
HAL Id: hal-01526643
https://hal.science/hal-01526643

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resolution and reconciliation of non-binary gene trees
with transfers, duplications and losses

Edwin Jacox, Mathias Weller, Eric Tannier, Celine Scornavacca

To cite this version:
Edwin Jacox, Mathias Weller, Eric Tannier, Celine Scornavacca. Resolution and reconciliation of non-
binary gene trees with transfers, duplications and losses. Bioinformatics, 2017, 33 (7), pp.980-987.
�10.1093/bioinformatics/btw778�. �hal-01526643�

https://hal.science/hal-01526643
https://hal.archives-ouvertes.fr

Resolution and reconciliation of non-binary gene

trees with transfers, duplications and losses

Edwin Jacox 1, Mathias Weller 2,3

, Eric Tannier 4
and Celine Scornavacca 1,2,⇤

1ISE-M, Université Montpellier, CNRS, IRD, EPHE, Montpellier, France
2Institut de Biologie Computationnelle (IBC), Montpellier,France
3LIRMM, Université Montpellier, CNRS, Montpellier, France
4INRIA Rhône-Alpes, LBBE, Université Lyon 1, Lyon, France
⇤To whom correspondence should be addressed.

Abstract

Motivation: Gene trees reconstructed from sequence alignments contain poorly supported branches when
the phylogenetic signal in the sequences is insufficient to determine them all. When a species tree is
available, the signal of gains and losses of genes can be used to correctly resolve the unsupported parts of
the gene history. However finding a most parsimonious binary resolution of a non binary tree obtained by
contracting the unsupported branches is NP-hard if transfer events are considered as possible gene scale
events, in addition to gene origination, duplication and loss.
Results: We propose an exact, parameterized algorithm to solve this problem in single-exponential time,
where the parameter is the number of connected branches of the gene tree that show low support from the
sequence alignment or, equivalently, the maximum number of children of any node of the gene tree once
the low-support branches have been collapsed. This improves on the best known algorithm by an
exponential factor. We propose a way to choose among optimal solutions based on the available
information. We show the usability of this principle on several simulated and biological data sets. The
results are comparable in quality to several other tested methods having similar goals, but our approach
provides a lower running time and a guarantee that the produced solution is optimal.
Availability: Our algorithm has been integrated into the ecceTERA phylogeny package, available at
http://mbb.univ-montp2.fr/MBB/download_sources/16__ecceTERA and which can be run
online at http://mbb.univ-montp2.fr/MBB/subsection/softExec.php?soft=eccetera.
Contact: celine.scornavacca@umontpellier.fr

1 Introduction

Constructing good gene trees is both crucial and very challenging for
molecular evolutionary studies. The most common way to proceed is to
compute a multiple alignment of nucleotide or protein sequences from
a gene family, and search for an evolutionary tree that is most likely to
produce this alignment (under some evolutionary model). Additionally,
it is strongly advised to compute statistical supports on the branches of
the output tree, as this tells whether they are inferred from the signal
of mutations contained in the alignment or are chosen at random in the
absence of signal (Felsenstein, 2004). Commonly, it is very rare that
the gene sequences contain enough mutations, but not too many, to
support all the branches of a gene phylogeny (Mossel and Steel, 2005).

In consequence, it is very rare that a maximum-likelihood tree computed
from a multiple alignment reflects the true history of the genes.

A way to approach this true history is to use the information contained
in a species tree to correct the branches of the gene tree that are not
supported by the alignment. Understanding a gene tree, given its species
tree, requires the introduction of gene scale events, as the birth of the gene,
its death, its replication and diversification by speciation, duplication, and
horizontal gene transfer (Szöllősi et al., 2015). Such a complete history is
called a reconciliation and, if costs are assigned to each gene scale event,
it has a total cost. Binary gene trees reconstructed with the additional
information of this reconciliation cost show a higher quality, according
to all tests on methods that are able to perform such a construction:
MowgliNNI (Nguyen et al., 2013), ALE (Szöllősi et al., 2013), TERA
(Scornavacca et al., 2015), TreeFix-DTL (Bansal et al., 2014) and JPrIME-
DLTRS (Sjöstrand et al., 2014) (we enumerate only the methods allowing

horizontal gene transfers). However, these methods generally require
intensive computation time.

Here, we provide an algorithm that, given a species tree S and a gene
tree G with supports on its branches, computes a modified gene tree G0

such that all well-supported branches of G are in G0 and no other gene
tree modified in such a way has a lower reconciliation cost than G0. “Well
supported” is defined by a threshold chosen by the user, or by an adaptive
method which sets this support according to the algorithm complexity.
This problem reduces to the reconciliation of non-binary gene trees with
binary species trees. Although optimal and practical methods are known
in the absence of gene transfers (Noutahi et al., 2016), this problem has
been shown to be NP-hard (Kordi and Bansal, 2015) with gene transfers.
Letting k be the maximum number of children of any node of the gene
tree after collapsing branches of low support, the problem can be solved
in 2

k · kk · (|S|+ |G|)O(1) time (Kordi and Bansal, 2016). We employ
amalgamation principles (David and Alm, 2011; Szöllősi et al., 2013;
Scornavacca et al., 2015) to provide an algorithm with a time complexity of
(3

k�2

k+1

)·(|S|+|G|)O(1), which gives access to a wider range of data.
This, however, comes at the price of using⇥(2

k
) space while the algorithm

of Kordi and Bansal (2016) runs in polynomial space. We provide an
implementation of our algorithm and we propose a way to choose among
all optimal solutions according to the supports of the branches of the input
tree. We show on both simulated and real data sets that our method produces
gene trees whose quality is similar to those constructed by competitive
methods, often in a smaller amount of time.

