
HAL Id: hal-01526740
https://hal.science/hal-01526740v1

Preprint submitted on 23 May 2017 (v1), last revised 27 Aug 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Gradient Estimates for Second-Order Nonlinear
Elliptic and Parabolic Equations by the Weak

Bernstein’s Method
G Barles

To cite this version:
G Barles. Local Gradient Estimates for Second-Order Nonlinear Elliptic and Parabolic Equations by
the Weak Bernstein’s Method. 2017. �hal-01526740v1�

https://hal.science/hal-01526740v1
https://hal.archives-ouvertes.fr


Local Gradient Estimates for Second-Order

Nonlinear Elliptic and Parabolic Equations by

the Weak Bernstein’s Method

G.Barles∗

May 23, 2017

Key-words: Second-order elliptic and parabolic equations, gradient bounds,
weak Bernstein’s method, viscosity solutions.
MSC: 35D10 35D40, 35J15 35K10

Abstract

In the theory of second-order, nonlinear elliptic and parabolic equations,

obtaining local or global gradient bounds is often a key step for proving the

existence of solutions but it may be even more useful in many applications,

for example to singular perturbations problems. The classical Bernstein’s

method is the well-known tool to obtain these bounds but, in most cases, it

has the defect of providing only a priori estimates. The “weak Bernstein’s

method”, based on viscosity solutions’ theory, is an alternative way to prove

the global Lipschitz regularity of solutions together with some estimates but

it is not so easy to perform in the case of local bounds. The aim of this paper

is to provide an extension of the “weak Bernstein’s method” which allows to

prove local gradient bounds with reasonnable technicalities.

The classical Bernstein’s method is a well-known tool for obtaining gra-
dient estimates for solutions of second-order, elliptic and parabolic equations
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(cf. Gilbarg and Trudinger[4] and Lions[5]). The underlying idea is very
simple: if u : Ω ⊂ R

N → R is a smooth solution of

−∆u = 0 in Ω ,

where ∆ denotes the Laplacian in R
N , then w := |Du|2 satisfies

−∆w ≤ 0 in Ω .

The gradient bounded is deduced from this property by using the Maximum
Principle if one knows that Du is bounded on ∂Ω and this bound on the
boundary is usually the consequence of the existence of barriers functions.

Of course this strategy can be used for far more general equations but it
has a clear defect: in order to justify the above computations, the solution
has to be C3 and, in general, the classical Bernstein’s method just provides
an a priori estimates and one has to find a suitable approximation of the
equation to actually prove the gradient bound.

In 1990, this difficulty was partially overcomed by the Weak Bernstein’s
method whose idea is even simpler: if one looks at the maximum of the
function

(x, y) 7→ u(x)− u(y)− L|x− y| in Ω× Ω ,

and if one can prove that it is achieved only for x = y for L large enough,
then |Du| ≤ L. Surprisingly, as it is explained in the introduction of [1],
the computations and structure conditions which are needed to obtain this
bound are the same (or almost the same with tiny differences) as for the
classical Bernstein’s method. Of course, the main advantage of the Weak
Bernstein’s method is that it does not require u to be smooth since there is
no differentiation of u and it can even be used in the framework of viscosity
solutions.

Problem solved? Not completely because the Weak Bernstein’s method is
not of an easy use if one looks for local bounds instead of global bounds. In
fact, in order to get such local gradient bounds, the only possible way seems to
multiply the solution by a cut-off function and to look for a gradient bound
for this new function. Unfortunately, this new function satisfies a rather
complicated equation where the derivatives of the cut-off function appear
at different places and the computations are rather technical. The classical
Bernstein’s method faces also similar difficulties but, at least in some cases,
succeeds in providing these local bounds in a not too complicated way.
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The aim of this article is to describe a slight improvement of the Weak
Bernstein’s method which allows to obtain local gradient bounds in a simpler
way, “simpler” meaning that the technicalities are as reduced as possible,
although some are unavoidable. This improvement is based on an idea of
P. Cardaliaguet [2] which dramatically simplifies a matrix analysis which is
keystone in [1] but also allows this extension to local bounds.

