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Abstract: One of the major and essential classes of transmembrane (TM) receptors, present in all 1 
domains of life, is sensor histidine kinases (HKs), parts of two-component signaling systems 2 
(TCS). The structural mechanisms of transmembrane signaling by these sensors are poorly 3 
understood. We present here crystal structures of the periplasmic sensor domain, the TM domain 4 
and the cytoplasmic HAMP domain of the Escherichia coli nitrate/nitrite sensor HK NarQ in the 5 
ligand-bound and mutated ligand-free states. The structures reveal that the ligand binding 6 
induces significant rearrangements and piston-like shifts of TM helices. The HAMP domain 7 
protomers undergo lever-like motions and convert the piston-like motions into helical rotations. 8 
Our findings provide the structural framework for complete understanding of TM TCS signaling 9 
and for development of antimicrobial treatments targeting TCS. 10 

 11 

One Sentence Summary: Crystal structures of bacterial nitrate sensor NarQ with and without its 12 
ligand reveal a structural basis for signal propagation through the cell membrane in histidine 13 
kinases: piston-like motions of transmembrane helices and scissor-like motions in the ubiquitous 14 
signaling module HAMP domain.  15 
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Main Text:  1 

 2 
Introduction 3 
 4 
Microorganisms obtain most of the information about their environments through membrane-5 
associated signaling systems. One of the major and most abundant classes of membrane 6 
receptors, present in all domains of life, is sensor histidine kinases, members of two-component 7 
signaling systems (TCS) (1–3). Overall, tens of thousands of TCS are known (4). Many of these 8 
systems are essential for cell growth, survival or pathogenicity and consequently can be targeted 9 
to reduce virulence (5–7). 10 
  11 
Membrane-associated sensor kinases generally function as homodimers and possess a 12 
periplasmic, membrane or intracellular sensor module, a transmembrane (TM) domain, often one 13 
or several intracellular signal transduction domains such as HAMP, PAS or GAF, and an 14 
intracellular autokinase module (DHp and CA domains), which phosphorylates the response 15 
regulator protein (1, 8, 9) (Figure S1). Other TCS TM sensors, chemo- and photo-receptors, have 16 
domain organization similar to that of sensor histidine kinases as they possess the sensor module, 17 
TM and HAMP domains, but lack the autokinase module and control separate kinase protein 18 
(CheA) via the kinase control module (Figure S1). Also, the core functional unit of 19 
chemoreceptors and phototaxis systems is not a dimer but a trimer of dimers (10–12), which may 20 
then pack into higher-order oligomeric assemblies (13).  21 
 22 
Molecular mechanisms of the TM signal transduction in different classes of TCS are expected to 23 
be somewhat similar, since in a vast majority of the sensors there is a dimeric four-helical TM 24 
core in the TM domain, often followed by the HAMP domain downstream. At present, only two 25 
reports on atomic-resolution structures of the TM domains are available, both describing isolated 26 
TM fragments and thus providing little insight into the signal transduction in and out of the TM 27 
domain of a typical TCS sensor. The first report provided crystallographic structure of the 28 
complex between the photoreceptor sensory rhodopsin and the transmembrane domain of its 29 
transducer protein (14). In the second report, NMR structures of non-physiological monomeric 30 
TM domains of histidine kinases from three different classes have been described (15). Finally, 31 
several low resolution models of the TM helices in the context of full-length proteins such as 32 
chemoreceptor Tar or histidine kinase PhoQ have been constructed based on disulfide 33 
crosslinking and modeling (16, 17). Due to limitations of all these studies, atomic details of TM 34 
signal transduction are still not resolved (8, 9). As for the HAMP domain, multiple experimental 35 
structures of the domains from different proteins are available, and there are several competing 36 
hypotheses on the HAMP domain signaling (8, 9, 18). 37 
 38 
To complement the above reports we present here our studies of the Escherichia coli 39 
nitrate/nitrite sensor kinase NarQ. Similarly to NarX, another E. coli nitrate/nitrite sensor, NarQ 40 
consists of seven major structural elements: the periplasmic sensor domain, the TM domain, the 41 
HAMP domain, the signaling helix, the GAF-like domain, the DHp domain and the kinase CA 42 