The novelties of this method compared to the previous ones are: (1) a
lower running time, allowing it to run on larger datasets; (2) guaranteed
optimal solutions; and (3) a simpler input – the input data consists of a gene
tree with supports and a species tree, without the need to supply a gene
alignment or a sample of gene trees that other methods rely on. Moreover,
our method is integrated into the user-friendly ecceTERA package so that
anyone having a gene tree with supports – output by standard ML software
such as PhyML or RAxML – and a species tree (with or without dates), can
quickly obtain a better-quality gene tree, or even correct a whole database
in reasonable time.

2 An FPT algorithm for reconciling gene trees

with polytomies

2.1 Reconciliation of binary gene trees

For our purposes, a rooted phylogenetic tree T = (V (T), E(T), r(T))

is an oriented tree, where V (T) is the set of nodes, E(T) is the set of arcs,
all oriented away from r(T), the root. For an arc (x, y) of T , we call x
the parent of y, and y a child of x. The number of children of x, denoted
by kx, is called the out-degree of x. If a path from the root to y contains
x, then x is an ancestor of y and y is a descendant of x. This defines a
partial order denoted by y T x, and y <T x if x 6= y. The subtree of
T that is rooted at a node u of T (denoted by Tu) is the result of deleting
all nodes v with v ⇥T u from T . Nodes with no children are leaves, all
others are internal nodes. The set of leaves of a tree T is denoted by L(T).
The leaves of T are bijectively labeled by a set L(T) of labels. A tree is
binary if kx = 2 for all internal nodes x. A tree T is dated if a total order
✓ on internal nodes that extends T is given. Each internal node then
implies a date between 1 and |V (T)|� |L(T)| (the root) and all the leaves
are assumed to have date 0. The dated subdivision T 0 of a dated tree T

is obtained by replacing each arc (x, y) by a path containing d additional
nodes, where d+1 is the difference between the date ofx and the date of y.

A reconciliation involves two rooted phylogenetic trees, a gene tree G
and a species tree S, both binary. Their relation is set by a function
s : L(G) ! L(S), which means that each extant gene belongs to an
extant species. Note that s does not have to be injective (several genes

of G can belong to the same species) or surjective (some species may
not contain any gene of G). A reconciliation ↵ of G in S is a mapping
of each internal node u of G to a sequence (↵(u)

1

,↵(u)
2

, . . .) of
nodes of S if S is undated or nodes of the dated subdivision S0 of S

if S is dated. Herein, for each i � 1, we have ↵(u)i+1

T ↵(u)i
and ↵(u)i satisfies the constraints of any one of the possible events
among duplication (D), transfer (T), loss (L), or speciation (S) – see
the appendix in the supplementary material for more details. This ensures
that a coherent gene history can be extracted from ↵. Given costs for
individual D, T and L events (it is usually assumed that speciation does
not incur cost), denoted respectively �, ⌧ and �, a reconciliation ↵ is
assigned the cost c(↵) := d� + t⌧ + l�, where d, t and l denote the
respective numbers of events of type D, T and L implied by ↵. We denote
by R(G,S) the set of all possible reconciliations of G in S and define
cDTL(G,S) := min↵2R(G,S)

c(↵), that is, the minimum cost over all
possible reconciliations of G in S. We call cDTL(G,S) the cost of G with
respect to a species tree S. A reconciliation ↵ achieving this cost is called
most parsimonious reconciliation (MPR).

Problem 1. Most Parsimonious Reconciliation
Instance: a (dated) binary species tree S, a binary gene tree G, costs �,
⌧ , � for respective D, T, L events
Output: a reconciliation of G in S of minimal cost

This problem can be solved in O(|S|2 · |G|) time (Doyon et al., 2010)
for dated trees, and O(|S| · |G|) time for undated ones (Bansal et al.,
2012). In the following, we turn our attention to non-binary gene trees and
we consider the species tree as dated. Nevertheless, every result is also
valid for the undated case with better complexity, see Section 3.3.

2.2 Resolution of non-binary gene trees

If a node in a tree T has more than two children, we call this node a
polytomy. Note that a node a of T partitions L(T) into two sets, the
descendants of a and all others. Given a gene tree G with at least one
polytomy, a binary tree G0 is called a binary resolution of G if G can be
obtained from G0 by contracting edges. We denote by BR(G) the set of
all binary resolutions of G.

Problem 2. Polytomy Solver under the DTL framework
Instance: a dated binary species tree S, a gene tree G, costs �, ⌧ , �
respectively for D, T, L events
Output: a binary resolution G0 of G minimizing cDTL(G0, S)

This problem – introduced by Chang and Eulenstein (2006) – is known to be
NP-hard (Kordi and Bansal, 2015), and can be solved in timeO(|G|+|S|)
for ⌧ = 1 (Zheng and Zhang, 2014b).

A brute-force approach would need to generate all binary resolutions.
There are (2n� 3)!! ⇡

p
2(

2

e
(n� 1))

n�1 different rooted binary trees
on n leaves, which gives |BR(G)| ⇠

Q
u2V (G)\L(G)

p
2(

2

e
(ku �

1))

ku�1 different binary resolutions of G. This yields an algorithm with
time complexity O(|S|2 · |G| · |BR(G)|). Using the following result, we
can improve on the brute-force approach.

Theorem 2.1. Let S be a species tree, let G be a gene tree, and let u
be a polytomy in G. Let G0 2 BR(G) and let ↵ 2 R(G0, S) such that
↵ is an MPR between S and G0 and no MPR between S and any other
binary tree in BR(G) is strictly cheaper than ↵. Let G⇤

u 2 BR(Gu) and
let � 2 R(G⇤

u, S) such that �(u)
1

= ↵(u)
1

. Then, c(↵u)  c(�),
where ↵u is the restriction of ↵ to G0

u. Less formally, a binary resolution
of G allowing a globally optimal reconciliation ↵ is also locally optimal
for each subtree rooted at a polytomy u (provided that u is mapped to the
same species v).

