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Space-time analysis of GDP disparities among European 

regions: A Markov chains approach

Abstract

The purpose o f this paper is to study the evolution o f the disparities between 138 European 

regions over the 1980-1995period. We characterize the regional per capita GDP cross-sectional 

distribution by means o f nonparametric estimations o f density functions and we model the 

growth process as a first-order stationary Markov chain. Spatial effects are then introduced 

within the Markov chain framework using regional conditioning (Quah, 1996b) and spatial 

Markov chains (Rey, 2001). The results o f the analysis indicate the persistence o f regional 

disparities, a progressive bias toward a poverty trap and the importance o f geography to explain 

the convergence process.

Keywords: convergence, regional disparities, spatial autocorrelation, spatial conditioning, 

spatial Markov chains
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Introduction

Numerous recent studies1 have reported the persistence of per capita Gross Domestic 

Product (GDP) or income disparities among European regions, despite the high degree of 

openness between these regions and in contradiction with the predictions of the neoclassical 

growth model. From an empirical point of view, the analysis of economic disparities is often 

linked to two concepts of convergence, called, respectively f3- and cr-convergence (Barro and 

Sala-I-Martin, 1995).

Empirical evidence on /^-convergence has usually been investigated by regressing growth 

rates of GDP on initial levels, sometimes after other variables maintaining constant the steady- 

state of each region have been added (conditional /^-convergence). A negative regression 

coefficient is interpreted as an indication of /¿-convergence, which implies that poor regions tend 

to grow faster than rich regions, so that the poor regions catch up in the long run the level of per 

capita GDP of the rich regions, cr-convergence refers to a reduction o f the dispersion within the 

per capita GDP cross-sectional distribution over time. However, both coefficients raise several 

problems. In particular, Friedman (1992) and Quah (1993b) show that an increase of the 

dispersion (i.e. no cr-convergence) is consistent with a negative /^-convergence regression 

coefficient. Furthermore, Quah (1993a,b) argues that dispersion indicators do not provide any 

information on the behavior of the entire regional per capita GDP distribution.

In addition, a common problem to all these methods concerns the role of space. At the 

regional scale, spatial effects and particularly spatial autocorrelation cannot be neglected for the 

analysis of convergence processes. Indeed, several factors, like trade between regions, 

technology and knowledge diffusion and more generally regional externalities and spillovers,
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may lead to geographically dependent regions. Because of spatial interactions between regions, 

the geographical location plays an important role for explaining the economic performances of 

the regions. Despite their importance, the role of spatial effects in convergence processes has 

only recently been examined using appropriate spatial statistics and spatial econometric methods 

(Armstrong, 1995; Moreno and Trehan, 1997; Lopez-Bazo et al. 1999; Fingleton, 1999; Rey and 

Montouri, 1999; Le Gallo and Ertur, 2000; Baumont et al., 2001).

This paper is related to the work of Quah (1993a, b) and deals with an alternative form of 

convergence, which is then measured from the evolution of the shape of the per capita GDP 

cross-sectional distribution and from the changes of the regions' relative positions inside this 

distribution2. Based on a sample of 138 European regions over the 1980-1995 period, the paper is 

run in two steps.

First, we characterize the evolution of the disparities between the European regions by 

examining the per capita GDP cross-sectional distribution over the 1980-1995 period. In that 

purpose, we use the tools developed by Quah (1993a, b, 1996a-c), i.e. non-parametric estimation 

of density functions and modeling of the growth process as a stationary first-order Markov chain. 

Second, the spatial dimension is explicitly considered within the Markov chain framework using 

regional conditioning (Quah, 1996b) and spatial Markov chains (Rey, 2001). These tools allow 

studying how the economic performances of a region can be explained by its geographical 

environment, the extent to which this environment influences the regions' relative position inside 

the GDP cross-sectional distribution and the role of space in the constitution o f convergence 

clubs.

1 See among others Baumol (1986), Barro (1991), Barro and Sala-i-Martin (1991, 1995), Armstrong and Vickerman 
(1995), Sala-i-Martin (1996), Beine and Docquier (2000).
2 This kind o f study may lead to the identification of convergence clubs and has been applied to various groups o f  
regions or countries (Bianchi, 1997; Desdoigts, 1999; Paap and Van Dijk, 1998; or Johnson, 2000).

4



1. The evolution of the per capita GDP distribution

The analysis of the evolution of the regional GDP distribution is carried out on the 

Europe-relative GDP distribution over the 1980-1995 period. The Europe-relative GDP is 

defined as the ratio o f the regional GDP to the European wide average GDP. It is preferable to 

work on relative GDP, opposed to absolute GDP, so that co-movements due to the European 

wide business cycle and trends in the average regional GDP are removed.

The analysis o f the Europe-relative regional GDP distribution is based on two main lines. 

First, non-parametric density estimation methods allow studying the external shape of the GDP 

distribution for each year, as well as the changes in this shape during the period. Second, the 

temporal dynamics within the GDP distribution is examined with the estimation of probability 

transition matrices (or Markov chains) and the associated long-run distributions.

