ‖H1(Ω) on H̃1(Ω) .

Remark 1 Let us denote 〈v〉 = 1
V ol(Ω)

∫

Ω
vdx . Since Ω is the W 1

p -extension domain

and, as Ω is bounded, the Reillich-Kondrachov type theorem [13] (see section 5.7) ensures
W 1

p (Ω) ⊂⊂ Lp(Ω) for all 1 ≤ p ≤ ∞ , then the Poincaré inequality can be generalized
with the same proof to W 1

p (Ω) for all 1 ≤ p ≤ ∞ :

∀v ∈ W 1
p (Ω) ∃C = C(Ω, p, n) > 0 : ‖v − 〈v〉‖Lp(Ω) ≤ C‖∇v‖Lp(Ω).

Consequently, using these properties of H̃1(Ω) , we have the well-posedness of prob-
lem (1):

Theorem 4 Let Ω ⊂ Rn be a truncated domain, introduced in Theorem 3, with n ≥ 2 .
For all ψ ∈ L2(Γ) and λ ≥ 0 , there exists a unique weak solution u ∈ H̃1(Ω) of
problem (1) such that

∀v ∈ H̃1(Ω)

∫

Ω

∇u∇vdx+ λ

∫

Γ

TrΓuTrΓvdmdΓ =

∫

Γ

ψTrΓvdmdΓ . (5)

Therefore, for all λ ∈ [0,∞[ and ψ ∈ L2(Γ) the operator Bλ(S) : ψ ∈ L2(Γ) 7→ u ∈
H̃1(Ω) with u , the solution of the variational problem (5), then

1. Bλ(S) is a linear compact operator;

2. Bλ(S) is positive: if ψ ≥ 0 from L2(Γ) , then for all λ ∈ [0,∞[ Bλψ = u ≥ 0 ;

3. Bλ(S) is monotone: if 0 ≤ λ1 < λ2 , then for all ψ ≥ 0 from L2(Γ) it holds
Bλ2

(S)ψ = uλ2
≤ uλ1

= Bλ1
(S)ψ ;

9



4. If λ ∈ [0,∞[ then 0 ≤ Bλ(S)1Γ ≤ 1
λ
1Ω ;

Proof. It’s a straightforward application of the Lax-Milgram theorem. The continuity
of the two forms is ensured by the continuity of the trace operator TrΓ (see Theorem 3).
The coercivity of the symmetric bilinear form is ensured by the Poincaré inequality (see
Proposition 2). To prove the properties of the operator Bλ(S) it is sufficient to replace
WD(Ω) by H̃1(Ω) in the proof of Theorem 7. �

3.2 Functional spaces for the exterior problem

To be able to prove the well-posedness of problem (1) on an exterior domain with Dirichlet
boundary conditions at infinity, we extend the notion of (H̃1, ‖ · ‖H̃1) to the unbounded
domains. If Ω is an exterior domain of a bounded domain Ω0 , the usual Poincaré
inequality does not hold anymore and, hence, we don’t have Proposition 2. For this
purpose, we use [31, 6] and define for Ω = Rn\Ω0 , satisfying the conditions of Theorem 2,

W (Ω) := {u ∈ H1
loc(Ω),

∫

Ω

|∇u|2dx <∞}.

Remark 2 Let us fix a r0 > 0 in the way that there exists x ∈ Rn such that Ω0 ⊂
Br0(x) = {y ∈ Rn| |x − y| < r0} and for all r ≥ r0 define Ωr = Ω ∩ Br(x) . Thanks to
Remark 1, locally we always have the Poincaré inequality :

∀u ∈ W (Ω) ‖u− 〈u〉‖Lloc
2

(Ω) ≤ Cloc‖∇u‖Lloc
2

(Ω) ≤ Cloc‖∇u‖L2(Ω) <∞,

which implies that for all r ≥ r0 the trace u|Ωr
∈ H1(Ωr) (see Theorem 3). Therefore,

as in [6], it is still possible to consider (but we don’t need it)

W (Ω) = {u : Ω → C|u is measurable, ∀r > r0 u|Ωr
∈ H1(Ωr) and

∫

Ω

|∇u|2 <∞}.

Thanks to G. Lu and B. Ou (see [31] Theorem 1.1 with p = 2 ), we have

Theorem 5 Let u ∈ W (Rn) with n ≥ 3 . Then there exists the following limit:

(u)∞ = lim
R→∞

1

|BR|

∫

BR

udx.

Moreover, there exists a constant c > 0 , depending only on the dimension n , but not on
u , such that:

‖u− (u)∞‖L 2n
n−2

(Rn) ≤ c‖∇u‖L2(Rn).

In [31] Section 5, G. Lu and B. Ou extend this result to exterior domains with a
Lipschitz boundary. Their proof is based on the existence of a continuous extension
operator. Therefore, thanks to Theorem 2, we generalize Theorem 5.2 and Theorem 5.3
of G. Lu and B. Ou and take p = 2 , according to our case.
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Theorem 6 Let n ≥ 3 and Ω satisfy the conditions of Theorem 3. There exists c :=
c(n,Ω) > 0 so that for all u ∈ W (Ω) there exists (u)∞ ∈ R such that

(

∫

Ω

|u− (u)∞|
2n
n−2 )

n−2

2n ≤ c(n,Ω) ‖∇u‖L2(Ω). (6)

Moreover, it holds

1. The space W (Ω) is a Hilbert space, corresponding the inner product

(u, v) :=

∫

Ω

∇u.∇vdx+ (u)∞(v)∞.