This implies that an MPR ↵ on the whole tree G always yields an
MPR on a subtree Gu (where the first node in the mapping of u is
constrained to be the same as in ↵); so we can progressively reconstruct
a global solution by amalgamating MPRs on subtrees. We do not give a
proof of Theorem 2.1 here because it will be a consequence of our main
Theorem 2.2. Nevertheless, we note here that the dynamic programming
algorithm by Doyon et al. (2010) with the help of Theorem 2.1 permits
us to solve Problem 2 with a lower complexity: Whenever we encounter
a polytomy u in its bottom-up approach, we store, for each v 2 V (S),
the minimum cost of a reconciliation associating u with v over all binary
resolutions of Gu.

Observation 2.1. A solution for Problem 2 can be found by solving
polytomies one by one in a bottom-up approach, with a time complexity
of O(|S|2 · |G| · (2

e
(k � 1))

k�1

), where k is the maximum number of
children of any node in G.

Note that this has been independently observed by Kordi and Bansal
(2016), who presented an algorithm having the same asymptotic time
complexity as the approach described in Observation 2.1.

While Observation 2.1 already implies that Problem 2 is fixed-
parameter tractable1 (FPT) with respect to the maximum out-degree in
G, it remains interesting to search for a single-exponential-time algorithm
that could process larger gene trees and even genome-wide data. The idea
for such an algorithm comes from the amalgamation principle.

2.3 Amalgamation of gene trees

A node u of a binary tree T is said to generate the clade C(u) = L(Tu).
If u has distinct children ur and ul, we also say that u generates the
tripartition (C(u), {C(ul), C(ur)}), otherwise, u generates the trivial
tripartition (C(u), {?,?}). Herein, we call C(u) the domain of the
tripartition. A binary tree T generates a set of clades and tripartitions,
respectively denotedC(T) and⇧(T), which are the clades and tripartitions
generated by its nodes.

More generally, for a set of labels L, a clade is a subset of L and a
tripartition is a tuple (C, {Cr, Cl}) such that the clades Cr, Cl partition
the cladeC. Let⇧ be a set of tripartitions onL. We denote the set of clades
present in ⇧ by C(⇧). Further, ⇧ is said to be complete if it contains L
as the domain of some tripartition, and for each tripartition (A, {B,C})
either B = C = ? or ⇧ contains tripartitions with B and C as respective
domains. It is easy to see that the set of tripartitions generated by a binary
tree is always complete, and conversely, for any complete set of tripartitions
⇧ onL, there is at least one binary treeGwithL(G) = L, which generates
a subset of ⇧. The amalgamation problem is to generate one minimizing
the reconciliation cost with respect to a species tree:

Problem 3. Amalgamation under the DTL framework
Input: a complete set of tripartitions ⇧ on a set of labels L, a dated
binary species tree S, a labeling function s : L ! L(S) and costs �, ⌧ ,
� respectively for D, T, L events
Output: a binary gene tree G minimizing cDTL(G,S) over all binary
gene trees G0 with L(G0

) = L and such that the set of tripartitions
generated by G0 is a subset of ⇧

This problem can be solved in O(|S|2 · |⇧|) time (Scornavacca et al.,
2015). Given a non-binary tree G, we can generate a complete set of
tripartitions containing all tripartitions of any binary resolution of G as
follows: for each node u of G with child set {u

1

, . . . , ut}, and for each
I ✓ {u

1

, . . . , ut}, u generates a tripartition (A, {B,C}) such that

1 An algorithm is FPT with respect to p if its running time is f(p)·poly(n)
where f is some function that only depends on p and n is the size of the
instance.

B [C = A ✓
S

i2I C(ui) and none of B or C overlap any C(ui)

(overlapping means containing some elements but not all). The union of
all these tripartitions is the set of tripartitions of G, noted ⇧(G) as in
the binary case. Now, if the set ⇧ in Problem 3 is set to ⇧(G) and the
labelling function s associates the genes in G to the correct species in S,
then Problems 2 and 3 are equivalent: indeed, it is easy to see that any
binary resolution G0 of G is such that the set of tripartitions generated by
G0 is a subset of ⇧(G), and that the converse holds too. Thus, the known
dynamic programming algorithm solving Problem 3 (Scornavacca et al.,
2015) yields a novel algorithm for the resolution of polytomies.

Theorem 2.2. Let G be a non-binary gene tree. An amalgamation
solution on ⇧(G) is an optimal binary resolution of G.

The complexity of this algorithm is O(|S|2 · |⇧(G)|). We can bound
the size of ⇧(G) using the following statement.

Lemma 2.3. For any gene tree G, |⇧(G)| = O(|G| · (3k � 2

k+1

)),
where k is the maximum out-degree of any node in G.

Proof. Let u be a node of G, and u
1

, . . . , ut its children. Recall that,
for each I ✓ {u

1

, . . . , ut}, u generates a tripartition (A, {B,C}) such
that B[C = A ✓

S
i2I C(ui) and none of B or C overlap any C(ui).