domain (18–20) (Figure S1). While no structural information is available for NarQ, crystal 43 
structures of NarX sensor domain in apo and holo states have been determined (21), as well as 44 
multiple structures of the HAMP, GAF, DHp and kinase domains of other proteins (8, 9).  45 
 46 



4 
  

Here, we used the in meso (22–24) and single wavelength anomalous dispersion (SAD) (25) 1 
approaches to crystallize and determine the crystal structures, at resolutions of up to 1.9 Å, of a 2 
fragment of the nitrate sensor NarQ that contains the sensor, TM and HAMP domains. We 3 
determined the symmetric apo state structure of a conservative mutant and symmetric and highly 4 
asymmetric holo-S and holo-A state structures of the wild type protein (Figures 1 and S2). 5 
Comparison of the apo and holo structures reveals extensive structural rearrangements and 6 
provides a direct demonstration of signal transduction through the TM and HAMP domains, 7 
including a piston-like motion of TM helices and a lever-like rotation of HAMP domain 8 
protomers. Comparison of holo-S and holo-A structures shows that the signal transduction in 9 
NarQ can be achieved via different sets of conformational changes. Overall, the presented 10 
findings clarify the mechanism of TM signaling in TCS receptors. 11 
 12 
  13 
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Results 1 
 2 
Structure of the sensor domain 3 
 4 
In all of the presented structures, including the asymmetric ligand-bound form, the NarQ sensor 5 
domain is a symmetric dimer of two monomers comprised of four α-helices H1-H4, with the 6 
helices H2 and H4 being broken into sub-helices (Figure S3). The loop between the helices H2 7 
and H3 is anchored into the membrane by residues Trp89 and Tyr90. Nitrate binds at the 8 
symmetry axis between the helices H1 and H1’ of the two protomers, where it is coordinated by 9 
the side chains of the residues Arg50 and Arg50’ (Figure S3E). The ligand was observed in all 10 
crystals of the wild type (WT) protein, including those obtained without supplementation of the 11 
protein purification and crystallization solutions with nitrate. This is probably a consequence of 12 
the combination of following factors: high ligand affinity of the crystallized fragment for nitrate, 13 
presence of nitrate impurities in the aforementioned solutions and the very low amount of nitrate 14 
needed to saturate the binding sites in the ~0.5 milimolar receptor solution used for 15 
crystallization. Consequently, we generated a conservative R50K mutant to obtain the crystal 16 
structure of NarQ in its apo state. This mutation is known to lock the receptor in the off state (26) 17 
but was not expected to alter the local structure of the sensor domain since arginine and lysine 18 
side chains are similar in size and charge. Indeed, the structures of the NarQ sensor domain in 19 
the apo R50K and holo-S and holo-A WT forms reported here closely resemble those of the apo 20 
and holo WT NarX sensor domain (21), respectively. In particular, the positions of the 21 
membrane-proximal ends of helices H1 and H4, responsible for downstream signaling, are 22 
identical in the corresponding structures (Figures S3C,F) and we thus conclude that introduction 23 
of the mutation results in correct reproduction of the structural features of the WT ligand-free 24 
protein.  25 
 26 
Structure of the TM domain 27 
 28 
In all of the structures presented here, the NarQ TM domain is an anti-parallel 4-stranded coiled 29 
coil (CC) consisting of 9 CC layers (Figures 1, 2 and S4). Several ordered lipid fragments are 30 
observed in the holo-S structure, one fragment in observed in the holo-A structure, and no 31 
fragments are observed in the apo structure. However, due to the small size of the fragments, 32 
reliable identification of the corresponding lipidic moieties is not possible.  33 
 34 
There are notable variations in the packing of the TM helices. The apo state structure is best 35 
described as a dimeric CC comprised of helices TM1 and TM1’, with TM2 and TM2’ flanking 36 
this. The symmetric holo-S state structure is a traditional four-helical CC, switching from a 7/2-37 
period left-handed CC at the periplasmic side to a 11/3-period structure with close to zero 38 
supercoil twist on the cytoplasmic side. Finally, in the asymmetric holo-A state, the TM domain 39 
is a highly distorted CC, where the relative arrangement of the helices in layers 1-4 and 9 40 
resembles that observed in the symmetric holo-S state and the arrangement in layers 7 and 8 41 
resembles that seen in the apo state (Figure S4).  42 
 43 
