

LABORATOIRE D'ANALYSE ET DE TECHNIQUES ÉCONOMIQUES

UMR 5118 CNRS

DOCUMENT DE TRAVAIL

Pôle d'Économie et de Gestion 2, bd Gabriel - BP 26611 - F - 21066 Dijon cedex - Tél. 03 80 39 54 30 - Fax 03 80 39 54 43 Courrier électronique : secretariat.latec@u-bourgogne.fr

ISSN: 1260-8556

n° 2000-04

About the criteria of output coincidence for forecasts to determine the orientation of the economy

Louis de Mesnard

juin 2000

LATEC, Université de Bourgogne Pôle d'Economie et de Gestion, BP 26611 - 21066 Dijon cedex http://www.u-bourgogne.fr/LATEC

About the criteria of output coincidence for forecasts to determine the orientation of the economy. Application for France, 1980-1997.

JEL classification. C63, C67, D57. KEYWORDS. Input-Output, Demand, Supply, Change, RAS, Biproportion. AUTHOR. Prof. Louis de MESNARD AFFILIATION. LATEC (UMR CNRS 5118), Faculty of Economics, University of Burgundy ADDRESS. LATEC 2 Bd Gabriel, B.P. 26611, F-21066 Dijon Cedex, FRANCE Tel: (33) 3 80 39 35 22 Fax: (33) 3 80 39 35 22 E-mail : louis.de-mesnard@u-bourgogne.fr

ABSTRACT. This note indicates that the method of output coincidence for forecasts used to determine if sectors are demand-driven or supply-driven in an input-output framework mixes two effects, the structural effect (choosing between demand and supply driven models) and the effect of an exogenous factor (final demand or added-value). The note recalls that another method is possible, the comparison of the stability of technical and allocation coefficients, generalized by the biproportional filter: if for a sector, after biproportional filtering, column coefficients are more stable than row coefficients, then this sector is declared as not supply-driven (but one cannot decide that it is demand-driven anyway), and conversely.

I. Introduction

Following Leontief (1953), Carter (1967, 1970) and Vaccara (1970) that have examined the stability of technical coefficients, Bon (1986)¹ tries to evaluate the comparative stability of the coefficients of the demand-driven model (Leontief, 1936) and of the supply-driven model (Ghosh, 1958), in the framework of a national economy. Starting from the idea that the model that has the more stable coefficients over time is the more valid, he uses an indirect but simple method ²: the output of each sector is forecast under the base of each model and then it is compared to the true value of the output. The model that produces the best forecast is the better for this sector but one model can be the best for one given sector and the alternative model can be the best for another sector ³. I name this method the criteria of output

¹ Exactly the same methodology applied to other countries than US (e.g., UK, Japan, Italy, Turkey) can be seen in (Bon, 1993, 1996a, 1996b, 1997, 2000a); all these papers are reprinted in (Bon, 2000b).

² It is not the aim of this paper to discuss the respective merits and dismerits of these two polar models. For an introduction see (Miller and Blair, 1985) and for a complete discussion, see Oosterhaven (1988, 1989, 1996), Miller (1989), Gruver (1989), Rose and Allison (1989).

³ Do not confuse with the discussion conducted by Bon (1984) about the comparative merits and dismerits -- in a multiregional input-output framework -- of a column coefficient model, a row coefficient model, and a Leontief-Strout gravity model when the economy is assumed to be **demand-driven**: only the row coefficient model is consistent, the other violate the conditions of productivity. coincidence for forecasts. In this paper, after recalling this method in details, I will explain its drawbacks then I will expose an alternative method that is not affected by these drawbacks.