Any tripartition (A, {B,C}) generated by u is isomorphic to a partition
of {C(u

1

), . . . , C(ut)} into three sets, B, C, and
S

i C(ui) \ A with
B 6= ? and C 6= ?. There are 3

t partitions of t elements into three sets,
with 2 ·2t of them having B = ? or C = ?. If the (unique) partition with
B = C = ? is not counted twice, we get 3t � 2

t+1

+ 1 such partitions.
Finally, we can remove half of the remaining partitions by the symmetry
of B and C and arrive at a count of 1/2(3t � 2

t+1

+ 1). Thus, there are
1/2(3t�2

t+1

+1) such partitions and, hence, this is also an upper bound
on the number of tripartitions generated by u. Summing over all vertices
of G, the total number of tripartitions generated by G is then bounded by
|G| · 1/2(3k � 2

k+1

+ 1) where k is the maximum out-degree in G.

This leads to the main theoretical result of the paper

Proposition 2.4. For any gene tree G, Problem 2 can be solved in
O(|S|2 · |G| · (3k � 2

k+1

)) time for dated species trees, where k is
the maximum out-degree in G.

The running-time in Proposition 2.4 improves on the previous result
(see Kordi and Bansal (2016) or Observation 2.1) by an exponential
factor, allowing us to optimally reconcile gene trees with out-degrees of
O(log |G|) in polynomial time.

3 Practical issues

In order to turn the algorithmic principle described in the previous section
into a workable method for biological datasets, we have to handle three
issues: one is that the position of the root in the gene tree is usually
unknown; a second is that species trees are usually undated; the last and
most difficult one is the choice between multiple solutions. Indeed, in
some cases the solution space of the problems defined in the previous
sections is huge and two different solutions can be far apart. But some
information from branch supports – encoded in the tripartitions to be used
in the amalgamation algorithm – can be used to efficiently find a good
solution. We address this issue first.

3.1 Scoring tripartitions as a guide in the solution space

Given a multiset of tripartions ⇧ on L, the conditional probability of
a tripartition ⇡ = (C

1

, {C
2

, C
3

}) in ⇧ is the ratio f
⇧

(⇡)/f
⇧

(C
1

),
where, for each clade and tripartition in ⇧, f

⇧

(·) denotes its frequency in
⇧ (Höhna and Drummond, 2012). The conditional clade probability of a

binary tree G such that L(G) = L, denoted by PCCP(G), is defined as
the product of the conditional probabilities of all tripartitions in ⇧(G).

Problem 2 admitting a multitude of optimal solutions, Kordi and Bansal
(2016) propose to enumerate them all. We propose to exploit the support
of the branches in the input tree to evaluate each solution and reduce the
size of the output. To this end, we construct an artificial probability space,
where the conditional probability of a tripartition ⇡ = (C

1

, {C
2

, C
3

})
is still f

⇧

(⇡)/f
⇧

(C
1

), but where f is redefined using information from
branch supports of the input tree. The rationale is that for the clades present
in the input tree we use the supports of the corresponding branches to
approximate the frequency in an imaginary sampleG of binary resolutions,
while the clades that are not present in the input tree are considered
equiprobable. So we have to assign a probability to each clade and, in
the following, we explain precisely how.

Frequency of clades. Let GB be a rooted binary tree with supports on
its branches and let G be the multifurcated gene tree obtained from GB

by contracting unsupported branches (according to a given threshold), we
define a supportf(C

1

) for each cladeC
1

generated byG. IfC
1

2 C(GB
),

then f(C
1

) is its support, i.e. the support of the branch leading to the
clade2. Otherwise, there is a clade in GB that is incompatible with C

1

.
Among all such clades, let C

0

be one that maximizes f(C
0

). Then, we
use the knowledge of the frequency of C

0

to infer the frequency of C
1

in our imaginary sample G by assuming that the ratio of trees generating
C

1

to trees not generating C
0

is the same in G as in BR(G). Thus, the
support of C

1

is defined as f(C
1

) := (1 � f(C
0

)) · g(C1)

1�g(C0)
, where

g(C) is the frequency of a clade C in BR(G). To compute g(C), suppose
C is generated by a vertex u of G with n(u) children, and that n(C) is
the number of children of u “contained” in C. Then:

g(C) :=

#T (n(C)) ·#T (n(u)� n(C) + 1)

#T (n(u))

where #T (k) is the number of rooted binary trees with k leaves, i.e.
(2k � 3)!!. For example, given the trees in Figure 1, the support of
the clade {C,D} is 0.5 (i.e. 50/100), while the support of {A,B,C}
(which conflicts with {C,D}) is 0.5 · 1

4

=

1

8

(note that g({C,D}) =

g({A,B,C}) = 3

15

).

Frequency of tripartitions. Let ⇡ = (C
1

, {C
2

, C
3

}) be a tripartition.
Let BR(G)

1

be the set of binary resolutions of G that generate C
1

and let G
1

= G \ BR(G)

1

be the part of our imaginary sample
whose trees generate C

1

. If ⇡ 2 ⇧(GB
), we define f(⇡) :=

min(f(C
1

), f(C
2

), f(C
3

)). Otherwise, either GB generates C
1

and
a tripartition ⇡0 on the same domain C

1

as ⇡, or GB does not generate
C

1

. In the first case, we use the knowledge of the frequency of ⇡0 and C
1

to infer the frequency of ⇡ in our imaginary sample by assuming that the
ratio of trees generating ⇡ to trees not generating ⇡0 is the same in G

1

as
in BR(G)

1

. Thus, f(⇡) := (f(C
1

)� f(⇡0
)) · ĝ(⇡)/(g(C

1

)� ĝ(⇡0
)),

where ĝ(⇡) is the frequency of⇡ inBR(G). In the second case, we assume
that the frequency of trees generating ⇡ is the same in G

1

as in BR(G)

1

.
Thus, f(⇡) := f(C

1

) · ĝ(⇡)/g(C
1

), where ĝ(⇡) is the frequency of ⇡
in BR(G).