The data are extracted from the EUROSTAT-REGIO databank. The sample includes 138 

regions for 11 European countries over the 1980-1995 period (see data appendix).

11. The evolution of the shape of the per capita GDP distribution

In cross-country studies, a polarization or stratification process in several "convergence 

clubs" is often observed (Quah, 1996c; Bianchi, 1997; Desdoigts, 1999). These convergence 

clubs mean an increase in the homogeneity within regions or countries of the same groups, and 

also an increase in the differences between groups. A first technique aimed at detecting such 

convergence clubs is the estimation of the density function for the regional per capita GDP 

distribution and the analysis of its mono- or multimodality characteristics. Quah (1993b, 1996c) 

and Bianchi (1997) detect bimodality for international income distribution, i.e. the existence of 

two convergence clubs, but Quah (1996b) obtains no evidence of it for a subsample of European 

regions in per capita GDP.
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In order to characterize the evolution of regional GDP, we have examined the per capita 

GDP distribution (relative to the European average) in 1980 and the way this distribution has 

changed in time until 1995. Figure 1 plots two estimated density functions for regional relative 

GDP for the initial year 1980 and the final year 19953. These density plots can be interpreted as 

the continuous equivalent of a histogram, in which the number of intervals has been let to 

infinity and then to the continuum. By definition of the data, 1 on the horizontal axis indicates 

the European average GDP, 2 indicates twice this average, and so on.

[Figure 1 about here]

Compared to 1980, more regions have regional GDP less than the European average or 

twice the European average in 1995. Moreover, besides the main mode, a second persistent mode 

is situated around 50% of the European average. This may reflect the existence o f an important 

group of regions, with per capita GDP levels below the average, and which converge towards a 

lower GDP level than the rest of the regions. This result contradicts those in Quah (1996b) but is 

similar to those in Lopez-Bazo et al. (1999). This difference may be explained by the samples 

used in this study and in Lopez-Bazo et al., where all poor regions of Portugal and Greece are 

included. On the contrary, Quah's sample (78 regions from 1980 to 1989) does not include these 

poor regions. Let us note as well that the distance between the two modes in our case is far below 

that the distance detected between the two peaks in the cross-country distribution. Finally, the 

little peak, situated around 200% of the European average on the 1995 density plot, fluctuates 

over the period. Therefore it is not possible to surely identify a third mode concerning the very 

rich regions.

3 All densities are calculated nonparametrically using a Gaussian kernel with bandwith set as proposed in Silverman 
(1986, section 3.4.2.).



The density plots suggest a persistent polarization of European regional GDP. However 

the density plots alone cannot support this interpretation. It is true that there are more very rich or 

very poor regions in 1995 compared to 1980, but we could wonder as well what were their 

relative positions in previous years. In other words, these density functions do not inform if the 

right tail of the initial distribution (1980) contains the same regions as the right tail in the final 

distribution (1995). Finally, while these functions allow characterizing the evolution of the 

global distribution, they do not provide any information on the movements of the regions inside 

this distribution.

12. Markov chains

A possible way to answer these questions is to track the evolution of each region's 

relative GDP over time by constructing transition probability matrices or Markov chains4. In the 

case of the European regions, different studies, based on different samples have been carried out: 

Neven and Gouyette (1995), Quah (1996a-c), Fingleton (1997, 1999), Lopez-Bazo et al. (1999), 

Magrini (1999).

Denote F, the cross-sectional distribution of regional per capita GDP at time t relative to 

the European average. Define a set of K  different GDP classes, which provide a discrete 

approximation of the per capita GDP distribution. We suppose that the frequency of the 

distribution follows a first-order stationary Markov process. In this case, the evolution of the 

regional GDP distribution is represented by a transition probability matrix, M, in which each 

element (ij) indicates the probability that a region that was in state i in time period t ends up in 

state j  the following period.

4 Presentations o f Markov chains can be found in Chung (I960), Kemeny and Snell (1976).
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The (X,l) vector F„ indicating the frequency of the regions in each class in time t, is 

described by the following equation:

[i]

where M  is the (KJK) transition probability matrix representing the transition between the two 

distributions.

If the transition probabilities are stationary, i.e. if  the probabilities between two classes 

are time-invariant, then:

F,„ = M'F, [2]

The transition probability matrix has a number of properties that can be exploited to study 

the evolution of regional income distributions.

1/ The first property is the propensity of the regions in each class to move in other classes 

and the average time required for a region to move between any pair of states i and j . These 

information are provided by the estimation of transition probabilities for our sample and by the 

determination of mean first time passage matrix (cf below: empirical results).

2/ The second property is the determination of the ergodic distribution (or the long-term 

distribution) of F„ characterized when s tends to infinity in [2]. Such a distribution exists if the 

Markov chain is regular, i.e. if  and only if for some N, Af* has no zero entries. In this case, the 

transition probability matrix converges to limiting matrix M* o f rank 1:

M t* = M* [3]
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where T* is the number of years required to reach this steady state. The existence of an ergodic 

distribution, F* is then characterized when:

F * M  = F *  [4]

Each row of M ‘ tends to the limit distribution as t -» oo. According to [4], this limit distribution 

is therefore given by the eigenvector associated to the unit eigenvalue of M.