The associated norm is denoted by ‖u‖W (Ω) .

2. The following norms are equivalent to ‖ · ‖W (Ω) :

‖u‖Γ,Ω = (‖∇u‖2L2(Ω) + ‖Tru‖2L2(Γ))
1/2, ‖u‖A,Ω = (‖∇u‖2L2(Ω) + ‖u‖2L2(A))

1/2,

where A ⊂ Ω be a bounded measurable set with V ol(A) > 0 .

3. There exists a continuous extension operator E : W (Ω) →W (Rd) .

4. The map Tr : W (Ω) → L2(Γ) is compact.

Proof. The real number (u)∞ in the inequality (6) is merely the ’average’ of an extension
of u to Rn , as defined in Theorem 5.

Thanks to Theorem 2, we update Theorem 5.2 and 5.3 [31] to obtain the inequality (6).
Completeness of W (Ω) follows from Ref. [31] by updating the proof of Theorem 2.1. Let
us notice the importance of the Sobolev embedding H1(Rn) ⊂ L 2n

n−2

(Rn) which holds for

n ≥ 3 , but false for n = 2 . The equivalence of norms follows from Proposition 2.5 [6]
and Theorems 2 and 3.

To prove point 3, we notice that the extension operator E is continuous if and only
if Ω is such that the extension EΩ : H1(Ω) → H1(Rn) is a linear continuous operator.
what is true in our case .

In addition, the continuity of EΩ ensures that, independently on the geometric prop-
erties of the truncated boundary S (S ∩ Γ = ∅ ), for all (bounded) truncated domains
ΩS the extension operator E0 : H1(ΩS) → H1(ΩS ∪ Ω0) is continuous. Indeed, if
EΩ : H1(Ω) → H1(Rn) is continuous, then H1

loc(Ω) → H1(Rn) is also continuous
and hence, we can consider only functions with a support on ΩS and extend them to
ΩS ∪ Ω0 = Rn ∩ Ω1 to obtain the continuity of E0 .

In our case, since Ω satisfies the conditions of Theorem 3, EΩ is continuous. To prove
the continuity of the extension operator E : W (Ω) → W (Rd) , as in [6] Proposition 2.5,
we use point 2 for A equal to a truncated domain ΩS and also the obvious inclusions (see
Fig. 1) Rn \ (ΩS ∪Ω0) ⊂ Ω and ΩS ⊂ Ω . We find for all u ∈ W (Ω) that, independently
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on the form of S ,

‖u‖2ΩS ,Rn =

∫

Rn

|∇Eu|2dx+

∫

ΩS

|Eu|2dx

=

∫

Rn\(ΩS∪Ω0)

|∇Eu|2dx+

∫

ΩS∪Ω0

|∇Eu|2dx+

∫

ΩS

|Eu|2dx

≤

∫

Rn\(ΩS∪Ω0)

|∇u|2dx+ ‖Eu‖2
H1(ΩS∪Ω0)

≤

∫

Ω

|∇u|2dx+ ‖E0‖
2‖u‖2H1(ΩS)

≤ (1 + ‖E0‖
2)‖u‖2ΩS,Ω

,

which ensures, with the equivalence of the norms, that E is continuous.
To prove point 4, we notice that Tr : W (Ω) → L2(Γ) is a composition of two traces

operators:

Tr = TrΓ ◦ TrW→H1, T rW→H1 : W (Ω) → H1(ΩS), T rΓ : H1(ΩS) → L2(Γ).

Thus it is important to have Γ , S , Ω and ΩS satisfying the conditions of Theorem 3,
which ensures that TrW→H1 is continuous, i.e.

‖u‖2H1(ΩS)
≤ C(‖∇u‖2L2(Ω) + ‖u‖2L2(ΩS)

),

and TrΓ is compact. �

To have an analogy in the unbounded case with H̃1 for a truncated domain, let
us introduce, as in [6], the space WD(Ω) as the closure of the space { u|Ω : u ∈
D(Rn) n ≥ 3} with respect to the norm u 7→ (

∫

Ω
|∇u|2)1/2 . Therefore, for the inner

product (u, v)WD(Ω) =
∫

Ω
∇ u.∇ v , the space (WD(Ω), (., .)WD(Ω)) is a Hilbert space (see

a discussion about it on p.8 of Ref. [31]).
It turns out that WD(Ω) is the space of all u ∈ W (Ω) with average zero:

Proposition 3 Let Ω be a unbounded (actually, exterior) domain in Rn with n ≥ 3 .
The space WD(Ω) has co-dimension 1 in W (Ω) . Moreover

WD(Ω) = W (Ω) ∩ L 2n
n−2

(Ω) = {u ∈ W (Ω) : (u)∞ = 0}.

Proof. See [6] Proposition 2.6 and references therein. �

Remark 3 Note that, as n ≥ 3 , H1(Ω) ⊂ W (Ω) ∩ L 2n
n−2

(Ω) = WD(Ω) , which is false

for n = 2 .

3.3 Well-posedness of the exterior problem and its approximation

Given ψ ∈ L2(Γ) and λ ≥ 0 , we consider the Dirichlet problem on the exterior domain
Ω with Robin boundary conditions on the boundary Γ in Rn , n ≥ 3 :

−∆u = 0 x ∈ Ω,

λTru+ ∂νu = ψ x ∈ Γ. (7)
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At the infinity we consider Dirichlet boundary conditions. In [6] W. Arendt and A.F.M
ter Elst also consider Neumann boundary conditions at infinity. Those results apply as
well in our setting but we chose to focus on the Dirichlet boundary conditions at infinity
in order not to clutter the presentation. It is worth emphasizing that in the following we
only consider weak formulations that we describe below.