The frequencies ĝ can be computed as follows. If⇡ = (C
1

, {C
2

, C
3

})
is generated by u, then we denote by n(Ci) the number of children of u
whose clades are contained in Ci. We define ĝ(⇡) as

#T (n(C
2

)) ·#T (n(C
3

)) ·#T (n(u)� (n(C
2

) + n(C
3

)) + 1)

#T (n(u))
.

2 Note that supports have to be numbers between 0 and 1, and thus
bootstrap values should be divided by the size of the bootstrap sample.

80 70

60

A B

50

C D E F

v

u
80

A B C D E F

Fig. 1. A binary gene tree GB (left) and a non-binary one (right) obtained from GB by
suppressing edges with a support lower than 80.

For example, given the trees in Figure 1, we have the following:

f(({A,B,C,D}, {{A,B}, {C,D}})) = 0.5,

f(({A,B,C,D}, {{A,C}, {B,D}})) = 0.3 · 1/14 and

f(({A,B,C}, {{B,C}, {A}}) = 1/8 · 1/3.

Finally, conditional clade probability and reconciliation cost can be
combined by weighting their ratio (see Scornavacca et al. (2015)).

c
joint

(G0, S) = cDTL(G0, S) + cANA(G0
)

where G0 is a gene tree in BR(G) and the parameter cA weights the
“sequence contribution" NA(G0

) := � log (P
CCP

(G0
))) Formally, we

have the following problem:

Problem 4. Polytomy Solver with CCPs under the DTL framework
Instance: a dated binary species tree S, a gene tree G, costs �, ⌧ , �
respectively for D, T, L events
Output: a binary resolution G0 of G minimizing c

joint

(G0, S)

Note that Problems 2 and 4 coincide when cA = 0. In experiments with
real-world data, choosing cA > 0 gives better results (Scornavacca et al.,
2015), so we used such a joint score in the experiments (see Section 4).

3.2 Unrooted gene trees

Phylogenetic trees are always rooted, but often the position of the root is
unknown. The method in the previous section can be used on an unrooted
gene tree G to account for the uncertainty on the position of the root,
without additional complexity as follows. First, we call Gr the rooted
tree obtained by rooting G arbitrarily on an internal edge e, and GB

r

the rooted version of GB , also rooted on e. Then we compute the set
⇧(Gr) of tripartitions as defined in Section 2.3. To obtain ⇧(G), we also
consider, for each non-trivial tripartition (C

1

, {C
2

, C
3

}) 2 ⇧(Gr), the
two other possible tripartitions on L(G) that are implied by a different
placement of the root, namely ((L(G) \ C

1

) [C
2

, {L(G) \ C
1

, C
2

})
and ((L(G) \ C

1

) [C
3

, {L(G) \ C
1

, C
3

}). To these tripartitions, we
add the set ⇧0

:= {(L(G), {{l},L(G) \ {l}})|l 2 L(G)} of all trivial
tripartitions.

Each edge e = (u, v) of the rooted binary tree GB
r induces two clades

Cu(e) and Cv(e), which correspond to the label sets of the leaves of the
two subtrees created by removing e. We say that Cu(e) is generated by
u and Cv(e) by v, and we associate to them the support of e. Then, we
redefine the set C(GB

r) as the set of clades induced by all edges of GB
r .

Given the set C(GB
r) defined in this way, the support of each clade of

C(Gr) is then computed as in the rooted case.
Finally, we describe how to give a support value to each tripartition of

G in the unrooted case: The support of each tripartition ⇡ 2 ⇧(Gr) is
computed w.r.t.GB

r as described in the previous section, and the support of
the two other possible tripartitions on L(G) that are implied by a different
placement of the root is the same as the support of ⇡. All tripartitions in
⇧

0 have support equal to 1.

3.3 An undated variant

The method discussed by Scornavacca et al. (2015) has been conceived
for dated binary species trees, but can easily be adapted to undated ones,
while respecting all previously mentioned results, with a slight correction
concerning the complexity.

Indeed, reconciliations for undated species trees can be computed in
O(|S| · |G|) time with an algorithm described by Bansal et al. (2012).
Adapting this algorithm to the amalgamation framework can be done by the
same technique used to adapt the O(|S|2 · |G|)-time algorithm of Doyon
et al. (2010) for dated species trees reconciliation to the amalgamation
framework as done in (Jacox et al., 2016). Thus, our result translates to an
O(|S| · |G| · |⇧|)-time algorithm – by Lemma 2.3, an O(|S| · |G| · (3k �
2

k+1

))-time algorithm – for undated species trees.

3.4 Adaptive compromise between the amount of
correction and the computational complexity

The threshold for deciding if a branch is well-supported or not is, in
principle, user-defined. However, in the experiments, we required that,
in the multifurcated tree resulting from the contraction of unsupported
branches, an internal node has at most 12 children. This is done to avoid
the combinatorial explosion and to keep the method fast. So we adopted a
strategy of increasing the threshold until the 12 maximum children property
was satisfied.

4 Application on simulated and biological data

In this section, we use three different data sets, two simulated and one from
microbial genomes, to compare the performance of our algorithm with
seven different gene tree reconstruction methods: TERA (Scornavacca
et al., 2015), ALE (Szöllősi et al., 2013), TreeFix-DTL (Bansal et al.,
2014), MowgliNNI (Nguyen et al., 2013), JPrIME-DLTRS (Sjöstrand
et al., 2014), RAxML (Stamatakis, 2014) and PhyML (Guindon et al.,
2010). The first five use information from the sequences and the species
tree, while the last two use only information from the sequences. The
method described in this paper has been integrated to the ecceTERA
package and thus it is called ecceTERA in the comparisons. TERA has
also been implemented in the same package, but it is a different method,
described in (Scornavacca et al., 2015). The method presented by Kordi
and Bansal (2016) has not been tested because no implementation was
available at the time of writing. However, as it also solves Problem 2 (with
a higher time complexity than our method), it will give the same results as
our method for cA = 0, but with a higher running time.