To present our result, we consider second-order, possibly degenerate, el-
liptic equations which we write in the general form

F (x, u,Du,D2u) = 0 in Ω , (1)

where Ω is a domain of RN and F : Ω × R × R
N × SN× → R is a locally

Lipschitz continuous function, SN denotes the space of N × N symmetric
matrices, the solution u is a real-valued function defined on Ω, Du,D2u
denote respectively its gradient and Hessian matrix. We assume that F
satisfies the (degenerate) ellipticity condition : for any (x, r, p) ∈ Ω×R×R

N

and for any X, Y ∈ SN ,

F (x, r, p,X) ≤ F (x, r, p, Y ) if X ≥ Y.

Among all these general equations, we focus in particular on the following
one

−∆u+ |Du|m = f(x) in Ω , (2)

where m > 1 and f ∈ W 1,∞
loc (Ω), which is a particular case for which the

classical Bernstein’s method provides local bound in a rather easy way, while
it is not the case for the Weak Bernstein’s method.

1 Some preliminary results

In this section, we are going to construct the functions we use in the proof
of our main result. To do so, we introduce K which is the class of increasing
functions χ : (0,+∞) → [1,+∞) such that χ(t) ≤ K(χ)tα for some α < 1
and some constant K(χ) > 0 and

∫ +∞

1

dt

tχ(t)
< +∞.

The first ingredient we use below is a smooth function ϕ : [0, 1[→ R such
that ϕ(0) = 0, ϕ′(0) = 1 ≤ ϕ′(t) for any t ∈ [0, 1[ with ϕ(t) → +∞ as t→ 1−
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and ϕ′′(t) ≤ K1ϕ
′(t)χ(ϕ′(t)) for some constant K1 > 0. In fact the existence

of such function is classical using that

∫ ϕ′(t)

1

ds

sχ(s)
= K1t ,

and by choosing K1 =
∫ +∞

1
ds

sχ(s)
we already see that ϕ′(t) → +∞ as t→ 1−.

Moreover
∫ +∞

ϕ′(t)

ds

sχ(s)
= K1(1− t) ,

and therefore

K1(1− t) ≥ [K(χ)]−1

∫ +∞

ϕ′(t)

ds

s1+α
= [K(χ)α]−1ϕ′(t)−α .

This means that

ϕ′(t) ≥

(

K1(1− t)

[K(χ)α]−1

)−1/α

,

and therefore ϕ′(t) is not integrable at 1 since 1/α > 1.
On the other hand, given x0 ∈ R

N and R > 0, we use below a smooth
function C : B(x0, 3R/4) → R is a smooth function such that C(z) = 1
on B(x0, R/4), C(z) ≥ 1 in B(x0, 3R/4) and C(z) → +∞ when z →
∂B(x0, 3R/4) and with

|D2C(x)|

C(x)
,
|DC(x)|2

[C(x)]2
≤ K2(R)[χ(C(x))]

2 ,

where χ is a function in the class K. If C1 is a function which satisfies the
above properties for R = 1, we see that we can choose C as

C(x) = C1(
x

R
) ,

and therefore K2(R) behaves like R
−2K2(1).

To build C, we first solve

ψ′′(t) = K3ψ(t)[χ(ψ(t))]
2, ψ(0) = 1, ψ′(0) = 0 .

Multiplying the equation by 2ψ′(t), we obtain that

ψ′(t) = F (ψ(t)) ,
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where

[F (τ)]2 = 2K3

∫ τ

1

s[χ(s)]2ds .

Again we look for a function ψ such that ψ(t) → +∞ as t → 1− and to do
so, the following condition should hold

∫ +∞

1

dτ

F (τ)
< +∞ .

But

[F (τ)]2 ≥ 2K3

∫ τ

τ/2

s[χ(s)]2ds ≥ 2K3[τ/2χ(τ/2)]
2,

and since τ 7→ χ(τ/2) is in K, we have the result for F and for ψ by choosing
appropriately the constant K2.

Moreover

[F (τ)]2 ≤ 2K3(τ − 1)τ [χ(τ)]2 ≤ 2K3[τχ(τ)]
2 ,

and therefore
ψ′(t) ≤ (2K3)

1/2ψ(t)χ(ψ(t)) .

With ψ the construction of C is easy, we may choose

C(x) := ψ(
4(|x− x0| − R/2)

R
,

for |x− x0| ≥ R/2 and we extend it properly in all the ball B(x0, 3R/4).

