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Abstract

This article is dedicated to the estimation of Wasserstein distances and Wasserstein costs between two distinct
continuous distributions F and G on R. The estimator is based on the order statistics of (possibly dependent)
samples of F resp. G. We prove the consistency and the asymptotic normality of our estimators.

Nous étudions la convergence d’estimateurs des distances et des coûts de Wasserstein entre deux lois de probabi-
lités continues F et G sur R distinctes. L’estimateur est construit à partir des statistiques d’ordres des échantillons
(possiblement dépendants) de F et de G. Nous montrons leur consistance et un théorème de la limite centrale.

1. Introduction

The motivation of this work is to be found in the fast development of computer experiments. Nowadays
the output of many computer codes is not only a real multidimensional variable but frequently a function
computed on numerous sample points. In particular this function may be the density or the cumulative
distribution function (c.d.f) of a real random variable (r.v.). To analyze such outputs one needs to choose
a distance to compare various c.d.f.. Among the large possibilities offered by the literature the Wasserstein
distances are now commonly used - for more details on general Wasserstein distances we refer to [10].
As many of the computer codes provide large samples of the underlying distributions, the statistical
study of such distances is of primordial importance. For one dimensional probability distributions the
p-Wasserstein distance is the Lp distance between simulated r.v. from a universal simulator U uniform on

[0, 1]: W p
p (F,G) =

∫ 1

0
|F−(u)−G−(u)|pdu = E|F−(U)−G−(U)|p, where F− is the generalized inverse of

F . The most relevant cases for applications are p = 2 and p = 1. It is then natural to estimate W p
p (F,G)
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by its empirical counterpart that is W p
p (Fn,Gn) where Fn and Gn are the empirical distribution functions

of F and G built through i.i.d. samples of F and G. The two samples are not necessarily independent,
for instance they may be issued from simultaneous experimentations.

Many authors were interested in the convergence of W p
p (Fn, F ), see the survey paper [3] and [8,6,7,1].

Up to our knowledge there are few works [9] trying to quantify the convergence of W p
p (Fn,Gn) or for

more general Wasserstein costs.
This note is organized as follows. Section 2 is dedicated to the definition of the general Wasserstein

costs we are considering and their estimators. In Section 3 we state the asymptotic properties of our
estimators. In Section ?? we give a very brief sketch of the proof.

2. Wasserstein distances and costs for probability distributions on R

2.1. Wasserstein costs

Let F and G two c.d.f. on R. The p-Wasserstein distance between F and G is defined to be

W p
p (F,G) = min

X∼F,Y∼G
E|X − Y |p, (1)

where X ∼ F, Y ∼ G means that X and Y are r.v.s with respective distribution F and G. The minimum
in (3) has the following explicit expression,

W p
p (F,G) =

∫ 1

0

|F−(u)−G−(u)|pdu. (2)

The Wassertein distances can be generalized to Wasserstein costs. Given a real non negative function
c(x, y) of two real variables we consider

Wc(F,G) = min
X∼F,Y∼G

E c(X,Y ). (3)

Among the costs c, those that define a negative measure on R2 are of special interest. They satisfy the
”measure property” P defined by

P : c(x′, y′)− c(x′, y)− c(x, y′) + c(x, y) ≤ 0, x ≤ x′ , y ≤ y′.
From Theorem 2 of [4], we optain an explicit formula of Wc for cost functions satisfying property P,
extending the formula (2). Namely if U is a r.v. uniformly distributed on [0, 1] then

Wc(F,G) =

∫ 1

0

c(F−(u), G−(u))du = E c(F−(U), G−(U)). (4)

Remark 1 It is obvious that c(x, y) = −xy satisfies the P property and if c satisfies P then any function
of the form a(x) + b(y) + c(x, y) also satisfies P. In particular (x− y)2 = x2 + y2− 2xy satisfies P. More
generally if ρ is a convex real function then c(x, y) = ρ(x − y) satisfies P. This is the case for |x − y|p,
p > 1.