4.1 Simulated Proteobacteria Data Set

The proteobacteria data set is the one constructed to test MowgliNNI and
made available by Nguyen et al. (2013). Starting with a dated phylogeny
of 37 proteobacteria (David and Alm, 2011):

•1000 evolutionary histories comprising D, T, and L events were
simulated along the species tree according to a birth and death process;

•sequences were simulated along these true gene trees under the GTR
(General Time Reversible) model using Seq-Gen (Rambaut and Grass,
1997);

•RAxML (Stamatakis, 2014) was used to estimate gene trees (along with
100 bootstrap trees) from these sequences under the GTR model.

We refer to the section “Simulated gene trees and evolutionary
histories” of Nguyen et al. (2013) for more details on how the data set
was composed. Some of the test results are taken from the same procedure
proposed by Scornavacca et al. (2015).

8 s

37 m

0.4 s 15 s2.5 m

72 m

Fig. 2. Accuracy of several methods on the simulated proteobacteria data set: we measure
the normalized Robinson-Foulds distance of the reconstructed tree to the true gene tree
for all 1000 gene trees, for 7 methods. Computing times – except for the computation of
the RAxML trees – are given in the boxes (s=seconds, m=minutes). In terms of quality,
TreeFix-DTL achieves the best accuracy but is relatively slow. ecceTERA is comparable
with the second best methods, both in accuracy and computing time.

We ran TreeFix-DTL with default parameters, GTR with a gamma
distribution as models of evolution, and as a starting tree the RAxML
tree. The RAxML tree (with bootstrap values) was also the input given to
MowgliNNI and ecceTERA that were run with a threshold for weak edges
equal to 70. As in Scornavacca et al. (2015), JPrIME-DLTRS was run on
the sequence alignments with JC69 with a gamma distribution as model of
evolution (GTR is not available in JPrIME-DLTRS), 100 000 iterations, a
thinning factor of 10 and a time out of 10h. Finally, TERA and ALE were
run on the set of bootstrap trees with default parameters, except for the
weight of amalgamation cA, fixed to 0.1 for TERA as for ecceTERA.

The accuracy – defined as normalized Robinson-Foulds distance to
the true gene tree – of TERA, ecceTERA and ALE is comparable and
higher than the one of JPrIME-DLTRS and RAxML (see Figure 2). The
method that outperforms the others in this case is TreeFix-DTL. This is
possibly due to the fact that the synthetic data set was simulated on the same
model used to estimate the gene trees with TreeFix-DTL, making the task
easier for the method. Another reason may be the fact that TreeFix-DTL
can show signs of significant overfitting of the species tree (Scornavacca
et al., 2015). Note also that TreeFix-DTL is slower than ecceTERA, with
an average runtime of 37 minutes versus 15 seconds. Interestingly, the
accuracy of ecceTERA does not vary if we consider the species tree as
undated, while the average runtime decreases considerably (6 seconds).
Note that the normalized Robinson-Foulds distance is not fined-grained

and it is not necessarily correlated with reconciliation measures, as noted
by Zheng and Zhang (2014a). This is why we also compared trees using
the (more fine-grained) normalized triplet distance, with similar results
(see Figure 1 of the Appendix).

We also counted the number of genes present in ancestral species
according to reconciled gene trees. All gene trees, reconstructed from
different methods, are reconciled with TERA to have access to the ancestral
gene content, considering trees as rooted for all methods but RAxML
(RAxML is the only method tested here that outputs unrooted gene trees).
We compared it with the number of genes present in extant species. The
results are shown in Figure 3.

Fig. 3. Number of genes for extant species (“Extant"), or ancestral species reconstructed
with reconciled real trees (“Real") or inferred trees from several methods (the others).

Fig. 4. Accuracy of some methods on the sim. cyanobacteria data set. The accuracy of
TERA, TreeFix-DTL and JPrIME-DLTRS are depicted in Figure 2(a) of Scornavacca et al.
(2015).

We see that the genome histories are close to the ones inferred from
the real trees according to ecceTERA trees, ALE being equivalent in this
view. Note that gene trees reconstructed from RAxML only do not yield
a correct ancestral genome content. This result argues for the correction
step, quickly achieved by ecceTERA, for every evolutionary study.

4.2 Cyanobacteria Data sets

The biological and simulated cyanobacteria data sets used here have been
made public by Szöllősi et al. (2013) at http://datadryad.org/
resource/doi:10.5061/dryad.pv6df. Their construction con-
sisted in selecting 1099 gene families from 36 cyanobacteria species,
related by a known dated species tree. These families were retrieved from
HOGENOM (Penel et al., 2009), and selected for their reasonable size and
representativity. To obtain the biological data set, multiple-alignments on
these families were computed with Muscle (Edgar, 2004).

To obtain the simulated data set, from each multiple-alignment
of the real data set, a sample of 1000 trees was computed with
PhyloBayes (Lartillot et al., 2009), and an amalgamated tree was

reconstructed with ALE (Szöllősi et al., 2013). This tree was used to
simulate multiple-alignments of artificial sequences evolved along this tree
under an LG model with a gamma distribution. This multiple-alignment
is the input of our simulated data set. See (Szöllősi et al., 2013) for more
detail on how the data sets were generated.

Tests on the simulated data set. A tree was computed for each simulated
multiple-alignment using PhyML (Guindon et al., 2010), with an
LG+�4+I model and SH branch supports.