3/ Finally, the second eigenvalue (in absolute value) of M, Aj, is a measure o f mobility and 

allows characterizing the speed with which the steady-state is approached. The half-life, which is 

the amount of time taken to cover half the distance from the stationary distribution, is defined as 

(Shorrocks, 1978):

j  lo§2 rc1 

d m = ^ \  151

This indicator ranges between infinity -when the second eigenvalue is equal to 1 and a stationary 

distribution does not exist- and 0- when is equal to 0 and the system has already reached its 

stationary equilibrium.

13. Empirical results

We distinguish between five different states: 1/ less than 65% of the European average 2/ 

between 65% and 95% of the European average 3/ between 95% and 110% of the European 

average 4/ between 110% and 125% of the European average 5/ more than 125% of the 

European average. As advised by Quah (1993a), followed by Lopez-Bazo et al. (1999) or Neven 

and Gouyette (1995), the discretization has been chosen so that the initial classes include a 

similar number of individuals. Markov chains with other grid points and other number of states
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have also been estimated but the main results found in this paper are qualitatively the same with

a different discretization.

Table 1 contains the transition probability matrix between 1980 and 1995 with the 

maximum likelihood estimates of the transition probabilities. The estimation of any element p ip 

is the total number of regions moving from class / in year t to class j  in year t + 1 over all 15 

years of transitions divided by the total sum of regions ever in i over the 15 years. For example, 

during the 15 year period, there were 416 instances of a region having a GDP lower than 65% of 

the European average. The majority of these regions (95.9%) remained in that GDP class at the 

end of the year, while 4.1% moved up one class by the end of the year.

Lopez-Bazo et al. (1999) and Neven and Gouyette (1995) compute Markov chains for 

two sub-periods due to the changes in the convergence process over time detected in other 

works5. On the contrary, in this paper, stationarity of transition probabilities is formally tested

also for two subtime periods 1980-1985 and 1985-1995. The tests indicate that the null

reliability of all subsequent interpretations is strengthened and in the remainder of the paper, we 

will analyze the convergence process for the whole period6.

5 Subperiods (1980-1985) and (1985-1992) for Lopez-Bazo et al. (1999), subperiods (1980-1985) and (1985-1989) 
for Neven and Gouyette (1995).
6 The %2 statistic is (Anderson et Goodman, 1957 ; Kullback et al., 1962):

with {T - \)K (K -\)  degrees o f freedom, p -  is the stationary estimate; Py(t) are the year-to-year estimates; m^t) is
the number of regions moving from i to j  in year t, T is the total number o f years and K  is the number of cells in the 
distribution. The test has been computed for the whole period and for two subperiods. The /7-value is 0.99 in the 
first case and 0.91 in the second case.

[Table 1 about here]

against non-stationarity (different year-to-year probabilities) for the whole period 1980-1995 and

hypothesis of stationary transition probabilities cannot be rejected in both cases. Therefore, the

m ao
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Several comments can be made about this matrix.

1/ First, the transition probabilities on the main diagonal are relatively high. Indeed, if a 

region is in the ith class, the probability of being in this same class the year after is at least 79.6%. 

Since the diagonal elements dominate, especially among the extreme classes, these results 

indicate that the poorest and the richest regions do not seem to modify their relative position over 

time. Furthermore, there is no spectacular move from year to year since strictly positive elements 

are only observed around the diagonal.

The average of the movements (elements outside the main diagonal) is around 8%. The 

second eigenvalue of the transition matrix is close to unity (0.97) and implies a half-life of 22 

years. All these elements indicate a very low inter-class mobility and an important persistence of 

the regions within each class.

2/ In order to precise the speed with which the regions move in the distribution, we consider 

"mean first passage time", for a process starting at time zero. If p'Jk is the probability that a

region in state j  first visits t periods later the state k, then the mean first passage time mpjk from j

to k is:

oo

mPjk = 5 > i  [6i
t= l

Table 2 shows the matrix of mean first time passage that allows examining the issue of fluidity7. 

The diagonal transition probabilities are mean first return times, where first return means staying 

in the own cell for one year or first returning to that cell if  a region leaves it in the first period.

If we concentrate on the elements outside the main diagonal, it seems that the transitions 

are relatively high. Indeed, the lower passage time is 13.7 year and the higher is 162.7 years. 

Globally, movements up are slower than movements down.
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[Table 2 about here]

3/ The ergodic distribution can be interpreted as the long run equilibrium regional GDP 

distribution in the regional system. If the distribution collapses into a single class, there is 

convergence. Returning to the density functions, this case corresponds to an unimodal per capita 

GDP distribution. However, a concentration of the regions in some of the classes, i.e. a 

multimodal limit distribution, can be interpreted as a tendency towards stratification in different 

convergence clubs. Finally, a dispersion of this distribution is interpreted as divergence.