Since (see Subsection 3.2) H1(Ω) ⊂ WD(Ω) ⊂ W (Ω) by their definitions, therefore
we need to update the definition of the normal derivative given by Eq. 3 in Section 2 to
be able to work with elements of W (Ω) .

Definition 7 Let u ∈ W (Ω) and ∆u ∈ L2(Ω) . We say that u has a normal derivative
ψ on Γ , denoted by ∂νu = ψ , if ψ ∈ L2(Γ) and for all v ∈ D(Rn)

∫

Ω

(∆u)vdx+

∫

Ω

∇u · ∇vdx =

∫

Γ

ψTr vdmd. (8)

Remark 4 Definition 8 defines a weak notion of normal derivative of a function in W (Ω)
in the distributional sense, if it exists. If it exists, it is unique. In addition, thanks to
the definition of the space WD(Ω) , functions v ∈ D(Rn) considered on Ω are dense in
WD(Ω) , thus, by the density argument, Eq. (8) holds for all v ∈ WD(Ω) (see [6] p. 321).

Next we define the associated variational formulation for the exterior problem 7:

Definition 8 Let ψ ∈ L2(Γ) and λ ≥ 0 , we say that u ∈ WD(Ω) is a weak solution to
the Robin problem with Dirichlet boundary conditions at infinity if

∀v ∈ WD(Ω)

∫

Ω

∇u∇vdx+ λ

∫

Γ

TruTrv dmd =

∫

Γ

ψTrv dmd. (9)

The variational formulation (9) is well-posed:

Theorem 7 Let Ω be the exterior of a bounded domain Ω0 satisfying the conditions of
Theorem 2 with a d -set boundary Γ (n − 1 ≤ d < n , n ≥ 3 ). For all λ ∈ [0,∞[ and
for all ψ ∈ L2(Γ) there exists a unique weak solution u ∈ WD(Ω) to the Robin problem
with Dirichlet boundary conditions at infinity in the sense of Definition 8. Moreover, if
the operator Bλ is defined by

Bλ : ψ ∈ L2(Γ) 7→ u ∈ WD(Ω)

with u , the solution of Eq. (9), then it satisfies the same properties as the operator Bλ(S)
introduced in Theorem 4 for the truncated domains (see points 1–4): Bλ is a linear
compact, positive and monotone operator with 0 ≤ λBλ1Γ ≤ 1Ω for all λ ∈ [0,∞[ .

Proof. As the trace operator Tr is continuous from WD(Ω) to L2(Γ) thanks to The-
orem 6, the well-posedness of Eq. (9) and the continuity of Bλ follow from the application
of the Lax-Milgram theorem in the Hilbert space WD(Ω) . To prove the compactness of
Bλ we follow Ref. [6] Proposition 3.9. Indeed, let λ ∈ [0,∞[ and (ψk)k∈N be a bounded
sequence in L2(Γ) . Then there exists ψ ∈ L2(Γ) such that, up to a sub-sequence,

ψk
L2(Γ)
⇀ ψ . For all k ∈ N we set uk = Bλψk and u = Bλψ . From the continuity of
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Bλ it follows that uk
WD(Ω)
⇀ u . Therefore, Truk

L2(Γ)
→ Tru , since the trace operator Tr is

compact from WD(Ω) to L2(Γ) (see Theorem 6 point 4).
Let k ∈ N , choosing v = uk in Eq. (9), we obtain

‖uk‖
2
WD(Ω) =

∫

Ω

|∇uk|
2dx =

∫

Γ

ψTrukdmd − λ

∫

Γ

|Truk|
2dmd.

Consequently, using Eq. (9) with v = u , we have

lim
k→∞

∫

Ω

|∇uk|
2dx =

∫

Γ

ψTru dmd − λ

∫

Γ

|Tru|2dmd =

∫

Ω

|∇u|2dx = ‖u‖2WD(Ω).

Hence ‖uk‖WD(Ω) → ‖u‖WD(Ω) and consequently Bλ is compact.
The positivity and the monotone property of Bλ follow respectively from Ref. [6]

Proposition 3.5 and Proposition 3.7 a). The equality 0 ≤ λBλ1Γ ≤ 1Ω follows from
Ref. [6] Proposition 3.6 and Corollary 3.8 b). �

Now, let us show that the truncated problem, studied in Subsection 3.1, independently
of the form of the boundary S , is an approximation of the exterior problem in Rn with
n ≥ 3 . We denote by ΩS the exterior domain Ω , truncated by the boundary S . In this
framework, we also truncate [6] the space WD(Ω) , introducing a subspace

WD
S (Ω) := {u ∈ WD(Ω) : u|Rn\ΩS

= 0}

which is closed and thus is a Hilbert space for the inner product (·, ·)WD(Ω) . Since

H1
0 (Ω1) = {u|Ω1

: u ∈ H1(Rn) and u|Rn\Ω1
= 0},

we notice that the map Ψ : u ∈ WD
S (Ω) 7→ u|ΩS

∈ H̃1(ΩS) is a bi-continuous bijec-
tion. Consequently, problem (5) is also well-posed in WD

S (Ω) with the same properties
described in Theorem 4.