2.2. Empirical Wasserstein costs

Let us assume that a i.i.d. sample (Xi, Yi)1≤i≤n of r.v. with marginal c.d.f. F and G is available. We
write Fn and Gn the empirical c.d.f built on the two marginal samples and denote by X(i) the ith order
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statistic of the sample (Xi)1≤i≤n, X(1) < . . . < X(n).
Let us study the following natural estimator of Wc(F,G)

Wn
c := Wc(Fn,Gn) =

1

n

n∑
i=1

c(X(i), Y(i)). (5)

Wn
c is a consistent estimator of Wc(F,G)

Theorem 2.1 Assume that the cost c(x,y) satisfies: c(x, y) ≤ a(f(x) + f(y)) with f > 0 and E[f(X)] <
∞,E[f(Y )] <∞, then Wn

c converges almost surely to Wc(F,G).

3. A Central Limit Theorem for Wn
c

The main result of this note is the weak convergence of
√
n (Wc(Fn,Gn)−Wc(F,G)) . (6)

we need to fix the relative position of the two tails of F and G. Moreover these tails induce restrictions
on the allowed costs. We assume that F and G are supported on whole R but we only deal with the right
hand side of the real line in order to give a more synthetic presentation. Hence we restrict properties of
the key functions to R+ and (m,+∞) for some m > 0 large enough.

3.1. Assumptions on F and G.

For k ∈ N∗ denote Ck the set of functions that are k times continuously differentiable on R, and C0 the
set of continuous functions. We assume that F and G are C2 and that the densities f = F ′ and g = G′

are positive and

(FG1) sup
x>m

1− F (x)

f(x)

(
1

x
+
|f ′(x)|
f(x)

)
<∞ and sup

x>m

1−G(x)

g(x)

(
1

x
+
|g′(x)|
g(x)

)
<∞ (7)

Moreover, the tails have to be strictly separated. Let us denote F−1 and G−1 the quantile functions. We
assume that there exists τ0 > 0 such that for u > F (m),

(FG2) F−1(u)−G−1(u) > τ0.

3.2. Assumptions on the cost c.

Among Wasserstein costs satisfying property P we consider the regular ones.
Let M2 (m) be the subset of functions ϕ ∈ C2 such that ϕ′′ is monotone on (m,+). For m large enough
ϕ, ϕ′ are also monotone on (m,+∞). Let M0 (m) be the set of continuous functions monotone on (m).
Write RV (γ) the set of regularly varying functions at +∞ with index γ > 0. We introduceRV +

2 (γ,m) =
RV (γ) ∩M2 (m) , γ > 0.
When L ∈ RV (0) we assume that

l1
x

6 L′(x) =
ε1(x)L(x)

x
, lim

x→+∞
ε1(x) = 0, l1 > 1. (8)

Whence we define RV +
2 (0,m) = {L : L ∈ RV (0) ∩M2 (m,+∞) such that (8) holds}.
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We impose (wlog) that c(x, x) = 0 and assume that

(C1) c(x, y) > 0, c ∈ C2
(C2) c(x, y) = exp(l(|x− y|)), for (x, y) ∈ (m,+∞)

2
and l ∈ RV +

2 (γ, 0), γ > 0.

Thus c is asymptotically regular and symetric. Finally we need the following contraction of c (x, y) along
the diagonal x = y. We assume that there exists d(m, τ)→ 0 as τ → 0 such that

(C3) |c (x′, y′)− c (x, y)| 6 d(m, τ) (|x′ − x|+ |y′ − y|) for (x, y) , (x′, y′) ∈ Dm(τ),

where Dm(τ) = {(x, y) : max(|x| , |y|) 6 m, |x− y| 6 τ}.

3.3. Cross assumptions between c, F and G.

Consider the tail functions ψX(x) = − logP(X > x) and ψY (x) = − logP(Y > x).
We require that for some θ > 2 it holds, for x ∈ (l(m),+∞),

(CFG) (ψX ◦ l−1)′(x) > 2 +
2θ

x
.