In general, the cytoplasm-proximal layers are more hydrophobic and are packed tightly, whereas 44 
those proximal to the periplasm contain hydrated cavities and multiple polar (Ser22, Ser25, 45 
Thr26, Thr32, Ser154, Thr163) and somewhat disordered glycine residues (Gly27, Gly157, 46 
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Gly158 and Gly160, Figure S2E). While the role of water molecules and glycine residues in the 1 
NarQ TM domain is not clear, similar α-helix-destabilizing features are observed in the TM 2 
domains of other histidine kinases (Figure S5) and they probably impart the TM domain with the 3 
flexibility needed to accommodate signaling-associated transitions, similarly to the glycine hinge 4 
in the cytoplasmic part of chemoreceptors (27). 5 
 6 
The α-helical composition of the TM region of TCS receptors has long been predicted (8, 9, 14–7 
17). However, the structure of the NarQ TM domain is notably different from that of the sensory 8 
rhodopsin transducer TM domain (Figure S5). In NarQ, the TM region is either a simple 4-9 
helical CC, or has a dimeric CC core consisting of the helices TM1, whereas NpHtrII has a 10 
dimeric CC core consisting of the helices TM2 (14, 28). Also, in NarQ, there is either zero or 11 
left-handed supercoil twist, while in NpHtrII this changes from close to zero at the periplasmic 12 
side to right-handed at the cytoplasmic side (Figure S5). As for the comparison with the TM 13 
fragments of ArcB, QseC and KdpD, unfortunately, the  NMR structures do not provide the 14 
information about the dimerization interfaces and CC packing in the physiological dimers of any 15 
of these kinases (15). 16 
 17 
The junctions between TM and adjacent domains. 18 
 19 
Our crystal structures of NarQ reveal details of the interactions of the TM domain with the 20 
membrane-proximal domains (Figure S6). On the periplasmic side of the protein, in the apo 21 
state, there is a continuous transition of the helices TM1 and TM2 into the helices H1 and H4, 22 
respectively, whereas in both holo-A and holo-S state there is a break in the α-helical structure 23 
between TM1 and H1 (see Figures S6A,D for comparison of apo and holo-S states).  24 
 25 
At the cytoplasmic side, in all states the cytoplasmic side of TM1 and the protein’s N-terminus 26 
make extensive contacts with the HAMP domain. The highly conserved glutamic acid residue 27 
Glu207 of the membrane-proximal region of HAMP domain helix AS2 (29) forms two hydrogen 28 
bonds with the backbone nitrogens of helix TM1 residues (Figures S6B,E), similarly to what has 29 
been observed in the structure of the soluble mutant of protein Af1503 (30) (Figure S7A). As for 30 
the TM2-AS1 junction, there is a proline-induced kink (Figures S6C,F), again as also seen for 31 
the protein Af1503 (30) (Figure S7B).  32 
 33 
The HAMP domain 34 
 35 
The NarQ HAMP domain displays a typical parallel 4-stranded CC fold (18), with each protomer 36 
consisting of two α-helices AS1 and AS2, separated by an unstructured linker (Figure S8). In all 37 
of the structures, the HAMP domain is less ordered than the sensor and TM domains, and in the 38 
apo state structure, the positions of the side chains of Leu225 and Tyr226 are not resolved. 39 
Overall, the apo state structure is similar to the structure of the Af1503 HAMP domain (Figure 40 
S9). The structure observed for the symmetric holo-S state HAMP domain is influenced by 41 
crystal contacts: the helices AS2 are interspersed with the same helices of an adjacent dimer 42 
(Figures S2 and S8), and consequently there is no contact between the Leu225 side chains facing 43 
towards the CC core.  While such conformation would be consistent with an antiparallel 4-44 
helical CC downstream domain, such as in bacterial chemoreceptors (31), it is unusual in the 45 
structural context of histidine kinases. The crystal contacts mentioned above are absent in the 46 
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asymmetric holo-A state structure (space group P2). There, the hydrophobic Leu225 side chains 1 
are less exposed to the solvent and are in contact with each other. Thus, we conclude that the 2 
holo-A structure represents a better model of the activated NarQ HAMP domain. 3 
 4 
The signaling helix region 5 
 6 
In order to obtain insights into signal transduction through and downstream of the HAMP 7 
domain, we have constructed atomic models of the adjacent signaling helix region (residues 224-8 
245, see NarQ domain architecture in Figure S1). The signaling helix is a common sequence 9 
motif in sensor kinases (32) and sensory rhodopsin transducers (33), and two CC heptad repeat 10 