In what follows, we will also suppose that the boundary S is far enough from the
boundary Γ . Precisely, we suppose that Ω0 ⊂ Br is a domain (all time satisfying the
conditions of Theorem 2) included in a ball of a radius r0 > 0 (which exists as Ω0 is
bounded) and ΩSr

with r ≥ r0 is such that (Rn \ Ω0) ∩ Br ⊂ ΩSr
with ∂Br ∩ Sr = ∅ .

If r → +∞ the boundaries Sr (for each r ≥ r0 the domains ΩSr
satisfy the conditions

of Theorem 2) will be more and more far from Γ and in the limit ΩSr
gives Ω . Let us

precise the properties of solutions u ∈ WD
S (Ω) for the truncated problem to compare to

the solutions of the exterior domain:

Lemma 1 Let Ω0 , Ω and ΩS (or ΩSr
for all r ≥ r0 > 0 ) satisfy conditions of The-

orem 3 in Rn with n ≥ 3 . Let Bλ(S) : ψ ∈ L2(Γ) 7→ u ∈ WD
S (Ω) be the operator for

the truncated problem and Bλ : ψ ∈ L2(Γ) 7→ u ∈ WD(Ω) be the operator for the exterior
problem.

Then for all λ ∈ [0,∞[ and ψ ∈ L2(Γ) , if ψ ≥ 0 in L2(Γ) and r2 ≥ r1 ≥ r0 , then

0 ≤ uSr1
= Bλ(Sr1)ψ ≤ uSr2

= Bλ(Sr2)ψ ≤ Bλψ = u.
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Proof.

The proof follows the analogous proof as in Ref. [6] Propositions 3.5 and 3.6 (see
also [6] Proposition 4.4). � We can now state the approximation result, ensuring that a
solution in any admissible truncated domain, even with a fractal boundary, but which is
sufficiently far from Γ is an approximation of the solution of the exterior problem:

Theorem 8 Let λ ∈ [0,∞) , ψ ∈ L2(Γ) and (Sm)m∈N be a fixed sequence of the bound-
aries of the truncated domains ΩSm

, satisfying for all m ∈ N the conditions of Theorem 3
and such that (ΩSm

∪ Ω0) ⊃ Bm ⊃ Ω0 . Let uSm
= Bλ(Sm)ψ and u = Bλψ . Then for

all ε > 0 there exits m0(ε) > 0 , independent on the chosen sequence of the boundaries
(Sm) , such that

∀m ≥ m0 ‖uSm
− u‖WD(Ω) < ε.

Equivalently, for all described sequences (Sm)m∈N , it holds

‖Bλ(Sm)− Bλ‖L(L2(Γ),WD(Ω)) → 0 as m→ +∞.

Proof.It is a simple generation using our previous results of Theorem 4.3 [6]. �

4 Spectral properties of the Poincaré-Steklov operator

defined by the interior and by the exterior problems

The Poincaré-Steklov operator, also named the Dirichlet-to-Neumann operator, was orig-
inally introduced by V.A. Steklov and usually defined by a map A : u|Γ 7→ ∂u

∂ν
|Γ for a

solution u of the elliptic Dirichlet problem: −∆u = 0 in a domain Ω and u|Γ = f
( ∂Ω = Γ ).

It is well-known that if Ω is a bounded domain with C∞ -regular boundary (a regular
manifolds with boundary), then the operator A : C∞(Γ) → C∞(Γ) is an elliptic self-
adjoint pseudo-differentiable operator of the first order (see [40] § 11 and 12 of Chapter
7) with a discrete spectrum

0 = λ0 < λ1 ≤ λ2 ≤ . . . , with λk → +∞ k → +∞.

If A is considered as an operator H1(Γ) → L2(Γ) , then its eigenfunctions form a basis
in L2(Γ) . For any Lipschitz boundary Γ of a bounded domain Ω , the Dirichlet-to-
Neumann operator A : H

1

2 (Γ) → H− 1

2 (Γ) is well-defined and it is a linear continuous
self-adjoint operator. Thanks to [4], we also know that the Dirichlet-to-Neumann opera-
tor A has compact resolvent, and hence discrete spectrum, as long as the trace operator
Tr : H1(Ω) → L2(Γ) is compact (see also [5] and [41] for abstract definition of the elliptic
operators on a d -set). Thus, thanks to Theorem 3, the property of the compact resolvent
also holds for bounded n -set Ω with a d -set boundary Γ (see the conditions on Ω in
Theorem 3). We will discuss this method in details in the next section. From [7], we also
have that KerA 6= {0} since 0 is the eigenvalue of the Neumann eigenvalue problem for
the Laplacian. For the Weil asymptotic formulas for the distribution of the eigenvalues
of the Dirichlet-to-Neumann operator there are results for bounded smooth compact Rie-
mannian manifolds with C∞ boundaries [16], for polygons [17] and more general class of
plane domains [15] and also for a bounded domain with a fractal boundary [37].
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In the aim to relate these spectral results obtained for the Dirichlet-to-Neumann op-
erator for a bounded domain with the case of the exterior domain, we prove the following
Theorem:

Theorem 9 Let Ω0 ⊂ Rn be a bounded domain with a boundary Γ and let Ω = Rn\Ω0 be
its complement in Rn satisfying conditions of Theorem 3. Then the Dirichlet-to-Neumann
operator A : L2(Γ) → L2(Γ) , associated with the Laplacian on Ω0 or Ω , has a compact
resolvent and a discrete positive spectrum, denoted by σint and σext ⊂ [0,+∞[ for the
interior and the exterior problem respectively. Moreover, all non-zero eigenvalue of the
Dirichlet-to-Neumann operator of the interior problem is also a eigenvalue of the Dirichlet-
to-Neumann operator of the exterior problem and converse. Hence the eigenfunctions form
the same basis in L2(Γ) . More precisely,