For this data set, the accuracy of TERA, ALE, TreeFix-DTL,
MowgliNNI, JPrIME-DLTRS and PhyML were compared by Scornavacca
et al. (2015, Figure 2(a)) (See Section 2.5 of the same paper for more
details on the input/parameters used to generate the results), TERA and
ALE giving the best results. In Figure 4, we compare these results with
those of ecceTERA, again on unrooted gene trees and dated species tree, for
three different thresholds of weakly supported edges (0.8, 0.7 and 0.6). We
report the results of ALE and PhyML from Scornavacca et al. (2015), plus
the results for MowgliNNI for the same thresholds used for ecceTERA.
Both ecceTERA and Mowgli were given the “simulated” PhyML trees
with SH branch supports. Finally, we report the accuracy of ALE when
using as input 100 sample trees (ALE 100 in Figure 4) among the 10k trees
provided, mimicking the information contained in a set of bootstrap trees.

Figure 4 shows that, for this data set, ecceTERA with a threshold of
0.8 achieves a slightly better accuracy than all other methods, while with a
threshold of 0.7-0.6 the accuracy is comparable to that of ALE. Moreover,
the accuracy of ecceTERA increases with the threshold for weak edges,
while this is not the case for MowgliNNI. It is also worth noting that
the accuracy of ALE decreases considerably when used on small samples
of trees. These results are even more interesting when considering that
ecceTERA is the fastest method of the bundle (see Table 1 and Figure 2(a)
of (Scornavacca et al., 2015)). Although ecceTERA has similar running
times as TERA, it requires much less time to construct the input (as its input
is the PhyML tree with SH branch supports). Thus, the ecceTERA strategy
is the fastest (considering computation + input preparation time) among
all compared strategies. Again, comparing the trees using the normalized
triplet distance yielded similar results (see Figure 2 of the Appendix). Note
that scoring tripartions as described in Section 3.1 and the choice of the
costs have impact on the accuracy: running ecceTERA with unitary costs
for D, T, L events yields to an average normalized R-F distance of 0.134
for a threshold of 0.8 for weakly supported edges (the average is 0.24 if the
costs are respectively 2,3 and 1, see Figure 4); the average stays at 0.133
if the costs are 2,3 and 1 but all tripartitions are considered equiprobable,
while it goes down to 0.151 for unitary costs and equiprobable tripartitions.

Tests on the biological data set. From each multiple alignment, a
maximum-likelihood tree was computed with PhyML (Guindon et al.,
2010) with SH branch supports. These PhyML trees were corrected using
ecceTERA with a threshold for weak edges equal to 0.8. The weight of
amalgamation cA was estimated, with starting value 1. Gene trees were
considered as unrooted and the species tree as dated.

We measured the quality of the corrected trees compared to that of the
maximum-likelihood trees in two ways. First, we compared the likelihoods
according to the multiple-alignments. Of course, the PhyML trees always
have a better likelihood because they are optimized with respect to this
criterion. But it is interesting to note that for 80% of the trees, an
Approximate Unbiased (AU) test performed with Consel (Shimodaira and
Hasegawa, 2001) did not reject the ecceTERA tree. So, in a vast majority
of the cases, the ecceTERA and PhyML trees are equivalent regarding
their sequence likelihoods.

Second, we compared the two sets of trees with respect to their
implications for the evolutionary dynamics of genomes: we counted the

Fig. 5. Number of genes for extant species (“Extant"), or ancestral species reconstructed
with reconciled trees from ALE, ecceTERA and PhyML. Better trees yield more plausible
genome histories.

number of genes present in ancestral species according to reconciled
gene trees (again all gene trees were reconciled a posteriori with TERA,
considering gene trees as rooted for ALE and ecceTERA, and unrooted
for PhyML), and compared it with the number of genes present in extant
species. The results are shown in Figure 5.

Genome histories are much more stable according to ecceTERA and,
equivalently, ALE. According to PhyML trees, ancestral genomes were
much smaller than extant genomes, which is not a plausible hypothesis,
regarding the theoretical performances of sequence-based constructions,
and regarding the same study on simulated genomes (Figure 5).

All results tend to show that the gene tree quality is comparable to
that of the best available methods, ALE, TERA and TreeFix-DTL, while
solving exactly the non binary gene tree species tree reconciliation, being
faster and simpler to use.

5 Conclusions

Gene trees are a precious resource for biologists. They allow us to annotate
genomes, to define species taxonomies, and to understand the evolution
of traits, adaptation, and modes of genome evolution. They are also used
to reconstruct ancestral genomes and understand the history of relations
between organisms and their environment on a long time scale. Thus,
reliable gene trees are crucial for many biological results (see for example
Groussin et al. (2015)).

Standard tools constructing gene trees from multiple sequence
alignments are widely used. Although species tree aware methods provide
better quality gene trees, they have not been as popular. First because
a species tree is not always available, and second because of the
computational investment most methods require to output a gene tree.

We propose a method that can be easily used by biologists to quickly
correct the output of a gene tree computed from a multiple sequence
alignment, provided that branch supports and a species tree are available.
The software is built on an FPT algorithm which is derived from recent
advances in gene tree amalgamation principles. Its complexity is single
exponential in the maximum degree of the input tree, which reduces
to the maximal number of connected branches with low support. What
a low support is depends on a threshold chosen by the user. Thus, a
compromise between the extent of the correction and the computing time
is easily achieved. On all of our data sets, on several dozens of species
and several thousand of genes, we arrived quickly at a result that is always
significantly better than methods based on multiple sequence alignments

only, and whose quality is equivalent to the computationally more intensive
integrated methods.

Acknowledgments

All analyzes were performed on the computing cluster of the Montpellier
Bioinformatics Biodiversity (MBB) platform.

Funding

This work was supported by the French Agence Nationale de la Recherche
Investissements d’Avenir/ Bioinformatique (ANR-10-BINF-01-01, ANR-
10-BINF-01-02, Ancestrome).