2 The Main Result

Our result is the following

Theorem 2.1 Assume that F is a locally Lipschitz function in Ω×R×R
N×

SN× → R which satisfies : F (x, r, p,M) is Lipschitz continuous in M and

FM(x, r, p,M) ≤ 0 and Fr(x, r, p,M) ≥ 0 a.e. in Ω×R×R
N ×SN× → R ,

and let u ∈ C(Ω) be a solution of (1).

5



(i) (Uniformly elliptic equation : estimates which are indepen-
dant of the oscillation of u) Assume that there exists a function χ ∈ K,
η > 0 small enough such that, for any K > 0, there exists L = L(η,K) large
enough such that

−FM ·M2 ≥ η+ (2+ η)|Fx||p|χ(|p|) + η|Fp · p|+K||FM ||∞(|p|χ2(|p|))2) a.e.,

in the set {(x, r, p,M); |F (x, r, p,M))| ≤ η|p|χ2(|p|) , |p| ≥ L}. If B(x0, R) ⊂
Ω then u is Lipschitz continuous in B(0, R/2) and |Du| ≤ L̄ in B(0, R/2)
where L̄ is given by L(η,K) where K = K(R).

(ii) (Uniformly elliptic equation : estimates depending the oscil-
lation of u) Assume that there exists a function χ ∈ K, η > 0 small enough
such that, for any K > 0, there exists L̄ = L̄(η, R,K) large enough such that

−FM ·M2 ≥ η + (1 + η)|Fx||p|+ η|Fp · p|+K||FM ||∞(|p|χ(|p|))2) a.e.,

in the set {(x, r, p,M); |F (x, r, p,M))| ≤ η|p|χ(|p|) , |p| ≥ L̄}. If B(x0, R) ⊂
Ω then u is Lipschitz continuous in B(0, R/2) and |Du| ≤ L̄ in B(0, R/2)
where L̄ is given by L(η,K) where K = K(R).

(iii) (Non-uniformly elliptic equation : estimates depending the
oscillation of u) Assume that there exists a function χ ∈ K, η > 0 small
enough such that, for any K > 0, there exists L̄ = L̄(η, R,K) large enough
such that

Fx·p+Fu|p|
2−

1

1 + η
FM ·M2 ≥ η+η(|Fx·p|+Fu|p|

2+Fp·p)+K||FM ||∞(|p|χ(|p|))2) a.e.,

in the set {(x, r, p,M); |F (x, r, p,M))| ≤ η|p|χ(|p|) , |p| ≥ L̄}. If B(x0, R) ⊂
Ω then u is Lipschitz continuous in B(0, R/2) and |Du| ≤ L̄ in B(0, R/2)
where L̄ is given by L(η,K) where K = K(R).

As an application we can consider Equation (2): the idea is to choose
χ(t) = tα with γ := 1 + 2α < m. The most important point is that the
constraint |F (x, r, p,M))| ≤ η|p|γ if γ < m, η ≤ 1/2 and |p| large enough
(depending only on γ) implies

Tr(M) ≥
1

2
|p|m − ||f ||L∞(B(0,R) ,
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but, by Cauchy-Schwarz inequality

Tr(M) ≤ C(N)[Tr(M2)]1/2 .

Therefore the term FM ·M2 behaves like |p|2m and clear dominates the terms
||FM ||∞|p|2γ since γ < m, while the terms |Fx|(1 + γ)|p|γ and Fp · p grows
like |p|γ and |p|m respectively, therefore we have the gradient bound and the
classical case (m = 1) can be also treated under the assumptions of (ii).

In this example, it is also clear that we can replace the term |Du|m by a
term H(Du) where H satisfies: there exists χ ∈ K such that

H(p)

|p|χ2(|p|)
→ +∞ as |p| → +∞ .