Here (table 1), the characteristics of the ergodic distribution indicate a poverty trap: the 

probability that a region leaves the poorer class increases relative to the initial distribution. 

Combined with the very weak mobility observed, we can conclude that the poorest regions will 

probably remain poor. On the other side of the distribution, the two big classes are less 

important.

Finally, if  these observed tendencies remain, the per capita GDP distribution will 

progressively be biased towards the relative poor regions. Globally, the situation is remarkably 

stable and persistent: there is neither important changes for the external shapes of the 

distribution, nor important intra-distribution mobility.

2. Integrating the spatial dimension in Markov chains

The data used in this study are spatial data, which combine attribute information with 

locational information. Spatial data often have special properties, and need to be analyzed in 

different ways from aspatial data. However, this spatial dimension has not been taken into 

account in the previous analysis even though some recent papers, dealing with regional GDP

7 See Kemeny and Snell (1976) for the computation of this matrix by means o f  the so-called fundamental matrix for 
regular Markov chains (chap.4).
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patterns, have recognized the need to consider spatial effects when growth and convergence 

processes are analyzed (Armstrong, 1995; Fingleton, 1999; Lopez-Bazo et al.; Rey and 

Montouri, 1999; Le Gallo and Ertur, 2000; Baumont et al., 2001). This section is therefore 

devoted to the integration of the spatial dimension of the data in Markov chain analysis.

21. Geographic patterns of the transitions

Spatial data are often characterized by spatial autocorrelation, which can be defined as the 

coincidence of value similarity with locational similarity (Anselin, 2000). Therefore there is 

positive spatial autocorrelation when high or low values of a random variable tend to cluster in 

space and there is negative spatial autocorrelation when geographical areas tend to be surrounded 

by neighbors with very dissimilar values.

In Le Gallo and Ertur (2000), persistent spatial clusters of regions with high and low per 

capita GDP have been detected over the period. In order to illustrate further the potential 

importance of space in the explanation of convergence patterns, we examine the extent to which 

the regions that have moved up or down in the distribution are geographically concentrated. In 

other words, we study the level of spatial autocorrelation in per capita GDP transitions8. Figure 2 

displays the regions' upward or downward moves between 1980 and 1995.

[Figure 2 about here]

Movements up (12 regions) are located in south Germany whereas movements down 

mainly concern French or English regions. Let us underline that these regions correspond to 

spatial clusters detected by Le Gallo and Ertur (2000) having respectively high and low growth 

rates. This visual impression of positive spatial autocorrelation of these transitions must be 

confirmed by a formal spatial autocorrelation test.

8 Rey (2001) performed a similar analysis for the United States.
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Denote W*, the spatial weight matrix of dimension (138, 138). This matrix contains the 

information about the relative spatial connection between the 138 regions i. The elements wa on

the diagonal are set to zero whereas the elements w*. indicate the way region i is spatially

connected to the region j . In this study, we define the elements of W  in the following way:

0 if i = j

dÿ2 if  dy <d  [7]

0 if dy > d

where dy is the great circle distance between the centroids of region i and region j  and d is the

cutoff, equal to the lower quartile of the great circle distance distribution (321 miles). The spatial 

weight matrix is row-standardized such that the elements in each row sum up to one: 

Wy = w'j / w'j . This particular weight matrix has been preferred to a simple contiguity matrix,

which is not really appropriate for our sample of European regions for two reasons. First, the 

islands would be isolated and unconnected with the other regions9. Second, a contiguity indicator 

may imply a block-diagonal pattern if  some regions do not share a common border with any 

other region in the sample considered (it is indeed the case of Great-Britain and Greece).

Using this distance-based weight matrix, spatial autocorrelation of upward transitions 

between 1980 and 1995 is formally evaluated using the following joint-count test (Cliff et Ord, 

1981):

9 Consequently, the rows and columns in the weight matrix corresponding to these observations would consist o f  
zero values.



where wy is the element of the weight matrix, 8i = 1 if region i experiences an upward move in

the distribution, otherwise S, = 0. The NN statistic is a count of the number of joins for which

two neighboring regions both experienced upward moves in the GDP distribution (the 

neighborhood is defined by the weight matrix). Similarly, to test spatial autocorrelation for 

downward transitions, we define 8i =1 if region i experiences a downward move in the

distribution, otherwise S, = 0 .

Statistical inference is based on 10000 random permutations of the regions on the map10. 

For both upward and downward moves, the null hypothesis of spatial autocorrelation is always 

rejected (p-values are respectively 0.001 and 0.005). It is therefore unjustified to consider each 

region and its transitions in the different GDP classes as if  the regions were geographically 

independent. Consequently, the spatial dimension in the analysis of regional GDP transition 

dynamics should explicitly be taken into account so that the role of spatial effects in the 

convergence process can be examined.