II. The weakness of the method of output coincidence for forecasts: mixing between the exogenous factor effect and the structural effect

Assume that we have two years or two countries (or regions), the second denoted by a star in superscript. Denote **x** and **x**^{*} the two output vectors, either at two different dates, either in two different countries (or regions) of space, **Z** and **Z**^{*} the two flow matrices that correspond to them, denote $\mathbf{A} = \mathbf{Z} \, \hat{\mathbf{x}}^{-1}$ and $\mathbf{A}^* = \mathbf{Z}^* (\hat{\mathbf{x}}^*)^{-1}$ the two technical coefficient matrices, $\mathbf{B} = \hat{\mathbf{x}}^{-1} \mathbf{Z}$ and $\mathbf{B}^* = (\hat{\mathbf{x}}^*)^{-1} \mathbf{Z}^*$ the two allocation coefficient matrices deduced from **Z** and \mathbf{Z}^* ; denote \mathbf{f}^* the final demand vector for the second year or the second and \mathbf{v}^* the added-value vector for the second year or the second countries. At equilibrium, the forecast output is given by ${}^d\mathbf{x}^* = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}^*$ and ${}^s\mathbf{x}^* = \mathbf{v}^* (\mathbf{I} - \mathbf{B})^{-1}$. Both \mathbf{x}_d^* and \mathbf{x}_s^* will be compared to the true value \mathbf{x}^* . This comparison is done sector by sector: if ${}^dx_i^* - x_i^* < {}^sx_i^* - x_i^*$ then the sector *i* is declared as more column-stable than row-stable, and conversely ⁴. Note that matrices **Z** and \mathbf{Z}^* have to be square.

This is a very simple way to perform a comparative evaluation of the alternative models but it has a main drawback. When you compare outputs, you introduce the final demand for the demand-driven model, or the added-value for the supply-driven model, so you mix two different things: 1) the structure (the structure of production for the demand-driven model or the structure of allocation for the supply-driven model), and 2) the effect of the exogenous

4

One could have done reverse forecasts also: ${}^{d}\mathbf{x} = (\mathbf{I} - \mathbf{A}^{*})^{-1} \mathbf{f}$ and ${}^{s}\mathbf{x} = \mathbf{v} (\mathbf{I} - \mathbf{B}^{*})^{-1}$.

factor (demand and value-added, respectively). It is a pity because the evolution of the exogenous factor could hide the evolution of the structure. It is even possible to compute what is the final demand vector (respectively the added-value vector) that allow the best matching as possible, that is:

$$\mathbf{x}^* = {}^d \mathbf{x}^*$$
$$\mathbf{x}^* = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}^*$$
$$\Rightarrow (\mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{f}^* = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{f}^*$$
$$\Rightarrow \left[(\mathbf{I} - \mathbf{A}^*)^{-1} - (\mathbf{I} - \mathbf{A})^{-1} \right] \mathbf{f}^* = 0$$

This is a simple homogenous system. If $|(\mathbf{I}-\mathbf{A}^*)^{-1}-(\mathbf{I}-\mathbf{A})^{-1}|=0$ then there is a non-trivial solution (and if not, the trivial solution is $\mathbf{f}^* = \mathbf{0}$). As the solution is parametric (at least, any f_i^* is a function of one of the final demands, say f_1^*), there is an infinite set of vectors \mathbf{f}^* that are solutions of the problem of output coincidence for forecasts!

Fortunately, the method of output coincidence for forecasts is not the only possible to do the job. At least another is possible, that has not the above weakness.

III. Another method

It is preferable to take a look at the structure itself to see what model is the best: the stability of technical and allocation coefficients over time could be also a good criterion. Assuming that a direct comparison of the stability of technical coefficients and of allocation coefficients is possible, one can decide what are the more stable, the technical coefficients or the allocation coefficients of each sector, and one can decide if the model is demand-driven or supply-driven for this sector. This analysis is not affected by the above critic, namely the mixing of the structural effect and the effect of the exogenous factor.