In the case of non-uniformly elliptic equation, the gradient bound comes
necessarely from the Fu|p|

2-term. For the equation

−Tr(A(x)D2u) + |Du|m = f(x) in Ω , (3)

wherem > 1 and A, f are locally bounded and Lipschitz continuous, a change
of variable is necessary (we also may assume that A(x) is a symmetric matric
for any x). Assuming (without loss of generality) that u ≥ 1 at least in the
ball B(0, R), we can use the change u = exp(v). The equation satisfied by v
is

−Tr(A(x)D2v)+A(x)Dv ·Dv+exp((m−1)v)|Dv|m = exp(−v)f(x) in Ω ,

The computation of the different terms gives

Fv(x, v, p,M) = (m− 1) exp((m− 1)v)|p|m + exp(−v)f(x) ,

Fx(x, v, p,M) = −Tr(Ax(x)M) + Ax(x)p · p− exp(−v)fx(x)

Fp(x, v, p,M) = 2A(x)p+ exp((m− 1)v)|p|m−2p ,

−FM (x, v, p,M)M2 = Tr(A(x)M2) .

If we assume that A(x) = σ(x).σT (x) for some bounded, Lipschitz con-
tinuous function σ, where σT (x) denotes the transpose matrix of σ(x), then
Cauchy-Schwarz inequality implies

|Tr(Ax(x) · pM)| ≤
1

1 + η
Tr(A(x)M2) +O((|σx||p|)

2) ;
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This control of the first term in Fx(x, v, p,M is the only use of the−FM (x, v, p,M)M2-
term.

Therefore the Fv(x, v, p,M)|p|2-term which behaves like |p|m+2 if m > 1,
has to control the terms

(Ax(x) ·p)(p ·p) = O(|p|3) , − exp(−v)fx(x)· = O(|p|) , 2A(x)p ·p = O(|p|2) ,

and the term exp((m − 1)v)|p|m which appear in Fp · p but multiplied by η
that we can take small enough.

The most important constraint is to control the termK||FM ||∞(|p|χ(|p|))2)
but by choosing χ(t) = tα for α > 0 small enough, this term behaves as |p|2+2α

and is controlled by |p|m+2 since m > 1. Therefore Theorem 2.1 (iii) applies.

3 Proof of Theorem 2.1

We start by proving (i) : the aim is to prove that, for any x ∈ B(x0, R/2),
D+u(x) is bounded with an explicit bound. This will provide the desired
gradient bound.

To do so, we consider on

ΓL := {(x, y) ∈ B(x0, 3R/4)× B(x0, R) : LC(x)(|x− y|+ α) < 1}

the following function

χ(x, y) = u(x)− u(y)− ϕ(LC(x)(|x− y|+ α)) ,

where

• L ≥ 1 is a constant which is our future gradient bound (and therefore
which has to be choosen large enough),

• the functions ϕ and C are built in Section 1,

• α > 0 is a small constant devoted to tend to 0.

We remark that the above function achieves it maximum in the open set
ΓL: indeed, if (x, y) ∈ ΓL, we have LC(x)α < 1 and therefore x ∈ B(0, R′)
for some R′ < 3R/4 and LC(x)|x − y| < 1 which implies |x− y| < L−1 and
for L > 4/R this implies y ∈ B(0, R′ +R/4) and R′ + R/4 < R. Therefore,
clearly χ(x, y) → +∞ if (x, y) → ∂ΓL.
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Next we argue by contradiction: if, for some large L, this maximum is
achieved for any α at (x̄, ȳ) with x̄ = ȳ, then χ(x̄, x̄) = −ϕ(LC(x̄)α) and
therefore necessarely x̄ ∈ B(x0, R/4) by the maximality property and the
form of C. Moreover, for any x, y

u(x)− u(y)− ϕ(LC(x)(|x− y|+ α)) ≤ −ϕ(Lα) ,

and if this is true, for a fixed L, this implies that, for any x, y

u(x)− u(y)− ϕ(LC(x)|x− y|) ≤ 0 .

Choosing x ∈ B(x0, R/4), we have

u(y)− u(x) ≥ −ϕ(L|x− y|) ,

and this inequality implies that any element in D+u(x) has a norm which is
less than L, which we wanted to prove.

Otherwise, this means that, for any fixed L, the maximum point (x̄, ȳ) of
χ, satisfies x̄ 6= ȳ for α small enough and we are going to prove that this is
a contradiction for an L large enough but independant of α.

For the sake of simplicity of notations, we denote by (x, y) a maximum
point of χ and we set t = LC(x)(|x− y|+ α) and

p = ϕ′(t)LC(x)
(x− y)

(|x− y|+ α)
, q = ϕ′(t)L.DxC(x)(|x− y|+ α) .