• For n = 2 the spectrum σint = σext ⊂ R+ and 0 ∈ σext . In addition, let λk(r) ∈
σS(r) , where σS(r) ⊂ R+

∗ is the spectrum of the Dirichlet-to-Neumann operator
associated with the truncated domain ΩSr

, satisfying for all r > 0 the conditions
of Theorem 3 and such that (ΩSr

∪ Ω0) ⊃ Br ⊃ Ω0 . If λ0(r) = mink∈N λk(r) , then
λ1(r) → 0 for r → +∞ independently on the form of Sr .

• For n > 2 the spectrum σint = {0} ∪ σext with σext ⊂]0,+∞[ , i.e. the Dirichlet-
to-Neumann operator of the exterior problem, also as of the truncated problem, is a
injective operator with the compact inverse.

To prove Theorem 9 we need to define the Dirichlet-to-Neumann operator on a d -set Γ
in L2(Γ) . Hence, we firstly do it in Section 5 and then give the proof in Section 6.

5 Poincaré-Steklov operator on d -set

5.1 On a bounded domain

Let Ω be a closed (ε, δ) -domain with a d -set boundary Γ (n − 1 ≤ d < n , n ≥ 2 ).
Knowing the well-posedness results for the Dirichlet problem (Theorem 7 [28]) and the
definition of the normal derivative by the Green formula (3), thanks to [27], we notice
that the general setting of [7] p. 5904 for Lipschitz domains (see also [36] Theorem
4.10) still holds in the case for a d -set boundary by replacing H

1

2 (Γ) by B2,2
β (Γ) with

β = 1 − n−d
2

> 0 and H− 1

2 (Γ) by B2,2
−β(Γ) . Precisely, we have that for all λ ∈ C the

Dirichlet problem
−∆u = λu, u|Γ = φ (10)

is solvable if φ ∈ B2,2
β (Γ) satisfies

〈∂νψ, φ〉B2,2
−β

(Γ)×B2,2
β

(Γ) = 0

for all solutions ψ ∈ H1(Ω) of the corresponding homogeneous problem

−∆ψ = λψ, ψ|Γ = 0. (11)
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We are especially interesting in the case λ = 0 . Thus, we directly conclude that prob-
lem (11) has only the trivial solution ψ = 0 (λ = 0 is not an eigenvalue of the Dirichlet
Laplacian), and consequently the Poincaré-Steklov operator A : B2,2

β (Γ) → B2,2
−β(Γ) map-

ping u|Γ to ∂νu|Γ is well-defined on B2,2
β (Γ) .

In the other hand, as it was done in [5] for bounded domains with (n−1) -dimensional
boundaries, it is also possible to consider A as operator from L2(Γ) → L2(Γ) , if we
consider the trace map Tr : H1(Ω) → L2(Γ) (note that B2,2

β (Γ) ⊂ L2(Γ) ) and update
the definition of the normal derivative by analogy with Definition 7:

Definition 9 Let u ∈ H1(Ω) and ∆u ∈ L2(Ω) . If there exists ψ ∈ L2(Γ) such that for
all v ∈ H1(Ω) it holds Eq. (8), then ψ is called a L2 -normal derivative of u , ∂νu = ψ .

Definition 9 restricts the normal derivative of u , which is naturally in B2,2
−β(Γ) , to a

consideration of only the normal derivative from its dense subspace. Thus, the L2 -normal
derivative can does not exist, but if it exits, it is unique.

Therefore, to define the Dirichlet-to-Neumann operator on L2(Γ) , we use the following
Theorem from [5] (see Theorem 3.4)

Theorem 10 Let D(a) be a real vector space and let a : D(a)×D(a) → R be bilinear
symmetric such that a(u, u) ≥ 0 for all u ∈ D(a) . Let H be a real Hilbert space and
let j : D(a) → H be linear operator with dense image. Then there exists an operator A
on H such that for all φ, ψ ∈ H , one has φ ∈ D(A) and Aφ = ψ if and only if there
exists a sequence (uk)k∈N in D(a) such that:

1. limn,m→∞ a(un − um, un − um) = 0 ,

2. limn→∞ j(uk) = φ in H ,

3. for all v ∈ D(a) limk→∞ a(uk, v) = (ψ, j(v))H .

Moreover, A is positive and self-adjoint. The operator A is called the operator associated
with (a, j) .

Consequently we state

Theorem 11 Let Ω be a closed (ε, δ) -domain with a d -set boundary Γ (n−1 ≤ d < n ,
n ≥ 2 ). Then the Poncaré-Steklov operator A : B2,2

β (Γ) → B2,2
−β(Γ) mapping u|Γ to ∂νu|Γ

is linear bounded self-adjoint operator with KerA 6= {0} . In addition, the Poncaré-Steklov
operator A , considered from L2(Γ) to L2(Γ) , is self-adjoint positive operator with a
compact resolvent. Therefore, there exists a discrete spectrum of A with eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . . , with λk → +∞ k → +∞

and the corresponding eigenfunctions forms an orthonormal basis in L2(Γ) .