pattern assignments are possible for NarQ based on the positions of hydrophobic and hydrophilic 11 
residues (Figure S10). Neither of the models is compatible with the holo state HAMP domain 12 
structures, but both, especially model 2, are compatible with the structure of the apo state HAMP 13 
domain (see layer 6 in Figure S8 and layer 1 in Figure S10). Model 1 comprises a phase stutter 14 
that is also observed in other histidine kinases and chemoreceptors (18, 19, 34) and may be 15 
required for destabilization of the signaling helix for it to be able to adopt different signaling 16 
states. However, model 2 appears to be more probable judging from the protein sequence (19). 17 
 18 
Discussion 19 
 20 
Signal transduction in NarQ 21 
 22 
Comparison of the apo and holo state crystal structures of NarQ reveals that binding of nitrate 23 
causes significant rearrangements in the TM region that can be represented as a combination of 24 
changes in the lateral arrangement of the TM helices and piston-like shifts of the helices in the 25 
direction perpendicular to the membrane plain. At the same time, comparison of the holo-S and 26 
holo-A states reveals profound differences in the middle of the TM segment but identical 27 
conformations at its periplasmic and intracellular sides (see Movie S1 for comparison of apo and 28 
holo-S state structures, and Movie S2 for comparison of holo-S and holo-A structures). We make 29 
several observations from these comparisons.  30 
 31 
First, binding of nitrate in the vicinity of Gly47 causes disruption in the α-helix H1 and 32 
appearance of a 310-helix element: Gly47 carbonyl switches from Met51 amide hydrogen to 33 
Arg50 amide hydrogen (from i→i+4 helical hydrogen bonding to i→i+3, Figures S3 and S11). 34 
310-helices have a higher helical rise per residue than α-helices (35), and as a result the 35 
membrane-proximal part of H1 moves slightly towards the membrane and rotates. This rotation 36 
of the membrane-proximal part of H1 opens a “hole” near the residues Ile43 and Ala46, which is 37 
then occupied by Val136 “knob” (36). Consequently, H4 rotates as well and moves away from 38 
the membrane, which results in a piston-like displacement of H4 relative to H1 for ~0.5-1.0 Å. 39 
Also, the helices H4 and H4’ are brought much closer to the helices H1 and H1’. This 40 
interpretation is supported by mutagenesis data: mutation of Ala46 to serine is inconsequential, 41 
mutation to threonine results in impaired signaling, and mutations to much bulkier asparagine 42 
and isoleucine lock NarQ in the ‘off’ state (37). The observed conformational changes in NarQ 43 
are identical to the changes observed in isolated NarX sensor domain (Figure S3) (21).  44 
 45 
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Rotation of the membrane-proximal parts of H1 and H1’ and approach of H4 and H4’ upon 1 
binding of nitrate result in disruption of the TM1/H1-TM1’/H1’ CC interface, appearance of 2 
discontinuity between the α-helices TM1 and H1, and distancing of TM1 and TM1’ periplasmic 3 
sides (Figures 3 and S11, and Movie S1). The introduced discontinuity between TM1 and H1 4 
further increases the relative piston-like displacement from ~1 Å for H1 relative to H4 (as in 5 
NarX, (21)) to ~2.5 Å for TM1 relative to TM2 (Figure S11). Importance of the TM1-H1 helical 6 
break for kinase activation is also highlighted by mutagenesis study: introduction of a proline 7 
into the TM1-H1 junction (mutation E41P) locks the receptor in the ‘on’ state, whereas other 8 
nonconservative mutations of Glu41 (E41R, E41H and E41L) do not disrupt the function of the 9 
receptor (37). 10 
 11 
Whereas conformational changes in the sensor domain and at the sensor-TM junction are 12 
moderate and identical in holo-A and holo-S structures, the rearrangements in the TM domain 13 
are much more pronounced and are different between holo-A and holo-S. Helices TM1, which 14 
form a tight CC interface in the apo state, are not fully separated in the holo-A structure 15 
(Figure S4). In the holo-S state the four TM helices form a traditional four-helical coiled coil 16 
(Figures 2 and S4). However, there is a similarity between the holo-A and holo-S structures: in 17 
both the ~2.5 Å relative piston-like displacement of the TM helices is fully transduced towards 18 
the HAMP domain (Figures 2 and 3, Movies S1 and S2). Conformational changes at the TM-19 
HAMP interface are also identical in the holo-S and holo-A structures as compared to the apo 20 
state structure. Thus, comparison of the asymmetric holo-A and symmetric holo-S state 21 