We have (p+ q,X) ∈ D2,+u(x), (p, Y ) ∈ D2,−u(y) and the viscosity inequal-
ities

F (x, u(x), p+ q,X) ≤ 0 , F (y, u(y), p, Y ) ≥ 0 ,

with, for any r, s ∈ R
N

Xr · r − Y s · s ≤ γ1|r − s|2 + γ2|r − s||r|+ γ3|r|
2 ,

where

γ1 =
ϕ′(t)LC(x)

(|x− y|+ α)
+ ϕ′′(t)(LC(x))2 ,

γ2 = ϕ′(t)L.|DxC(x)|+ ϕ′′(t)L2.|DxC(x)|.C(x).(|x− y|+ α) ,

γ3 = ϕ′(t)
|D2C(x)|

C(x)
t+ ϕ′′(t)

|DxC(x)|
2

[C(x)]2
t2 ,
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By easy manipulations, it is easy to see that

γ2 ≤ γ1
|DxC(x)|

C(x)
(|x− y|+ α) ≤ γ1K

1/2
2 χ(C(x))(|x− y|+ α) ,

γ3 ≤ 2γ1K2[χ(C(x))]
2(|x− y|+ α)2 .

And, by Cauchy-Schwarz inequality, we deduce that, for any ν > 0,

Xr · r − Y s · s ≤ (1 +
ν

2
)γ1|r − s|2 +B(R, ν)γ1[χ(C(x))]

2(|x− y|+ α)2|r|2 .

where B(R, ν) = (2 + (2ν)−1)K2 depends on R through K2 and therefore is
a O(R−2) if ν is fixed.

Coming back to p and q, we also have

|q| = |p|
|DxC(x)|

C(x)
(|x− y|+ α) ≤ |p|

|DxC(x)|

L[C(x)]2
≤ O((RL)−1)|p| ,

since LC(x)(|x−y|+α) ≤ 1, C ≥ 1 everywhere and since |DxC(x)|
C(x)

is a O(R−1).
In order to have simpler formulas, we denote below by ̟1 any quantity which
is a O((RL)−1).

Now we arrive at the key point of the proof: by the above matrices
inequality, choosing r = 0, we have −Y ≤ (1+ ν

2
)IN where IN is the identity

matrix in R
N . Therefore the matrix IN + [(1 + ν)γ1]

−1Y is invertible and
rewriting the matrices inequality as

Xr · r ≤ Y s · s+ (1 + ν)γ1|r − s|2 +B(R, ν)γ1[χ(C(x))]
2(|x− y|+ α)2|r|2 ,

we can take the infimum in s in the right-hand side and we end up with

X ≤ Y (IN +
1

(1 + ν)γ1
Y )−1 +B(R, ν)γ1[χ(C(x))]

2(|x− y|+ α)2.IN .

Setting Ỹ := Y (IN + 1
(1+ν)γ1

Y )−1, this implies that we have (p + q, Ỹ +

3γ1[χ(C(x))]
2(|x−y|+α)2.IN) ∈ D2,+u(x), (p, Y ) ∈ D2,−u(y) and, using the

Lipschitz continuity of F in M , the viscosity inequalities

F (x, u(x), p+q, Ỹ ) ≤ ||FM ||∞B(R, ν)γ1[χ(C(x))]
2|x−y|2 , F (y, u(y), p, Y ) ≥ 0 .

Next we introduce the function

g(τ) := F (X(τ), U(τ), P (τ), Z(τ))−τ ||FM ||∞B(R, ν)γ1[χ(C(x))]
2(|x−y|+α)2 ,
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where

X(τ) = τx+ (1− τ)y , U(τ) = τu(x) + (1− τ)u(y) , P (τ) = p+ τq ,

Z(τ) = Y (IN +
τ

(1 + ν)γ1
Y )−1 .

From now on, in order to simplify the exposure, we are going to argue
as if F were C1: the case when F is just locally Lipschitz continuous follows
from tedious but standard approximation arguments.