Unfortunately, the direct comparison of coefficients cannot be done so simply. As it is well known, when technical coefficients are assumed to be stable ($\mathbf{A}^* = \mathbf{A}$), allocation coefficients cannot ($\mathbf{B}^* = \hat{\mathbf{x}}^{*-1} \mathbf{A} \hat{\mathbf{x}}^* \neq \mathbf{B}$), and conversely, except in a very special case, the *absolute joint stability*, that is the homothetical variation of the gross output of all sectors (Chen and Rose, 1986 and 1991): $\mathbf{x}^* = k \mathbf{x}$ and $\mathbf{A}^* = \mathbf{A}$ imply that $\mathbf{B}^* = \hat{\mathbf{x}}^{*-1} \mathbf{A} \hat{\mathbf{x}}^* = \mathbf{B}$. So, one has to use a more sophisticated method than the direct comparison of the stability of column or row coefficients, that is the biproportional filter (Mesnard, 1990a and b, 1994, 1997). When you compare technical or column coefficients, you remove the effect of the variation of the margins of row margins. With the biproportional filter, the idea consists into removing the effect of the variation of both types of margins. To perform this, matrix \mathbf{Z} can be equipped with the margins of \mathbf{Z}^* by a biproportion: $\hat{\mathbf{Z}} = K(\mathbf{Z}, \mathbf{Z}^*)^{-5}$: $K(\mathbf{Z}, \mathbf{Z}^*) = \mathbf{P} \mathbf{Z} \mathbf{Q}$, with

⁵ Note that matrices \mathbb{Z} and \mathbb{Z}^* have not to be square, what is an advantage to take into account of some sectors (for example, *Trade* in French accounting: it has only a column but not a row). *K* denotes the biproportional operator, what gives to \mathbb{Z} the margins of \mathbb{Z}^* , the result *K*(\mathbb{Z} , \mathbb{Z}^*) being the closer as possible to \mathbb{Z} .

See in Mesnard (1990a, 1997) why it is more suitable to use a biproportion (that is a generalization of RAS) instead of another criterion of projection, as the orthogonal projection. In addition to provide the projected matrix that is close to the original matrix \mathbf{Z} , under the respects of the margins of \mathbf{Z}^* , biproportion guarantees that coefficients are positive in the projected matrix $K(\mathbf{Z}, \mathbf{Z}^*)$ if they are in the original matrix \mathbf{Z} .

To do the job, some variants can be used, as projecting \mathbf{Z}^* to \mathbf{Z} in a reverse

 $p_i = \frac{z_{i\bullet}^*}{\sum_{i=1}^m q_j z_{ij}}$, for all *i*, and $q_j = \frac{z_{\bullet j}^*}{\sum_{i=1}^n p_i z_{ij}}$, for all *j*. This cannot be solved analytically but only

iteratively. However, it is demonstrated that biproportion is a very safe operation: the solution of Stone's RAS -- another biproportional algorithm -- has a unique and convergent solution (Bacharach, 1970) and any algorithm, the above, RAS or any other, lead to the same solution (Mesnard, 1994).

Then the result is compared to \mathbb{Z}^* by computing the Frobenius norm of column or row vectors of the difference matrix $\mathbb{Z}^* - K(\mathbb{Z}, \mathbb{Z}^*)$, divided by the margin of \mathbb{Z}^* to obtain a percentage of variation ⁶:

$$\sigma_j = \frac{\sqrt{\sum_{i} \left[z_{ij}^* - K(\mathbf{Z}, \, \mathbf{Z}^*)_{ij} \right]^2}}{\sum_{i} z_{ij}^*} \quad \text{for column } j \text{ and, } \sigma_i = \frac{\sqrt{\sum_{j} \left[z_{ij}^* - K(\mathbf{Z}, \, \mathbf{Z}^*)_{ij} \right]^2}}{\sum_{j} z_{ij}^*} \quad \text{for row } i.$$

If for any sector *i* one has $\sigma_i^C > \sigma_i^R$, then the row is more stable than the column: the sector is declared as not demand-driven, nevertheless one cannot say that it is supply-driven (and conversely if $\sigma_i^C < \sigma_i^R$). Following the rules of logic, if technical coefficients (respectively allocation coefficients) are stable, then it is false to say that the model is demand-driven (respectively supply-driven) -- even one can suspect that it is -- but it is true to say that it is not supply-driven (respectively demand-driven). Here, the logic does not lead to accept a model directly -- only to suspect that it works --, but they authorize to reject its alternative (Mesnard, 1997).

computation, or as giving to both \mathbb{Z} and \mathbb{Z}^* the same margins: it is not the aim of this paper to develop this point (Mesnard, 1998).