Proof. We have already noticed that the domain of A is exactly B2,2
β (Γ) . As 0 is an

eigenvalue of the Neumann Laplacian, KerA 6= {0} . From the following Green formula
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for u, v ∈ H1(Ω) with ∆u, ∆v ∈ L2(Ω)
∫

Ω

∆uvdx−

∫

Ω

u∆vdx

= 〈
∂u

∂ν
,Trv〉B2,2

−β
(Γ),B2,2

β
(Γ) − 〈Tru,

∂v

∂ν
〉B2,2

β
(Γ),B2,2

−β
(Γ),

we directly find that for all u, v ∈ B2,2
β (Γ)

〈Au, v〉B2,2
−β

(Γ),B2,2
β

(Γ) = 〈u,Av〉B2,2
β

(Γ),B2,2
−β

(Γ),

i.e. the operator A is self-adjoint and closed. Since B2,2
−β(Γ) is a Banach space, by the

closed graph Theorem, A is continuous.
To define A as an operator on L2(Γ) we use [5, 4, 2]. As Ω is such that the

trace operator Tr is compact from H1(Ω) to L2(Γ) , then the embedding of its im-
age Tr(H1(Ω)) = B2,2

β (Γ) into L2(Γ) is compact. Now, as it was noticed in [4], the space
{v|Γ : v ∈ D(Rn)} is dense in C(Γ) by the Stone-Weierstrass theorem for the uniform
norm and, therefore, it is also dense in L2(Γ) , since we endowed Γ with the d -dimensional
Hausdorff measure which is Borel regular. Hence, B2,2

β (Γ) is dense in L2(Γ) . It allows
us to apply Theorem 2.2 and follow Section 4.4 of Ref. [2]. We notice that, thanks to [42]
Theorem 3, KerTr = H1

0 (Ω) and, thanks to Lemma 2.2 [4], H1(Ω) = H1
0 (Ω) ⊕H with

H = {u ∈ H1(Ω)| ∆u = 0 weakly}. Hence, Tr(H) = B2,2
β (Γ) and Tr : H → B2,2

β (Γ) is a

linear bijection. Therefore, the bilinear map a0 : B
2,2
β (Γ)×B2,2

β (Γ) → R , given by

a0(φ, ψ) =

∫

Ω

∇u∇v for u, v ∈ H Tru = φ, Trv = ψ, (12)

is symmetric, continuous and elliptic [3] (see Proposition 3.3, based on the compactness of
the embedding H → L2(Ω) and on the injective property of the trace from H → L2(Γ) ):

∃ω ≥ 0 such that ∀u ∈ H a0(Tru,Tru) + ω

∫

Γ

|u|2dmd ≥
1

2
‖u‖2H1(Ω).

If the operator N : L2(Γ) → L2(Γ) is the operator associated with a0 , then it is the
Dirichlet-to-Neumann operator A on L2(Γ) , i.e. Aφ = ∂νu in L2(Γ) with D(A) =
{φ ∈ L2(Γ)| ∃u ∈ H1(Ω) such that Tru = φ, ∆u = 0 and ∃∂νu ∈ L2(Γ)} . Moreover,
we have that for all φ ∈ L2(Γ) , φ ∈ D(A) and there exists an element ψ = Aφ of L2(Γ)
if and only if there exists u ∈ H1(Ω) such that Tru = φ and

∀v ∈ H1(Ω)

∫

Ω

∇u∇v =

∫

Γ

ψTrvdmd.

In other hand, we also can directly use Theorem 3.3 in Ref. [5], by applying The-
orem 10. Let now D(a) = H1(Ω) ∩ C(Ω) , which is dense in H1(Ω) (see the discus-
sion of Ref. [5]). Then Tr(D(a)) is dense in L2(Γ) . Therefore, taking in Theorem 10
a(u, v) =

∫

Ω
∇u∇vdx : D(a) × D(a) → R , H = L2(Γ) and j = Tr : D(a) → L2(Γ) ,

which is compact, we conclude that the operator associated to (a,Tr) is the Dirichlet-to-
Neumann operator A , positive and self-adjoint in L2(Γ) (see the proof of Theorem 3.3
in Ref. [5]). As the compactness of the trace implies that A has a compact resolvent, it
is sufficient to apply the Hilbert-Schmidt Theorem to finish the proof. �
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5.2 On the exterior and truncated domains

In this subsection we generalize [6] and introduce the Dirichlet-to-Neumann operator A
on L2(Γ) with respect to the exterior domain Ω ⊂ Rn and AS with respect to a truncated
domain for n ≥ 2 in the framework of d -sets using the Theorem 10.

Definition 10 (Dirichlet-to-Neumann operator for the exterior domain n ≥ 3 )
Let Ω ⊂ Rn , n ≥ 3 , be an exterior domain satisfying the conditions of Theorem 3. The
operator A : L2(Γ) → L2(Γ) , associated with the bilinear form aD :WD(Ω)×WD(Ω) → R

given by

aD(u, v) =

∫

Ω

∇u∇vdx = 〈u, v〉WD(Ω),

and the trace operator Tr : WD(Ω) → L2(Γ) , is called the Dirichlet-to-Neumann operator
with the Dirichlet boundary condition at infinity.

Remark 5 Theorem 10 does not require to D(a) the completeness, i.e. a(·, ·) can be
equivalent to a semi-norm on D(a) , what is the case of WD(Ω) with a(u, u) =

∫

Ω
|∇u|2dx

for n = 2 . Therefore, it allows us to define the Dirichlet-to-Neumann operator A of the
exterior problem in R2 , which can be understood as the limit case for r → +∞ of the
problem for a truncated domain well-posed in H̃1(ΩSr

) . In the case of WD(Ω) in Rn

with n ≥ 3 , we have that D(a) =WD(Ω) is the Hilbert space corresponding to the inner
product a(·, ·) .