22. Spatial conditioning

To determine the factors explaining some of the features of the density plots and of the 

probability transition matrix, Quah (1996b) has suggested to "condition" the per capita GDP 

distribution. The general idea of this approach is to study how closely the evolution of each 

region's GDP has followed that of some group of regions, which are expected to behave 

similarly. Quah (1996b) considered two kinds of references, either the neighboring regions 

(geographical criterion), or the regions belonging to the same country (national criterion). The

10 In this approach, it is assumed that, under the null hypothesis, each observed value could have occurred at all 
locations with equal likelihood. But instead o f using the theoretical mean and standard deviation (given by Cliff and 
Ord 1981), a reference distribution is empirically generated for NN, from which the mean and standard deviation are 
computed. In practice this is carried out by permuting the observed values over all locations and by re-computing 
NN  for each new sample. The mean and standard deviation for NN  are then the computed moments for the reference 
distribution for all peimutations. This test has been computed using the software Spacestat 1.90 (Anselin, 1999).
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results of his work suggest that physical location factors seem to matter more than do macro 

national factors for explaining regional GDP inequality in Europe.

Consequently, we group the regions by the geographic criterion. In this purpose, we 

construct now a new GDP series: neighbor-relative per capita GDP where each region's per 

capita GDP is normalized by the average per capita GDP of the neighboring regions. Denote y  

the vector containing the regions' per capita GDP. Since W is a standardized weight matrix, the 

weighted average of the neighboring regions' GDP is given by the vector Wy, which is usually 

called the "spatial lag" in the spatial statistical/econometric literature. Quah suggests that the 

neighbor-relative per capita GDP can be interpreted as the part unexplained by physical-location 

factors. Consequently, if  the physical location explains everything, what is left over vanishes, or 

is small. If, on the other hand, physical location explains nothing, what is left over is what we 

begin with. Conditional density functions and conditional probability matrices can now be 

constructed with this new GDP relative distribution.

Figure 3 plots two density functions for neighbor-relative per capita GDP distribution, 

one for the initial year 1980 and the other for the final year 1995. Comparing these densities to 

the formerly computed Europe-relative GDPs density functions (figure 1) indicate that the 

second mode, which was situated at around 50% of the European average, has disappeared and 

that the majority of the density is symmetrically much more concentrated around the mean. The 

economic performance of the regions is consequently well explained by the neighboring regions' 

performances, except maybe for regions with very high per capita GDP.

[Figure 3 about here]
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Consider now the conditional transition probability matrix (table 3). This matrix contains 

the transitions between the Europe-relative GDP distribution and the neighbor-relative GDP 

distribution for a given year. Compared to the previous Markov chain (table 1), where we 

established the transitions between the same distribution for two points in time, we establish in 

this conditional matrix the transitions between two different distributions at the same moment in 

time. Therefore, as pointed out by Quah (1996b), these transition probabilities do not describe 

transitions over time, but rather quantify the effects of conditioning.

For example, there were 450 instances of a region having a GDP below than 65% o f the 

European average but only 22% of these same regions had a GDP below than 65% of their 

neighbors' average GDP for the same year. If the regional context did not matter, each region 

could be considered as an island independent of its neighbors: "If conditioning explained nothing 

(...), these transition probability matrices should be the identity matrix: the distributions are 

invariant and, in addition, no intra-distribution movements occurs" (Quah, 1996b). On the other 

hand, if regional conditioning explained all the regional GDP variations, then all the elements of 

the column for the interval containing 100% should be equal to 1 (third class).

Here, none o f these two extreme cases is relevant. Indeed, all diagonal elements are 

below or equal to approximately 50%. The regional conditioning accounts therefore for a large 

part of the observed regional inequality. This result conforms to Quah's study (1996b) and 

geographic spillovers seem to be an important factor of the regional inequality dynamics in 

Europe.

[Table 3 about here]

The regional conditioning allows capturing the geographical dimension in regional GDP 

variation. However, let us note again that these transitions do not represent transitions over time,



but transitions between two different GDP distributions for a given year. On the contrary, the 

Markov chains presented in the following section explicitly take into account space without 

losing the temporal dynamics of the regional GDP evolution in Europe.

23. Temporal and spatial dynamics

1/ The first way to study explicitly the role of space while keeping an information on the 

temporal dynamics of the transition is to estimate a transition probability matrix similar to the 

traditional matrix (table 1), where the GDP is not Europe-relative anymore but neighbor-relative. 

Table 4 reports this matrix for our sample. For example, there were 43 instances of a region 

having a GDP lower than 65% of its neighbors' average at the beginning of the year. The 

majority of these regions (83.7%) remained in the same GDP class at the end of the year (their 

GDP was still below 65% of their neighbors' average), while 16.3% of the regions had a GDP 

between 65% and 95% of their neighbors' average.

Compared with the first matrix with European conditioning, it turns out that for the same 

grid points, the tails of the distribution have become much smaller, for example 416 rich and 438 

poor with European conditioning compared to 43 poor and 159 rich for regional conditioning. 