⁶ Other types of indices can be build.

IV. Application

I will apply both methods, the output coincidence for forecasts and the biproportional filter to France, for the period 1980-1997⁷. I have adopted the grand total of each table as output (vector \mathbf{x}) and not the distributed production⁸, so the output of a column is equal to the output of a row, the account of each sector is at equilibrium and both technical coefficients and allocation coefficients are consistent. The tables are aggregated into 9 sectors ⁹. I have made them square by simply removing the following column sectors: T25 *Trade* and T38 *Non market services*.

Tables 1 to 3 about here

⁷ The tables used are price-corrected (all are at the base price of 1980). The table of 1980 is "definitive", the table of 1997 is "temporary".

In the French accounting system, in addition to the distributed production, the grand total of a column includes the imports, customs duty, commercial margins, VAT; the distributed production is equal to the total of the intermediate buyings plus the added-value and some transfers; so, as added-value, I take the difference between the grand total and the intermediate buyings. The grand total of a row includes the total of the intermediate sales, the final consumption, the gross formation of fixed capital, the variation of stocks and the exportations; so, as final demand, I take the difference between the grand total and the intermediate sales.

⁹ About the stability of aggregated coefficients over time, see (Sevaldson, 1970).

Tables 4 and 5 give the inverse matrices for technical and allocation coefficients, while table 6 indicates the result of the biproportional projection of Z (year 1980) on Z^* (year 1997).

Tables 4 to 6 about here

The results are not exactly comparable, but there are three cases of divergence toward a supply driven model for the method of output coincidence for forecasts: *Minerals, Trade, Transport and Telecommunications*. For these three cases, the biproportional filter indicates that the concerning sectors are not supply driven (and one can suspect that they are demand-driven), when the method of output coincidence for forecasts indicates that they are. There is a clear bias in favor of supply-driven sectors with the method of output coincidence for forecasts. There is also one divergence toward a demand driven model for *Financial Services*. However, I insist on the fact that the results of the method of output coincidence for forecasts could have been very different with any other final demand or added-value vector (and particularly with another definition of these aggregates).

Tables 7 to 8 about here

V. Conclusion

The purpose of the method of "output coincidence for forecasts" is to determine what sectors are demand-driven and what sectors are supply driven in an input-output framework. The output of each sector is forecast under the base of each alternative model and the model that produces the best forecast is the better for this sector. This method mixes two effects, a structural effect -- choosing between demand and supply driven models -- and the effect of an exogenous factor -- final demand or added-value--. Depending of the exact value of final demand or added-value, coincidence can be obtained or not for a given sector, so the choice between a demand-driven model and a supply-driven model is affected by the final-demand or by the added-value. This makes the choice faulty in a general way: if one decide that the behavior of economic agents (here, the sectors) can de determined, this behavior cannot be dependent of an exogenous factor. In other terms, the behavior determined by the method of output coincidence for forecasts is not an absolute behavior, but only a "functional" behavior, dependent of the exact value of the exogenous factors: behavior(i) =f($f_1, ..., f_n, v_1, ..., v_n$), where f_j and v_j denote the final-demand and the added-value of sector j. This is annoying because this "functional" behavior is not generally applicable.

The alternative method that is proposed -- the biproportional filter -- has not these drawbacks. As generalization of the direct comparison of the variations of technical and allocation coefficients -- what allows to focus the measure of change on the exchange structure itself -- it is a direct method, not an indirect method as the method of output coincidence for forecasts, without any interference of any exogenous factor as final demand or added-value.

The application for France, 1980-1997, indicates that the method of output coincidence for forecasts creates a bias in favor of the supply-driven model.