Let us notice that the trace on the Γ satisfies Tr(D(Rn)) ⊂ Tr(WD(Ω)) ⊂ L2(Γ) and,
since Tr(D(Rn)) is dense in L2(Γ) , Tr(WD(Ω)) is dense in L2(Γ) . In addition, aD is
Tr -elliptic thanks to point 2 of Theorem 6, i.e. there exists α ∈ R and δ > 0 such that

∀u ∈ WD(Ω)

∫

Ω

|∇u|2dx+ α

∫

Γ

|Tru|2dmd ≥ δ

∫

Ω

|∇u|2dx.

Thus, for n ≥ 3 we can also apply Theorem 2.2 and follow Section 4.4 of Ref. [2].
For the two-dimensional case, we define A associated to the bilinear form a0 from

Eq. (12), initially given for the interior case:

Proposition 4 (Dirichlet-to-Neumann operator for the exterior domain n = 2 )
Let Ω ⊂ R2 be an exterior domain satisfying the conditions of Theorem 3. The operator
A : L2(Γ) → L2(Γ) , associated with the bilinear form a0 , defined in Eq. (12), is the
Dirichlet-to-Neumann operator with the Dirichlet boundary condition at infinity in the
sense that for all φ ∈ L2(Γ) , φ ∈ D(A) and there exists an element ψ = Aφ of L2(Γ)
if and only if there exists u ∈ H1(Ω) such that Tru = φ and

∀v ∈ H1(Ω)

∫

Ω

∇u∇v =

∫

Γ

ψTrvdmd.

Proof. We use that H1(R2) = H1
0 (R

2) and that the compactness of the embedding
H = {u ∈ H1(Ω)| ∆u = 0 weakly} ⊂ L2(Ω) and the injective property of the trace from
H to L2(Γ) still hold for the exterior case. In addition 0 is not an eigenvalue of the
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Dirichlet Laplacian on Ω . Thus we can follow the proof of Lemma 3.2 and Proposition
3.3 in [3], given for a Lipschitz bounded domain. �

The following proposition legitimates Definition 10 in the framework of Theorem 10
for n ≥ 3 :

Proposition 5 Let φ , ψ ∈ L2(Γ) . The following are equivalent:
φ ∈ D(A) and Aφ = ψ if and only if there exists a function u ∈ WD(Ω) such that

Tru = φ , ∆u = 0 and ∂νu = ψ .

Proof. Let φ , ψ ∈ L2(Γ) such that φ ∈ D(A) and Aφ = ψ . Then, according to
Theorem 10, there exists a sequence (uk)k∈N in WD(Ω) such that

1. limk,m→∞

∫

Ω
|∇(uk − uk)|

2 = 0 ,

2. limk→∞Truk = φ ,

3. limk→∞

∫

Ω
∇uk∇v =

∫

Γ
ψTrv for all v ∈ WD(Ω) .

Form item 1 it follows that (uk)k∈N is a Cauchy sequence in WD(Ω) . Therefore, by the
completeness of WD(Ω) (thanks to n ≥ 3 ), there exists u ∈ WD(Ω) such that uk → u
in WD(Ω) . Moreover, since Tr : WD(Ω) → L2(Γ) is continuous by point 4 of Theorem 6,
Tru = φ according to item 2. From item 3 we deduce that for all v ∈ WD(Ω)

∫

Ω

∇u∇v =

∫

Γ

ψTrv, (13)

and hence, in particular for all v ∈ D(Ω) . Therefore ∆u = 0 . This with Eq. (13) yields
that u has a normal derivative in L2(Γ) and ∂νu = ψ .

Conversely, let φ , ψ ∈ L2(Γ) be such that there exists a function u ∈ WD(Ω) , so
that Tru = φ , ∆u = 0 , ∂νu = ψ . According to the definition of normal derivatives (see
Definition 7 and Remark 4), since ∆u = 0 , we have for all v ∈ WD(Ω) :

∫

Ω

∇u∇v =

∫

Γ

ψTrv.

Therefore, for n ≥ 3 we can apply the Theorem 10 to the sequence, defined by uk = u
for all k ∈ N , and the result follows. � Let us notice that the Dirichlet-to-Neumann
operator AS for the truncated domain by a dS set S (n− 1 ≤ dS < n ) can be defined
absolutely in the same way as A for the exterior domain if we replace WD(Ω) by H̃1(ΩS)
or, equivalently, by WD

S (Ω) .
Consequently, for the exterior and truncated domain we have

Theorem 12 Let Ω be the exterior domain in Rn with n ≥ 3 and ΩS be a truncated
domain in Rn with n ≥ 2 satisfying conditions of Theorem 3 and λ ∈ [0,∞[ . Then
the Dirichlet-to-Neumann operator with the Dirichlet boundary condition at infinity A :
L2(Γ) → L2(Γ) (see Definition 10) and the Dirichlet-to-Neumann operator AS of the
truncated domain are positive self-adjoint operators with a compact resolvent

∀λ ∈ [0,+∞[ (λI + A)−1 = TrΓ ◦Bλ, (λI + AS)
−1 = TrΓ ◦Bλ(S)
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where Bλ : ψ ∈ L2(Γ) 7→ u ∈ WD(Ω) with u , the solution of Eq. (9), and Bλ(S) :
ψ ∈ L2(Γ) 7→ u ∈ WD

S (Ω) with u , the solution of Eq. (5) are defined in Theorem 7 and
Theorem 4 respectively. Moreover, KerA = KerAS = {0} and for n ≥ 3 , independently
on a d -set Sr ( (Rn \ Ω0) ∩ Br ⊂ ΩSr

with ∂Br ∩ Sr = ∅ ),

∀λ ∈ [0,+∞[ ‖(λI + ASr
)−1 − (λI + A)−1‖L(L2(Γ)) → 0 as r → +∞.