Furthermore, middle GDP classes are much more important and concentrate almost all the 

regions. This result suggests that neighboring regions evolve in the same way and do not 

differentiate from each other. In other words, there is an important positive spatial 

autocorrelation phenomenon between European regions. The exceptions to this general feature 

are the regions that stay a lot poorer than their neighbors over the whole period, i.e. regions in the 

first cell (1,1) of the transition probability matrix. These regions are Vlaams Brabant from 1980 

to 1989, the German region Lüneburg for all the years, the Portuguese regions Norte from 1980 

to 1985, Centro and Alentejo from 87 to 89. The other exceptions are the regions that stay much
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richer than their neighbors over the period (cell (5,5)). These regions are m ainly  the capital- 

régions (Bruxelles, Ile de France, Lisbonne over the period and Madrid from 85) and some 

German regions (Oberbayem, Bremen, Hamburg, Darmstadt over the whole period).

[Table 4 about here]

At first look, regional conditioning seems therefore to point towards a more important 

convergence than does conditioning on the European average. However, it is worth mentioning 

than conditioning on the neighbor average only provide information on local or intraregional 

convergence, i.e. the way regions catch up with their geographical neighbors. Consequently, this 

method considers the role of space but doesn't allow anymore studying the regions' position in 

the entire cross-sectional distribution, i.e. the analysis of interregional convergence.

2/ The second way of simultaneously considering spatial and temporal dynamics has been 

proposed by Rey (2001) and applied to US data. The spatial Markov chain estimated in his study 

provides insights to the role of spatial clustering in the dynamics of the GDP distribution over 

time and furthermore addresses the issue of interregional convergence (and not intraregional 

convergence like in the previous matrix).

The traditional Markov matrix (table 1) is modified in such a way that the transition 

probabilities of a region are conditioned on the initial GDP class of its spatial lag (i.e. GDP class 

in 1980). This particular conditioning implies a spatial transition matrix, which is a traditional 

(K,K) matrix decomposed in K  conditional matrices of dimension {K,K)U. Therefore, if  we 

consider the kth o f these conditional matrices, then an element mijik of this matrix is the 

probability that a region in class i at the time period t goes in j  at the end of the period, given that 

the spatial lag was in class k in 1980.



The spatial Markov matrix allows the examination of the positive or negative influence of 

the neighbors on the transitions of a region. Indeed, the influence of spatial dependence is 

reflected in the differences existing between the initial transition values (not conditioned) 

computed in the first section (table 1), and the various conditional transition values. In our 

example with five classes, the first class contains poor regions, the third class contains the 

median GDP regions and the final class contains the rich regions. Therefore, if  m35 > m3sl,, then 

median GDP regions with poor neighbors have a lower probability o f moving upwards than 

median GDP regions on average. Conversely, if mn < mn| 5, then poor regions with rich 

neighbors have a higher probability of moving upwards than poor regions on average. Formally, 

if regional context did not matter for transition probabilities, then the conditional probabilities 

should be equal to the initial probabilities:

= Vi = 1,...5 7 = 1,...5 [9]

This spatial Markov chain does not contain the same information that the conditional 

matrices in Quah (1996b): it gives the probability for a region to experience upward or 

downward moves in the distribution, conditional to the past or present movements of its 

neighbors and therefore it allows studying the possible correlation between the direction and 

probability of the transition of a region and the regional context faced by each region.

[Table 5 about here]

Table 5 reports the spatial Markov matrix for our sample of European regions. It turns out 

that the spatial lag of a region influences the transitions over time of this region. For example, the 

richest regions are negatively affected when poorer regions surround them. Indeed, the

11 Here if  =5.
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probability of moving down one class increases as the GDP level of the neighbors decreases. On 

average, the richest regions move down one class with a probability of 7.3% (cell (5,4) of table 

1). If other rich regions (class 5) surround these regions, the probability of moving down is only 

5.7% but if the neighboring regions are poorer (class 4), the probability increases to 9.2% and 

reaches 12.5% if the neighboring regions are in the middle class. The poorest regions are also 

negatively affected when they are surrounded by other poor regions. For example, on average, 

the probability that a poor region moves up one class is 4.1% (cell (1,2) of table 1). If these 

regions are surrounded by other poor regions (class 1), the probability drops to 2.3% whereas it 

reaches 40% if  these regions are surrounded by richer regions.

For each conditional matrix, an ergodic distribution has been computed. Like the initial 

distributions, the long-run distributions are strongly biased. Indeed, when the economies are 

surrounded by richer regions, the final distribution is more and more skewed upwards: the 

probability of staying or remaining rich on the long run is strong. Alternatively when the 

economies are surrounded by poorer regions, the ergodic distribution is more and more 

negatively skewed: the probability of staying or becoming poor is very strong.

Finally, in order to summarize all the information contained in the spatial Markov chain, 

we study the relationship between the direction of a region's transition in the GDP distribution 

and its spatial lag by computing the probability of a particular transition (down, none or up) 

conditioned on the GDPs of the region's neighbors in 1980 (table 6), as suggested by Rey (2001). 