VI. Bibliographical references

Bacharach, Michael 1970. Biproportional Matrices and Input-Output Change. Cambridge

University Press, Cambridge.

- Bon, Ranko 1977. "Some conditions of macroeconomic stability of multiregional input-output models", *Economic Analysis*, 16, 1-2: 65-87.
- _____ 1984. "Comparative stability analysis of multiregional input-output models: column, row, and Leontief-Strout gravity coefficient models", *Quarterly Journal of Economics*, 99, 4: 791-815.

1986. "Comparative stability analysis of demand-side and supply-side input-output models", *International Journal of Forecasting*, 2, 2: 231-235; reprinted under the title "Comparative stability analysis of demand-side and supply-side input-output models: the case of the US" in: BON, R. 2000. *Economic structure and maturity. Collected Papers in input-output modelling and applications*, Ashgate, Adelshot.

1993. "Comparative stability analysis of demand-side and supply-side input-output models: the case of U.K.", *Applied Economics*, 25, 1: 75-79; reprinted in: BON, R. 2000. *Economic structure and maturity. Collected Papers in input-output modelling and applications*, Ashgate, Adelshot.

1996a. "Comparative stability analysis of demand-side and supply-side input-output models: the case of Japan, 1960-1990", *Applied Economic Letters*, 3: 349-354; reprinted in: BON, R. 2000. *Economic structure and maturity. Collected Papers in input-output modelling and applications*, Ashgate, Adelshot.

1996b. "Comparative stability analysis of demand-side and supply-side input-output models: the case of Italy", *Rivista Internationale de Scienze Economische e Commerciali*, 43, 3: 669-679; reprinted in: BON, R. 2000. *Economic structure and* maturity. Collected Papers in input-output modelling and applications, Ashgate, Adelshot.

1997. "Comparative stability analysis of demand-side and supply-side input-output models: toward an index of economic maturity", *Proceedings of the 44th North American Meetings of the Regional Science Association International*, Buffalo, New-York, November 6-9, 1997; reprinted in: BON, R. 2000. *Economic structure and maturity. Collected Papers in input-output modelling and applications*, Ashgate, Adelshot.

2000a. "Comparative stability analysis of demand-side and supply-side input-output models: the case of Turkey, 1973-1990, in: BON, R. 2000. *Economic structure and maturity. Collected Papers in input-output modelling and applications*, Ashgate, Adelshot.

_____ 2000b. Economic structure and maturity. Collected Papers in input-output modelling and applications, Ashgate, Adelshot.

- Carter, Anne P. 1967. "Changes in the structure of the American economy, 1947-148 and 1962. Review of Economics and Statistics, 49: 209-224.
- ______ 1970. Structural change in the American economy, Harvard University Press, Cambridge, Mass.
- Chen, Chia-Yon And Adam Rose 1986. "The Joint Stability Of Input-Output Production And Allocation Coefficients," *Modeling And Simulation* 17, 251-255,

- _____ 1991. "The absolute and relative Joint Stability of Input-Output Production and Allocation Coefficients," in A.W.A. Peterson (Ed.) *Advances in Input-Output Analysis*. Oxford University Press, New-York, pp. 25-36.
- Ghosh, Ambica 1958. "Input-output approach to an allocation system", Economica, 25:58-64.
- Gruver, Gene W. 1989. "A Comment on the Plausibility of Supply-Driven Input-Output Models," *Journal of Regional Science* 29, 441-450.
- Leontief, Wassily 1936. "Qualitative input-output relations in the economic system of the United States", *Review of Economic and Statistics*, 18: 105-125.
- Leontief, Wassily, et al. 1953. Studies in the structure of the American economy, Oxford University Press, New-York.
- de Mesnard, Louis 1990a. Dynamique de la structure industrielle française. Economica, Paris.
- _____ 1990b. "Biproportional Method for Analyzing Interindustry Dynamics: the Case of France", *Economic Systems Research*, 2, 271-293.
- _____ 1994. "Unicity of Biproportion", SIAM Journal on Matrix Analysis and Applications 2, 15, 490-495.
- _____ 1997. "A biproportional filter to compare technical and allocation coefficient variations", *Journal of Regional Science*, 37, 4, pp. 541-564.
- _____ 1998. "Analyzing structural change: the biproportional mean filter and the biproportional bimarkovian filter", *Twelfth International Conference on Input-Output Techniques*, New-York City, 18-22 may 1998.