structures presents an insight into receptor flexibility and robustness of signal transduction by the 22 
TM domain despite the ~9 Å difference in the position of the HAMP domain (Figures 1, 3, S4 23 
and S8).  24 
 25 
Finally, in the cytoplasmic part of NarQ, the piston-like displacements of the TM helices, caused 26 
by binding of the ligand, are amplified through the lever-like rotations of the HAMP domain 27 
protomers around the Pro179 hinge into roughly 7 Å displacements of the output ends of the AS2 28 
helices (Figure 3). During these conformational rearrangements, each HAMP domain protomer 29 
behaves essentially as a rigid body. RMSD of the backbone atoms positions of the helices AS1 30 
(residues 179 to 192) and AS2 (residues 206 to 225) is ~0.6 Å between the apo and both holo-S 31 
and holo-A structures, and ~0.4 Å between the holo-S and holo-A structures, which is 32 
comparable to crystal-to-crystal variation and typical crystallographic error of atomic positions. 33 
However, due to relative motions of the HAMP domain protomers, the whole dimeric HAMP 34 
domain itself changes significantly: RMSD of the backbone atoms positions of the helices AS1 35 
(residues 179 to 192) and AS2 (residues 206 to 225) is ~2.9 Å between the apo and holo-S 36 
structures and 3.0 Å between the apo and holo-A structures, as opposed to ~1.2 Å between the 37 
holo-S and holo-A structures.  38 
 39 
Details of the signal transduction in NarQ downstream of the HAMP domain are less clear due to 40 
truncation of the crystallized construct. In the apo state, the CC register of the AS2 output ends is 41 
consistent with the CC register of the signaling helix. However, in the holo-A and holo-S states 42 
the CC helical phase is much less consistent with that of the signaling helix. Therefore, it appears 43 
that the signaling helix should be destabilized and/or dissociated upon binding of the ligand 44 
(Figure 4). Signaling-related dissociation or destabilization of signaling helix was also observed 45 
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in Af1503-EnvZ chimeras (34) and histidine kinases BvgS and DesK (38, 39) and may thus be 1 
the general mechanism for signal propagation towards the DHp domain in TCS sensor kinases.  2 
 3 
Mechanism of transmembrane signaling by TCS receptors 4 
 5 
Several hypotheses concerning transmembrane signaling mechanisms in TCS receptors have 6 
been proposed (8, 9). For sensor histidine kinases, the crystal structures of α-helical NarX and 7 
TorS sensor domains hinted at piston-like conformational changes (21, 40). The crystal 8 
structures of the mixed α/β tandem PAS sensor domain of HAMP-less kinase LuxQ revealed 9 
rotation of signal output helices (41), which was also demonstrated in another HAMP-less kinase 10 
AgrC where the sensor domain is integral to the membrane (42). Recent crosslinking study 11 
revealed scissor-like diagonal displacement of the TM helices in the kinase PhoQ (17). For 12 
chemoreceptors with α-helical sensor domains, such as aspartate receptor Tar, the major model is 13 
piston-like displacement of the TM helices in the direction normal to the membrane plane (13, 14 
31). For chemoreceptor McpB with mixed α/β tandem PAS sensor domain, the signal was found 15 
to be transduced via rotation of TM helices (43). Finally, in the sensory rhodopsin-cognate 16 
transducer complex, where sensor is integral to the membrane, a combination of a piston-like 17 
motion and a rotation of the signal output helices was observed (44). While the piston-like 18 
displacements, helical rotations, CC phase changes, and scissoring motions are not mutually 19 
exclusive and possibly coupled to each other, the consensus on the transmembrane signaling 20 
mechanism in TCS sensors is currently lacking (8, 9). 21 
 22 
Our results show that binding of ligand to NarQ causes a piston-like displacement of the TM 23 
helices, which is accompanied by extensive symmetric or asymmetric rearrangements and 24 
scissoring of the TM helices. The rearrangements are different in the two presented holo state 25 
structures, but the piston-like displacement is perfectly conserved. Thus, the latter appears to be a 26 
more robust mechanism of TM signal transduction.  27 
 28 
Also, our data shows that symmetrical changes in the sensor domain may result both in 29 
symmetrical changes in the TM domain (as in the holo-S structure), and in asymmetrical changes 30 
(as in the holo-A structure). Asymmetry only changes the position of the HAMP domain relative 31 
to the TM domain and not its signaling state (Figure 1). Sensor domains of several histidine 32 