References

Bansal, M. S., Alm, E. J., and Kellis, M. (2012). Efficient algorithms for
the reconciliation problem with gene duplication, horizontal transfer and
loss. Bioinformatics, 28(12), i283–i291.

Bansal, M. S., Wu, Y.-C., Alm, E. J., and Kellis, M. (2014). Improved
gene tree reconstruction for deciphering microbial evolution. Submitted.

Chang, W.-C. and Eulenstein, O. (2006). Reconciling gene trees with
apparent polytomies. In International Computing and Combinatorics
Conference, volume 4112 of LNSC, pages 235–244. Springer Berlin
Heidelberg.

David, L. A. and Alm, E. J. (2011). Rapid evolutionary innovation during
an archaean genetic expansion. Nature, 469(7328), 93–96.

Doyon, J.-P., Scornavacca, C., Gorbunov, K. Y., Szöllosi, G. J., Ranwez,
V., and Berry, V. (2010). An Efficient Algorithm for Gene/Species
Trees Parsimonious Reconciliation with Losses, Duplications and
Transfers. In RECOMB International Workshop on Comparative
Genomics, volume 6398 of LNBI , pages 93–108. Springer Berlin
Heidelberg.

Edgar, R. C. (2004). Muscle: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics, 5, 113.

Felsenstein, J. (2004). Inferring phylogenies. Sinauer associates
Sunderland.

Groussin, M., Hobbs, J. K., Szöllősi, G. J., Gribaldo, S., Arcus, V. L., and
Gouy, M. (2015). Toward more accurate ancestral protein genotype-
phenotype reconstructions with the use of species tree-aware gene trees.
Molecular Biology and Evolution, 32(1), 13–22.

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W.,
and Gascuel, O. (2010). New algorithms and methods to estimate
maximum-likelihood phylogenies: assessing the performance of PhyML
3.0. Systematic Biology, 59(3), 307–321.

Höhna, S. and Drummond, A. J. (2012). Guided tree topology proposals
for Bayesian phylogenetic inference. Systematic Biology, 61(1), 1–11.

Jacox, E., Chauve, C., Szöllősi, G. J., Ponty, Y., and Scornavacca, C.
(2016). ecceTERA: Comprehensive gene tree-species tree reconciliation
using parsimony. Bioinformatics.

Kordi, M. and Bansal, M. S. (2015). On the complexity of duplication-
transfer-loss reconciliation with non-binary gene trees. In International
Symposium on Bioinformatics Research and Applications, volume 9096
of LNCS, pages 187–198. Springer International Publishing.

Kordi, M. and Bansal, M. S. (2016). Exact algorithms for duplication-
transfer-loss reconciliation with non-binary gene trees. In ACM
Conference on Bioinformatics, Computational Biology, and Health
Informatics (ACM-BCB), pages 285–294.

Lartillot, N., Lepage, T., and Blanquart, S. (2009). PhyloBayes 3:
a Bayesian software package for phylogenetic reconstruction and
molecular dating. Bioinformatics, 25(17), 2286–2288.

Mossel, E. and Steel, M. (2005). How much can evolved characters tell us
about the tree that generated them? In O. Gascuel, editor, Mathematics
of Evolution and Phylogeny, pages 384–412. Oxford University Press.

Nguyen, T. H., Ranwez, V., Pointet, S., Chifolleau, A.-M. A., Doyon, J.-P.,
and Berry, V. (2013). Reconciliation and local gene tree rearrangement
can be of mutual profit. Algorithms for Molecular Biology, 8(1), 1.

Noutahi, E., Semeria, M., Lafond, M., Seguin, J., Boussau, B., Guéguen,
L., El-Mabrouk, N., and Tannier, E. (2016). Efficient gene tree correction
guided by genome evolution. PLoS ONE, 11(8), e0159559.

Penel, S., Arigon, A.-M., Dufayard, J.-F., Sertier, A.-S., Daubin, V., Duret,
L., Gouy, M., and Perrière, G. (2009). Databases of homologous gene
families for comparative genomics. BMC Bioinformatics, 10(6), S3.

Rambaut, A. and Grass, N. C. (1997). Seq-Gen: an application for the
monte carlo simulation of dna sequence evolution along phylogenetic
trees. Computer applications in the biosciences: CABIOS, 13(3), 235–
238.

Scornavacca, C., Jacox, E., and Szöllosi, G. J. (2015). Joint amalgamation
of most parsimonious reconciled gene trees. Bioinformatics, 31(6), 841–
848.

Shimodaira, H. and Hasegawa, M. (2001). CONSEL: for assessing the
confidence of phylogenetic tree selection. Bioinformatics, 17(12), 1246–
1247.

Sjöstrand, J., Tofigh, A., Daubin, V., Arvestad, L., Sennblad, B., and
Lagergren, J. (2014). A Bayesian method for analyzing lateral gene
transfer. Systematic Biology, 63(3), 409–20.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–
1313.

Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E., and Daubin,
V. (2013). Efficient exploration of the space of reconciled gene trees.
Systematic Biology, 62(6), 901–912.

Szöllősi, G. J., Tannier, E., Daubin, V., and Boussau, B. (2015). The
inference of gene trees with species trees. Systematic Biology, 64(1),
e42–e62.

Zheng, Y. and Zhang, L. (2014a). Are the duplication cost and robinson-
foulds distance equivalent? Journal of Computational Biology, 21(8),
578–590.

Zheng, Y. and Zhang, L. (2014b). Reconciliation with non-binary
gene trees revisited. In International Conference on Research in
Computational Molecular Biology, volume 8394 of LNSC, pages
418–432. Springer.