- Miller, Ronald E. and Peter D. Blair. 1985. Input-Output Analysis, Foundations and Extensions. Prentice-Hall, Englewood Cliffs.
- Miller, Ronald E. 1989. "Stability of Supply Coefficients and Consistency of Supply-Driven and Demand-Driven Input-Output Models: a Comment," *Environment and Planning A* 21, 1113-1120.
- Oosterhaven, Jan 1988. "On the Plausibility of the Supply-Driven Input-Output Model," Journal of Regional Science 28, 203-217.
- _____ 1989. "The Supply-Driven Input-Output Model: A New Interpretation but Still Implausible," *Journal of Regional Science* 29, 459-465.
- _____ 1996. "Leontief Versus Ghoshian Price And Quantity Models", Southern Economic Journal 62-3, pp. 750-759.
- Rose, Adam and Tim Allison 1989. "On the Plausibility of the Supply-Driven Input-Output Model: Empirical Evidence on Joint Stability," *Journal of Regional Science* 29, 451-458.
- Sevaldson Per 1970. "The stability of input-output coefficients", in Carter Anne P. and Andrew Bródy, Ed., *Applications of input-output analysis*, North-Holland, pp. 207-237; reprinted in Sohn Ira, Ed., 1986. *Readings in input-output analysis, theory and applications*, Oxford University Press, New-York.
- Vaccara Beatrice N. 1970. "Changes over time in input-output coefficients for the United States", in: Carter Anne P. and Andrew Bródy, Ed., *Applications of input-output* analysis, North-Holland, pp. 238-260; reprinted in Sohn Ira, Ed., 1986. Readings in input-output analysis, theory and applications, Oxford University Press, New-York.

.

Aggregated sector	Sectors of "NAP 40"						
	T01 Farming, Forestry, Fishing						
Agriculture	T02 Meat and Dairy Products						
	T03 Other Agricultural and Food Products						
	T04 Solid Fuels						
Energy	T05 Oil Products, Natural Gas						
	T06 Electricity, Gas and Water						
	T07 Ores and Ferrous Metals						
Minerals	T08 Ores and non Ferrous Metals						
	T09 Building Materials, Miscellaneous Minerals						
	T10 Glass						
	T11 Basic Chemicals, Synthetic Fibers						
	T12 Miscellaneous Chemicals, Pharmaceuticals						
	T13 Smelting Works, Metal Works						
	T14 Mechanical Engineering						
	T15A Electric Industrial Equipmen						
Manufacturing	T15B Household Appliances						
	T16 Motor Vehicles						
	T17 Shipping, Aircrafts and Arms						
	T18 Textile Industry, Clothing Industry						
	T19 Leather and Shoe Industries						
	T20 Leather and Wood Industries, Varied Industries						
	T21 Paper and Cardboard						
	T22 Printing and Publishing						
	T23 Rubber, Transformation of Plastics						
Buildings	T24 Building Trade, Civil and Agricultural Engineering						
Trade	T29 Automobile Trade and Repair Services						
	T30 Hotels, Catering						
Transport and	T31 Transport						
Telecommunications	T32 Telecommunications and Mail						
	T33 Business Services						
Services	T34 Marketable Services to Private Individual						
	T35 Housing Rental and Leasing						
	T36 Insurance						
Financial Services	T37 Financial Services						