As expected, the regional context has a strong influence on the probability of moving downward 

or upwards. For example, the probability of moving down is twice as large when the regions are 

surrounded by poorer regions than richer regions (12.8% vs 6%). Alternatively, the probability of 

a region moving to a higher GDP class is 11.4% if the region is surrounded by richer regions, but 

it is only 2.2% if the neighbors are poorer. These probabilities indicate the long-run influence of
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the neighbors on a region's transitions in the GDP distribution. Alternatively, instead of 

conditioning on the initial spatial lag, we could condition on the spatial lag at the beginning of 

each year, so that the short-run influence of the regional context is captured. The probabilities of 

a particular transition conditioned on the GDP of the region's neighbor at the beginning of each 

year are reported in table 7. We can see that results are very similar12.

All these results therefore highlight the strong spatial dimension associated to the features 

detected in the (aspatial) analysis of interregional convergence conducted in the first section. For 

example, the progressive bias towards the poverty trap mainly has a spatial explanation since 

poor regions are negatively influenced by being surrounded by other poor regions and since the 

long-run distribution is negatively skewed downwards when the neighbors are poor. Also, rich 

neighbors prevent regions to move down in the distribution and the relative absence of intra- 

distribution mobility can be explained by persistent spatial clusters of regions with high and low 

per capita GDP over the period. More generally, from an interregional convergence perspective, 

spatial Markov chains indicate that the changes of the relative position of a region in the cross- 

sectional distribution are highly constrained by its geographical environment.

[Table 6 and table 7 about here]

12 In both cases, a %2 test for the independence o f  direction o f move and neighbor's GDP has been computed and the 
null hypothesis is always rejected at p <  0.01: the type o f the transition experienced by a region is dependent with its 
geographical environment.
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Conclusion

The aim of this paper is to analyze the evolution of regional GDP disparities and the 

convergence process among European regions over the 1980-1995 period. The methodology 

adopted here follows Quah's methodology: convergence is measured from the evolution of the 

shape of the per capita GDP cross-sectional distribution and from the changes of the regions' 

relative positions inside this distribution. In order to study the entire GDP cross-sectional 

distribution, nonparametric estimation of density functions are computed, the growth process is 

modeled as a first-order stationary Markov chain and the role of space is explicitly considered, 

using Quah's regional conditioning and spatial Markov chains.

The results of the analysis, based on a data set for 138 European regions over the 1980- 

1995 period, suggest that the process of economic convergence at work in the European Union 

during this period has globally been characterized by the persistence of regional disparities, a 

relative absence of mobility of the regions in the GDP distribution as well as a progressive bias 

toward a poverty trap. Regional conditioning and spatial Markov chains clearly indicate that 

location and physical geography still matter in the European Union to explain the convergence 

process. Indeed, intraregional convergence is very strong and, from an interregional convergence 

perspective, the changes of the relative position of a region in the cross-sectional distribution are 

highly constrained by its geographical environment.
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Data appendix

The data are extracted from the EUROSTAT-REGIO databank.

We use the series E2GDP measured in Ecu_hab units (Regio database, user's guide, Methods and 

Nomenclatures, Eurostat, September 1996).

Our sample includes 138 regions on 11 European countries: United Kingdom in NUTS1 level 

and Belgium, Denmark, France, Germany, Greece, Luxembourg, Italy, Netherlands, Portugal and 

Spain in NUTS2 level. For United Kingdom, the use of NUTS 1 level is due to data nopn- 

availability in NUTS2 level over the whole period.

We use Eurostat 1995 nomenclature of statistical territorial units, which is referred to as NUTS: 

NUTS1 means European Community Regions while NUTS2 means Basic Administrative Units. 

For practical reasons to do with data availability and the implementation of regional policies, this 

nomenclature is based primarily on the institutional divisions currently in force in the Member 

States following "normative criteria". It excludes specific territorial units specific to certain fields 

of activity and local units in favor of regional units of a general nature.

We exclude Groningen in the Netherlands from the sample due to some anomalies related to 

North Sea Oil revenues, which increase notably its per capita GDP. We also exclude Canary 

Islands and Ceuta y Mellila, which are geographically isolated. Corse, Austria, Finland, Ireland 

and Sweden are excluded due to data non-availability over the 1980-1995 period in the 

EUROSTAT-REGIO databank. Berlin and East Germany are also excluded due to well-known 

historical and political reasons.
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Europe-relative GDP 1980 Europe-relative GDP 1995

Fig.l. Densities of Europe-relative regional GDP

m  upwardly mobile 
m  downwardly mobile 
m  stationary 

out of sample

Fig.2. Region GDP class transitions 1980-1995
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Neighbor-relative GDP 1980 Neighbor -relative GDP 1995