We have g(0) ≥ 0 and g(1) ≤ 0 : if we can show that the C1 function g
satisfies g′(τ) > 0 if g(τ) = 0, we would have a contradiction. Therefore we
compute

g′(τ) = Fx · (x− y) + Fu(u(x)− u(y)) + Fp · q + FM · Z ′(τ)

−||FM ||∞B(R, ν)γ1[χ(C(x))]
2(|x− y|+ α)2 ,

and using that Fu ≥ 0, Z ′(τ) = −((1 + ν)γ1)
−1[Z(τ)]2 and the estimates on

p, q, we are lead to

g′(τ) ≥ ((1 + ν)γ1)
−1

{

Fx · (1 + ν)γ1(x− y) +̟1Fp · P (τ)− FM · [Z(τ)]2

−(1 + ν)B(R, ν)||FM ||∞(γ1)
2[χ(C(x))]2(|x− y|+ α)2

}

.

Now we estimate γ1|x − y| using that LC(x)(|x − y| + α) ≤ 1 and the
properties of ϕ

γ1|x− y| ≤ γ1(|x− y|+ α)

≤ ϕ′(t)LC(x) + ϕ′′(t)(LC(x))2(|x− y|+ α)

≤ |P (τ)|(1 +̟1 + oα(1)) + ϕ′(t)χ(ϕ′(t))LC(x)

≤ |P (τ)|(1 +̟1 + oα(1)) + χ(ϕ′(t))|P (τ)|(1 +̟1 + oα(1))

≤ |P (τ)|χ(|P (τ)|)(2 +̟1 + oα(1)) .

Indeed |P (τ)| = ϕ′(t)LC(x)(1 + ̟1τ) and recalling that ̟1 = O((RL)−1),
we can choose L large enough in order that LC(x)(1 + ̟1τ) ≥ 1, allowing
to use the inequality χ(ϕ′(t)) ≤ χ(|P (τ)|). In the same way, one can choose
L large enough to have χ(C(x)) ≤ χ(|P (τ)|) and therefore

γ1χ(C(x))(|x− y|+ α) ≤ |P (τ)|[χ(|P (τ)|)]2(2 +̟1 + oα(1)) ,

and

γ1[χ(C(x))]
2(|x−y|+α)2 ≤ |P (τ)|χ2(|P (τ)|)(1+̟1+oα(1)).χ(C(x))(|x−y|+α) ;
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but (|x− y|+ α) ≤ (LC(x))−1 and χ(C(x))(C(x))−1 is bounded, therefore

γ1[χ(C(x))]
2(|x− y|+ α)2 ≤ ̟1|P (τ)|[χ(|P (τ)|)]

2 .

We end up with

g′(τ) ≥ ((1 + ν)γ1)
−1 {−(1 + ν)|Fx||P (τ)|χ(|P (τ)|)(2 +̟1 + oα(1))

+̟1Fp · P (τ)− FM · [Z(τ)]2

−(1 + ν)B(R, ν)||FM ||∞[|P (τ)|χ2(|P (τ)|)]2(2 +̟1 + oα(1))
}

.

On the other hand, the constraint g(τ) = 0 implies

|F (X(τ), U(τ), P (τ), Z(τ))| ≤ B(R, ν)̟1|P (τ)|χ
2(|P (τ)|) .

The conclusion follows by choosing 2(1+ν) < 2+η (for example ν = η/3)
and applying the assumption on F for L large enough in order that ̟1 < η,
and taking L ≥ L̄ depending onK = B(R, ν)̟1 (which behaves like O(R−2))
and α small enough for which we have a contradiction.

Now we turn to the proof of (ii) where we choose ϕ(t) = t and

Γ′
L := {(x, y) ∈ B(x0, 3R/4)× B(x0, R) : LC(x)(|x− y|+ α) ≤ oscR(u)} .

The proof follows the same arguments, except that the fact that ϕ′′(t) ≡ 0
allows different estimates on the γi, i = 1, 2, 3 since ϕ′′(t) ≡ 0 implies that
several terms do not exist anymore. Denoting by ̟2 any quantity of the
form O(oscR(u)(RL)

−1), we have

p = LC(x)
(x− y)

(|x− y|+ α)
, |q| = L.|DxC(x)|(|x− y|+ α) = ̟2|p| ,

γ1 =
LC(x)

(|x− y|+ α)
, γ2 = L.|DxC(x)| , γ3 = L|D2C(x)|(|x− y|+ α) .