Table 1. The aggregation scheme

1980	Agri- culture	Energy	Minerals	Manu- facturing	Buildings	Trade	Transpor t and Telecom.	Services	Financial Services	Final Demand	Output
Agriculture	270 732	196	63	24 955	0	25 520	233	2 305	0	468 699	792 703
Energy	18 603	167 784	23 722	48 846	8 091	6 285	28 118	7 129	877	221 557	531 012
Minerals	1 962	2 303	83 346	72 775	60 063	1 880	493	810	0	71 271	294 903
Manufacturing	50 722	13 485	10 610	439 871	74 100	11 480	13 867	59 304	3 437	1 136 942	1 813 818
Buildings	1 033	6 042	381	2 050	231	406	627	2 917	5 891	431 123	450 701
Trade	831	263	1 401	2 627	813	3 524	1 866	8 703	823	136 133	156 984
Transport and Telecom.	5 632	5 985	10 125	36 106	13 034	4 026	24 126	21 715	4 407	143 731	268 887
Services	18 792	12 857	9 866	83 142	48 570	12 646	15 907	103 334	12 802	476 609	794 525
Financial Services	1 038	568	829	5 826	5 940	790	636	1 796	3 812	115 447	136 682
Added-value	423 358	321 529	154 560	1 097 620	239 859	90 427	183 014	586 512	104 633	3 201 512	5 240 215
Output	792 703	531 012	294 903	1 813 818	450 701	156 984	268 887	794 525	136 682	5 240 215	

Table 2. Table for 1980

1997	Agri- culture	Energy	Minerals	Manu- facturing	Buildings	Trade	Transpor t and Telecom.	Services	Financial Services	Final Demand	Output
Agriculture	322 195	82	18	26 579	0	29 155	262	3 793	0	652 127	1 034 211
Energy	21 967	131 572	17 340	57 330	9 039	7 886	37 493	11 455	1 511	278 729	574 322
Minerals	1 897	13 704	73 056	75 138	52 009	2 019	294	1 147	0	86 226	305 490
Manufacturing	65 350	13 689	9 949	643 225	77 183	14 998	22 418	110 662	3 360	1 876 975	2 837 809
Buildings	1 308	7 462	311	2 567	205	450	779	5 147	11 980	435 214	465 423
Trade	902	283	908	2 756	595	3 834	2 524	12 399	420	168 423	193 044
Transport and Telecom.	8 304	7 026	9 786	66 975	15 001	7 352	53 145	59 148	8 055	253 161	487 953
Services	34 278	26 771	13 246	160 772	65 040	21 598	25 851	224 065	34 205	838 362	1 444 188
Financial Services	3 168	1 791	1 616	18 459	12 291	1 341	2 107	5 507	987 446	145 990	1 179 716
Added-value	574 842	371 942	179 260	1 784 008	234 060	104 411	343 080	1 010 865	132 739	4 735 207	8 522 156
Output	1 034 211	574 322	305 490	2 837 809	465 423	193 044	487 953	1 444 188	1 179 716	8522156	

Table 3. Table for 1997

1980	Agri- culture	Energy	Minerals	Manu- facturing	Buildings	Trade	Transport and Telecom.	Services	Financial Services
Agriculture	1.522538	0.002751	0.004774	0.029356	0.007405	0.256677	0.006146	0.011097	0.003969
Energy	0.063111	1.470860	0.178983	0.069641	0.070377	0.085416	0.176085	0.028532	0.023749
Minerals	0.014176	0.015634	1.401103	0.076307	0.201235	0.027559	0.010360	0.009952	0.012472
Manufacturing	0.138945	0.060580	0.085809	1.340108	0.249892	0.140368	0.092993	0.122074	0.061860
Buildings	0.003247	0.017171	0.004581	0.003052	1.003235	0.004967	0.005211	0.005033	0.045361
Trade	0.002689	0.001665	0.008272	0.003612	0.005417	1.025267	0.009150	0.013587	0.008308
Transport and Telecommunications	0.018118	0.022288	0.059615	0.036057	0.051156	0.039959	1.106398	0.039047	0.044054
Services	0.053302	0.048847	0.069435	0.079998	0.153004	0.116824	0.087480	1.162317	0.124790
Financial Services	0.002846	0.002277	0.004950	0.005099	0.015605	0.006727	0.003553	0.003415	1.030017