We point out that (CFG) implies ψX(x) > 2l(x)+2θ log l(x) which in turn guaranties that the heaviest
tail satisfies ∫ +∞

m

√
P (exp(l(X)) > x)dx < +∞.

The later condition is close to necessity for the finiteness of the limiting variance in Theorem 3.1 below.
This is the same kind of condition (3.4) in [3] that ensures the convergence of W1(Fn, F ) at rate

√
n.

3.4. The main theorem

We say that conditions (C), (FG) and (CFG) hold if they are satisfied by the right and the left tails
of the c.d.f F and G(possibly exchanging F and G). We denote hX = f ◦F−1, hY = g ◦G−1 the so-called
density quantile functions. Now define

Π(u, v) = P
(
X 6 F−1(u), Y 6 G−1(v)

)
,

then the covariance matrix

Σ(u, v) =


min(u, v)− uv
hX(u)hX(v)

Π(u, v)− uv
hX(u)hY (v)

Π(v, u)− uv
hX(v)hY (u)

min(u, v)− uv
hY (v)hY (u)

 , (9)

and the gradient

∇(u) =

(
∂

∂x
c(F−1(u), G−1(u)),

∂

∂y
c(F−1(u), G−1(u))

)
. (10)

Theorem 3.1 If (C), (FG) and (CFG) hold then

√
n (Wc(Fn,Gn)−Wc(F,G))

L→ N (0, σ2(Π, c))

with

σ2(Π, c) =

∫ 1

0

∫ 1

0

∇(u)Σ(u, v)∇(v)dudv < +∞. (11)
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3.4.1. Sketch of proof
Let cn(u) =

√
n
(
c(F−1n (u),G−1n (u))− c(F−1(u), G−1(u))

)
. We write∫ 1

1
2

cn(u)du =

∫ u0

1
2

cn(u)du+

∫ 1−ξn

u0

cn(u)du+

∫ 1−εn

1−ξn
cn(u)du+

∫ 1

1−εn
cn(u)du

:= I1(n) + I2(n) + I3(n) + I4(n).

Under (CFG) and (C2) we can find εn → 0 such that I4(n)→ 0 in probability.
The sequence

√
nεn → 0 is an explicit function of n involving the functions l(x), hX(x) and hY (x).

Then our condition (FG1) implies the minimal conditions we indeed need on hX(x), hY (x) and their
companion functions (1−u)/FX(x)hX(x) and (1−u)/FY (x)hY (x) to apply the strong gaussian approxi-
mation of [5]. When combined with (CFG) and (C2), we are able to show that for any ξn → 0 such that√
nξn → +∞ we have I3(n)→ 0 a.s..

If ξn is slow enough we establish a distribution free a joint Brownian strong approximation of the
quantile processes (F−1n (u),G−1n (u)) that we derive from [2].

Then, thanks to the regularity (C3) of l(x) and the stochastic ordering (FG2), when u0 → 1 the term
I2(n) is small in probability as n→∞.
Finally, the latter strong approximation allows under (C1) to show that the main term I1(n)

is tight and has a limit law that is arbitrarily close to the desired Gaussian limit law when u0 → 1.
Working with the strongly approximated versions entails the weak convergence claimed at Theorem 3.1.
Moreover (CFG) implies that the variance of the limiting Gaussian process is integrable and σ2(Π, c) <
+∞.

4. Conclusion

In this work we established consistency and asymptotic normality of the natural estimators of a large
class of Wasserstein costs between two smooth distributions F and G having separated tails.
The case W1 is not included in the previous theorem since it does not satisfy (C3), but the theorem
still holds thanks to a specific proof. Theorem 3.1 applies to all the classical distributions with regularly
decreasing tail when choosing an adapted cost. For instance we may take two distributions with poly-
nomial (Pareto) tail of same order β > 2 but shifted and apply our result when choosing a Wasserstein
distance W p

p with p < β/2. For Gaussian tailed distributions one may consider exponential costs of type

e|x−y|
γ − 1, γ < 2.

Clearly this result allows to build a test for equality of two smooth distributions.
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