And we still have the same estimates on γ1, γ2, γ3

γ2 = γ1
|DxC(x)|

C(x)
(|x− y|+ α) ≤ γ1χ(C(x))(|x− y|+ α) ,

γ3 ≤ γ1[χ(C(x))]
2(|x− y|+ α)2 .
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The proof is then done in the same way as in the first case with the
computation of g′(τ) and the estimates

g′(τ) ≥ ((1 + ν)γ1)
−1

{

Fx · (1 + ν)γ1(x− y) +̟2Fp · P (τ)− FM · [Z(τ)]2

−(1 + ν)B(R, ν)||FM ||∞(γ1)
2[χ(C(x))]2(|x− y|+ α)2

}

.

But here
γ1(x− y) = p = P (τ)(1 +̟2) ,

and in the same way,

γ1χ(C(x))(|x− y|+ α) ≤ |P (τ)|χ(|P (τ)|)(1 +̟2 + oα(1)) .

We end up with

g′(τ) ≥ ((1 + ν)γ1)
−1 {Fx · P (τ)(1 +̟2)

+̟2Fp · P (τ)− FM · [Z(τ)]2

−(1 + ν)B(R, ν)||FM ||∞[|P (τ)|χ(|P (τ)|)]2(1 +̟2 + oα(1))
}

.

On the other hand, the constraint g(τ) = 0 implies

|F (X(τ), U(τ), P (τ), Z(τ))| ≤ B(R, ν)̟2|P (τ)|χ(|P (τ)|) . (4)

The conclusion follows as in the first case by applying the assumption on
F for L large enough in order that ̟2 < η, and taking L ≥ L̄ (depending
on K = B(R, ν)̟2 = O(R−2) and α small enough for which we have a
contradiction.

For the proof of (iii), we keep the same test-function and the same set Γ′
L

but since we are not expecting the gradient bound to come from the same
term in g′(τ), we are going to change the strategy in our computation of g′(τ)
by keeping the Fu-term. Using that Fu ≥ 0 and

u(x)− u(y) ≥ LC(x)(|x− y|+ α) =
|p|2

γ1
,

we obtain

g′(τ) = Fx · (x− y) + Fu(u(x)− u(y)) + Fp · q + FM · Z ′(τ)

−||FM ||∞B(R, ν)γ1[χ(C(x))]
2(|x− y|+ α)2 ,

= (γ1)
−1

{

Fx · p+ Fu|p|
2 +̟2Fp · P (τ)−

1

1 + η
FM · [Z(τ)]2

−B(R, ν)||FM ||∞(γ1)
2[χ(C(x))]2(|x− y|+ α)2

}

.
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This computation is close to the one given in [1] if there is no localization
term (C ≡ 1).

Since p = P (τ)(1 + ̟2) and using anagolous estimates as above, we are
lead to

g′(τ) ≥ (γ1)
−1

{

Fx · P (τ) + Fu|P (τ)|
2 −

1

1 + η
FM · [Z(τ)]2

+̟2

(

Fx · P (τ) + Fu|P (τ)|
2 + Fp · P (τ)

)

−B(R, ν)||FM ||∞[|P (τ)|χ(|P (τ)|)]2(1 +̟2 + oα(1))
}

.

On the other hand, the constraint g(τ) = 0 still implies (4) and we also
conclude by choosing L large enough.

4 The parabolic case

In this section, we consider evolution equation under the general form

ut + F (x, t, u,Du,D2u) = 0 in Ω× (0, T ) , (5)

and the aim is to provide a local gradient bound where “local” means both
local in space and time. As a consequence, we will have to provide a local-
ization also in time and a second main difference is that we will not be able
to use that the equation holds since the ut-term has no property in general
and therefore the assumptions on F have to concern any x, t, r, p,M and not
only those for which F (x, t, r, p,M) is close to 0.