Therefore, the spectrum of A and AS are discrete with all eigenvalues (λk)k∈N strictly
positive

0 < λ0 < λ1 ≤ λ2 ≤ . . . , with λk → +∞ k → +∞,

and the corresponding eigenfunctions forms an orthonormal basis of L2(Γ) .

Proof. The compactness of the resolvents (λI +A)−1 and (λI +AS)
−1 directly follows

from the compacteness properties of the operators TrΓ , Bλ , Bλ(S) . Using the previous
results and the Hilbert-Schmidt Theorem for self-adjoint compact operators on a Hilbert
space, we finish the proof. �

6 Proof of Theorem 9 and final remarks

Now, we can prove Theorem 9: Proof. For n > 2 the statement of the theorem directly
follows from Theorems 11 and 12 (see also [18] pp. 129-132 and 134 for the explicit
calculus of the interior and exterior spectra of A for a ball).

For n = 2 we also have Theorem 11 and Proposition 4. Let us prove that if n = 2
the resolvent (λI +A(Sr))

−1 → (λI +Aint)−1 for r → +∞ in L(L2(Γ)) , where by Aint

is denoted the Dirichlet-to-Neumann operator corresponding to the bounded domain Ω0

(the interior case).
It holds in the case of a ball for n = 2 by an explicit calculus (see [18] pp. 129-132).

For a Lipschitz plane boundary, it is sufficient to apply a conform map to project Γ to a
sphere and hence to obtain the same result. If Ω0 is a (ε, δ) -domain in R2 , by [24], its
boundary is a quasi-circle. Let us take a sequence of conformal to the circle boundaries,
for example, if Ω0 is a snowflake of the Von Koch, corresponding to the sequence of the
fractal generations (of its complement), Γj , which for j → +∞ becomes Γ such that
Ωj,S ⊂ Ωj+1,S and ΩS = ∪∞

i=1Ωj,S .
Thus, for each Γj there exist Aj(Sr) and Aint

j with compact resolvent on L2(Γj) and
(λI + Aj(Sr))

−1 → (λI + Aint
j )−1 for r → +∞ in L(L2(Γj)) . Thanks to Theorem 11,

there also exist Aint on the d -set Γ , positive self-adjoint on L2(Γ) with a compact
resolvent and 0 ∈ σint .

Thanks to the relation (λI +Aj(Sr))
−1 = Tr ◦Bj(Sr) , with Bj(Sr) defined in Theo-

rem 4, to be able to pass to the limit for j → +∞ we consider the sequence of compact
operators ExtΩj,S→ΩS

◦ Bj(Sr) form L2(Γj) → H̃1(ΩS) , which defines, for instance for
1Γj

∈ L2(Γj) , a monotone increasing sequence uj in H̃1(ΩS) bounded for j → +∞
by its limit u = B(Sr)1Γ . Therefore, thanks to the continuity and compactness of the
operators, we have that the spectrum σext of A for the exterior of a quasi-disk is equal
to the spectrum σint of A for the quasi-disk, which, as it is shown in Theorem 11, is
discrete and containing in R+ with λk → +∞ for k → +∞ and with λ0 = 0 . �
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Let us also notice that for the convergence of the series (2) on the truncated or the
exterior domain, we need to have 1Γ ∈ D(A) . For a Lipschitz boundary Γ it was proven
in Proposition 5.7 of Ref. [6]. In this framework we state more generally

Proposition 6 Let Ω and ΩS be domains in Rn with n ≥ 3 and with n ≥ 2 respec-
tively with a d -set boundary Γ (n − 1 ≤ d < n ), satisfying Theorem 3. Then for all
ψ ∈ L2(Γ) there exists φ = Aψ ∈ L2(Γ) . If Ω is a exterior domain in R2 , then for all
ψ ∈ B2,2

d/2(Γ) there exist φ = Aψ ∈ L2(Γ) .

Proof. It is a corollary of the fact that the operator A : L2(Γ) → L2(Γ) , considered on
Ω (for n ≥ 3 ) and ΩS (for n ≥ 2 ) respectively, is invertible with a compact inverse
operator A−1 (since λ = 0 is a regular point by Theorem 9).

For instance, for the exterior case with n ≥ 3 , 1Γ ∈ L2(Γ) , thus, for λ = 0 ,
B01Γ ∈ WD(Ω) , by the well-posedness of the Robin Laplacian exterior problem, and
hence Tr(B01Γ) = A−1

1Γ ∈ L2(Γ) .
If Ω is a exterior domain in R2 , then for all u ∈ H1(Ω) , such that ∇u = 0 weakly,

there exists unique Tru ∈ B2,2
β (Γ) ⊂ L2(Γ) with β = d/2 (see Theorem 2), thus for

all ψ ∈ B2,2
β (Γ) there exist φ = Aψ ∈ L2(Γ) . Consequently, as 1Γ ∈ B2,2

β (Γ) , thus
1Γ ∈ D(A) . �
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