Fig.3. Densities of neighbor-relative regional GDP
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. ti + l Europe-relative Number of

ti 1
<65%

2
<95%

3
<110%

4
<125%

5
>125%

observations

1 0.959 0.041 0.000 0.000 0.000 416
c §j 2 0.047 0.865 0.087 0.000 0.000 401

3 0.000 0.095 0.822 0.083 0.000 433
lug 4 0.000 0.000 0.123 0.796 0.081 382

' 5 0.000 0.000 0.000 0.073 0.927 438
Initial dist. 0.201 0.194 0.209 0.185 0.212
Ertjodic dist. 0.264 0.227 0.210 0.142 0.157

Tab.l. Probability transition matrix 1980-1995; Europe-relative per-capita GDP

(3.788) 24.456 49.006 89.000 162.720
68.146 (4.405) 24.655 64.604 138.161
93.501 25.579 (4.762) 40.099 113.648
110.547 42.776 17.123 (7.042) 73.459
124.162 56.512 30.800 13.702 (6.369)

Tab.2. Mean first passage time matrix

Ü 1
<65%

Neicfixx-relative
2 3 4 

<95% <110% <125%
5

>125%

Mrrbercf
cbsaväücns

§ §
1 0.038 0.498 0.347 0.076 0.042 450
2 0.031 0.533 0.336 0.061 0.040 426

11 3 0.030 0.652 0.286 0.026 0.006 465
LU gj 4 0.000 0.428 0.504 0.043 0.025 397

5 0.000 0.049 0.451 0.245 0,255 470

Tab.3. Regional conditioning

ti
fi+ i

1
Neighbor-relative

2 3 4 5
Number of 

observations
<65% <95% <110% <125% >125%

1 0.837 0.163 0.000 0.000 0.000 43
O ®

5 5

2 0.005 0.924 0.072 0.000 0.000 878
3 0.000 0.085 0.878 0.038 0.000 800
4 0.000 0.000 0.153 0.805 0.042 190
5 0.000 0,000 0.000 0.050 0.950 159

Initial dist. 0.021 0.424 0.386 0.092 0.077
Erqodic dist. 0.012 0.444 0.375 0.092 0.077

Tab.4. Probability transition matrix 1980-1995; Neighbor-relative per-capita GDP



Spatial N .  û+i Europe-relative Number of
lag U Nv 1 2 3 4 5 observations

<65% <95% <110% <125% >125%
1 0.977 0.023 0.000 0.000 0.000 390
2 0.164 0.821 0.015 0.000 0.000 58
3 0.000 0.500 0.500 0.000 0.000 2

1 4 0.000 0.000 0.000 0.000 0.000 0
5 0.000 0.000 0.000 0.000 0.000 0

Initial dist. 0.852 0.144 0.004 0.000 0.000
Ergodic dist. 0.875 0.121 0.004 0.000 0.000

1 0.600 0.400 0.000 0.000 0.000 26
2 0.044 0.918 0.038 0.000 0.000 167
3 0.000 0.167 0.771 0.063 0.000 48

2 4 0.000 0.000 0.200 0.800 0.000 29
5 0.000 0.000 0.000 0.000 0.000 0

Initial dist. 0.074 0.674 0.178 0.074 0.000
Ergodic dist 0.078 0.708 0.163 0.051 0.000

1 0.000 0.000 0.000 0.000 0.000 0
2 0.000 0.803 0.197 0.000 0.00 85
3 0.000 0.171 0.768 0.061 0.000 82

3 4 0.000 0.000 0.100 0.802 0.080 44
5 0.000 0.000 0.000 0.125 0.875 29

Initial dist. 0.000 0.271 0.364 0.222 0.142
Ergodic dist. 0.000 0.303 0.349 0.213 0.136

1 0.000 0.000 0.000 0.000 0.000 0
2 0.000 0.795 0.205 0.000 0.000 50
3 0.000 0.072 0.878 0.050 0.000 165

4 4 0.000 0.000 0.163 0.721 0.116 82
5 0.000 0.000 0.000 0.092 0.908 123

Initial dist 0.000 0.096 0.343 0.212 0.348
Ergodic dist. 0.000 0.171 0.488 0.151 0.190

1 0.000 0.000 0.000 0.000 0.000 0
2 O.0OO 0.865 0.135 0.000 0.000 41
3 0.000 0.049 0.821 0.130 0.000 136

5 4 0.000 0.000 0.106 0.819 0.075 227
5 0.000 0.000 0.000 0.057 0.943 286

Initial dist. 0.000 0.074 0.230 0.321 0.376
Ergodic dist. 0.000 0.087 0.238 0.290 0.385

Tab.5. Spatial Markov chain; conditioning on the spatial lag in 1980

Spatial lag N Down
Movement

None Up
poorer 360 0.128 0.850 0.022
same 1011 0.050 0.919 0.031
richer 699 0.060 0.825 0.114

Tab.6. Transition probabilities conditioned on the spatial lag of GDP in 1980

Spatial lag N Down
Movement

None Up
poorer 360 0.119 0.866 0.014
same 1011 0.065 0.909 0.026
richer 699 0.047 0.810 0.142

Tab.7. Transition probabilities conditioned on the spatial lag of GDP at the beginning of each year
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