Theorem 4.1 (Estimates for non-uniformly parabolic equations :
estimates depending the oscillation of u)
Assume that F is a locally Lipschitz function in Ω × R × R

N × SN× → R

which satisfies : F (x, r, p,M) is Lipschitz continuous in M and

FM(x, t, r, p,M) ≤ 0 a.e. in Ω× R× R
N × SN× → R ,

and let u ∈ C(Ω × (0, T )) be a solution of (5). Assume that there exists a
function χ ∈ K, η > 0 small enough such that, for any K > 0, there exists
L̄ = L̄(η, R,K) large enough such that, in the set {(x, t, r, p,M); , |p| ≥ L̄},
Fu ≥ 0 and

Fx · p+ Fu|p|
2 −

1

1 + η
FM ·M2 ≥ η + η(|Fx · p|+ Fu|p|

2 + Fp · p+ |p|2χ(|p|))

+K||FM ||∞(|p|χ(|p|))2) a.e..
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If B(x0, R) ⊂ Ω then u is Lipschitz continuous in B(0, R/2) and |Du| ≤ L̄
in B(0, R/2) where L̄ is given by L(η,K) where K = K(R).

It is worth pointing out that the assumptions of Theorem 4.1 are rather
close to the one of Theorem 2.1 (iii) and the same computations provide a
gradient bound for the evolution equation

ut − Tr(A(x)D2u) + |Du|m = f(x) in Ω , (6)

if m > 1.

Proof of Theorem 4.1 : We argue as in the proof of Theorem 2.1 (iii),
except that here L = L(t) with L(t) → +∞ as t → 0+. We still choose
ϕ(t) = t and

Γ′
L := {(x, y, t) ∈ B(x0, 3R/4)×B(x0, R)×(0, T ) : L(t)C(x)(|x−y|+α) ≤ oscR(u)} .

We consider maximum point (x, y, t) ∈ Γ′
L of

u(x, t)− u(y, t)− L(t)C(x)(|x− y|+ α) ,

and if x 6= y we are lead to the viscosity inequalities

a + F (x, t, u(x, t), p+ q,X) ≤ 0 , b+ F (y, t, u(y, t), p, Y ) ≥ 0 ,

where (a, p+q,X) ∈ D2,+u(x, t), (p, Y ) ∈ D2,−u(y, t) and a−b ≥ L′(t)C(x)(|x−
y|+ α).

Subtracting these inequalities, we have

L′(t)C(x)(|x− y|+ α) + F (x, u(x), p+ q,X)− F (y, u(y), p, Y ) ≤ 0 ,

and if we set

g(τ) := F (X(τ), U(τ), P (τ), Z(τ))

+τ
(

L′(t)C(x)(|x− y|+ α)− ||FM ||∞B(R, ν)γ1[χ(C(x))]
2(|x− y|+ α)2]

)

,

but here we have to show that g′(τ) > 0 for any τ ∈ (0, 1), which will be a
contradiction with g(1)− g(0) ≤ 0.
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The computation of g′(τ) and the estimates are done as above : denoting
by ̟3 any quantity which is a O(oscR(u)(RL(t))

−1) we obtain

g′(τ) ≥ ((1 + ν)γ1)
−1

{

Fx · (1 + ν)γ1(x− y) +̟3Fp · P (τ)− FM · [Z(τ)]2

−(1 + ν)B(R, ν)||FM ||∞(γ1)
2[χ(C(x))]2(|x− y|+ α)2

+(1 + ν)γ1L
′(t)C(x)(|x− y|+ α)} .

But
(1 + ν)γ1L

′(t)C(x)(|x− y|+ α) = (1 + ν)L(t)L′(t)[C(x)]2 ,

and we end up with

g′(τ) ≥ ((1 + ν)γ1)
−1

{

Fx · P (τ)(1 +̟3) +̟3Fp · P (τ)− FM · [Z(τ)]2

−(1 + ν)B(R, ν)||FM ||∞[|P (τ)|χ(|P (τ)|)]2(1 +̟3 + oα(1))

(1 + ν)L(t)L′(t)[C(x)]2
}

.

In order to conclude, we have to choose L as the solution of the ode

L′(t) = kTL(t)χ(L(t)) , L(T ) = LT (large enough) .

By choosing properly k, we have L(0+) = +∞ and

(1 + ν)L(t)L′(t)[C(x)]2 ≥ −(1 + ν)kT |P (τ)|
2χ(|P (τ)|) .

Notice that kT → 0 as LT → +∞.
The conclusion follows as above by applying the assumption on F for LT

large enough in order that ̟3 < η and (1 + ν)kT ≤ η, and taking LT ≥ L̄
and α small enough for which we have a contradiction.
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