Table 4. $(I - A)^{-1}$ for 1980

1980	Agri- culture	Energy	Minerals	Manu- facturing	Buildings	Trade	Transport and Telecom.	Services	Financial Services
Agriculture	1.522538	0.001843	0.001776	0.067171	0.004210	0.050831	0.002085	0.011122	0.000684
Energy	0.094213	1.470860	0.099400	0.237878	0.059733	0.025252	0.089164	0.042691	0.006113
Minerals	0.038105	0.028151	1.401103	0.469330	0.307547	0.014670	0.009446	0.026812	0.005781
Manufacturing	0.060724	0.017735	0.013951	1.340108	0.062094	0.012149	0.013786	0.053473	0.004662
Buildings	0.005710	0.020230	0.002997	0.012284	1.003235	0.001730	0.003109	0.008873	0.013756
Trade	0.013578	0.005633	0.015540	0.041739	0.015552	1.025267	0.015673	0.068767	0.007233
Transport and Telecommunications	0.053414	0.044015	0.065383	0.243225	0.085746	0.023329	1.106398	0.115378	0.022394
Services	0.053180	0.032646	0.025772	0.182627	0.086793	0.023082	0.029605	1.162317	0.021468
Financial Services	0.016508	0.008845	0.010680	0.067660	0.051456	0.007726	0.006989	0.019850	1.030017

Table 5. $(I - B)^{-1}$ for 1980

K(1980, 1997)	Agri- culture	Energy	Minerals	Manu- facturing	Buildings	Trade	Transport and Telecom.	Services	Financial Services
Agriculture	318 681.59	210.33	50.96	30 271.13	0.00	28 527.08	350.48	3 992.43	0.00
Energy	18 057.72	148 475.97	15 822.34	48 861.03	4 855.38	5 793.55	34 878.55	10 182.58	8 665.87
Minerals	2 429.58	2 599.87	70 918.02	92 868.44	45 981.21	2 210.80	780.14	1 475.93	0.00
Manufacturing	67 661.55	16 399.18	9 725.24	604 678.58	61 108.96	14 542.76	23 638.62	116 406.95	46 672.16
Buildings	418.84	2 233.33	106.15	856.55	57.90	156.33	324.87	1 740.33	24 314.69
Trade	636.23	183.57	737.04	2 072.65	384.81	2 562.17	1 825.65	9 804.63	6 414.25
Transport and Telecommunications	7 565.83	7 329.65	9 346.05	49 983.50	10 824.61	5 136.02	41 416.47	42 924.26	60 265.60
Services	24 341.50	15 182.38	8 781.22	110 980.98	38 894.09	15 555.60	26 330.36	196 954.98	168 804.89
Financial Services	19 576.16	9 765.72	10 742.97	113 228.13	69 256.05	14 148.70	15 327.85	49 840.90	731 839.53

Table 6. $K(\mathbf{Z}, \mathbf{Z}^*)$

Agriculture 380 510 366 269 supply driven	
Agriculture 580 510 500 209 Supply driven	
Energy 358 702 65 097 supply driven	
Minerals 191 404 60 779 supply driven	
Manufacturing1 266 61848 448supply driven	
Buildings 44 319 85 546 demand driven	
Trade16 7539 688supply driven	
Transport and Telecommunications18 74014 502supply driven	
Services 66 097 95 291 demand driven	
Financial Services955 339997 614demand driven	

Table 7. Method of output coincidence for forecasts

σ, in %	Buildings	Rows	Decision
Agriculture	4.37	1.35	not demand driven
Energy	12.52	7.23	not demand driven
Minerals	8.32	9.98	not supply driven
Manufacturing	11.08	6.30	not demand driven
Buildings	28.21	46.24	not supply driven
Trade	16.43	27.36	not supply driven
Transport and Telecommunications	12.38	24.98	not supply driven
Services	12.68	24.65	not supply driven
Financial Services	28.38	27.41	not demand driven

Table 8. Method of the biproportional filter