kinases are known to reside in asymmetric conformations in the inactive state and in symmetric 33 
conformations in the active state (40). The aspartate chemoreceptor can be activated both by 34 
asymmetric changes in the sensor domain upon binding of a ligand (31, 45) and presumably 35 
symmetric conformational changes upon mutations of aminoacids at the membrane/water 36 
interfaces (46, 47). Thus, whether the asymmetric changes in the sensor domain can result in 37 
symmetric changes in the TM domain, and the exact relations between asymmetry and 38 
activation, are not clear and remain to be investigated. 39 
 40 
Signal transduction through the HAMP domain 41 
 42 
Currently, there are several competing hypotheses concerning the mechanism of signal 43 
transduction through the HAMP domain (8, 9, 18): the gearbox model postulates rotation of the 44 
HAMP domain helices in opposite directions (48, 49); the dynamic bundle model proposes that 45 
signal transduction is associated with changes in HAMP domain stability (50, 51); several 46 
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reports based on crosslinking and crystallographic studies propose a variety of scissoring models 1 
(52–54). 2 
 3 
Our results indicate that in NarQ the HAMP domain serves as an amplifier and convertor of the 4 
piston-like conformational changes in the TM domain. Piston-like displacements of TM1 and 5 
TM1’ cytoplasmic ends for 2.5 Å relative to the proline hinge result in lever-like rotations of the 6 
protomers around their respective proline hinges and consequent 7 Å displacements in opposite 7 
directions of AS2 and AS2’ membrane-distal ends. This results in a ~90º change in the helical 8 
phase and the output CC register (Figures 3 and S8). Thus, the membrane-proximal HAMP 9 
domain acts as a convertor of the piston-like motions of TM domain helices into helical rotation 10 
at its output helices. These conformational changes are similar to the scissoring models (52–54), 11 
and are possibly accompanied by changes in the stability of the HAMP or adjacent domains. 12 
However, our results do not support the gearbox hypothesis. We observe that the HAMP domain 13 
protomers move relative to each other in a rigid body fashion, without rotation of the helices 14 
AS1 and AS2 within each protomer. Also, we should note that observation of slightly different 15 
HAMP domain conformations in holo-A and holo-S structures and increased B-factors in the 16 
HAMP domain region underline its dynamic nature. It is possible that the domain exists in an 17 
ensemble of similar conformations in vivo, whereas crystallographic structures provide only 18 
static snapshots. Finally, due to absence of the adjacent signaling helix region in the crystallized 19 
construct, the observed conformational changes may under- or overestimate the actual 20 
transformations associated with signal transduction.   21 
 22 
Interestingly, signal convertor role of the HAMP domain might reconcile the data on TM signal 23 
transduction in histidine kinases that contain and those that lack the HAMP domains. In sensors 24 
containing a membrane-proximal HAMP domain, binding of a ligand causes a piston-like 25 
displacement of the TM helices (that may be accompanied by scissoring), which is then 26 
converted into helical rotation by the HAMP domain. In sensors lacking the HAMP domain, 27 
binding of ligand directly causes rotation of the TM signal output helices (41, 42). In both cases 28 
the signal that is passed downstream is the helical rotation. Whether piston-like displacements 29 
are present during PhoQ activation remains to be tested. 30 
 31 
Conclusions 32 
 33 
In this work, we described the structures of the TM and membrane-proximal domains of the 34 
nitrate/nitrite receptor NarQ, and the conformational changes induced upon the binding of 35 
nitrate. The multiple conformational states observed for the TM domains present a template for 36 
studies of other TCS receptors, establish the importance of the piston-like displacements of the 37 
TM helices and highlight the role of the HAMP domain as an amplifier and convertor of a 38 
piston-like displacement into helical rotation. Overall, the results show how a mechanistic signal 39 
is generated and amplified while being transduced through the protein over distances of 100 Å or 40 
more. Since membrane-associated TCS are ubiquitous in microorganisms and are central for 41 
bacterial sensing (1–4), we believe that the results reported here will help in understanding of a 42 
broad range of cellular processes, ranging from basic metabolism to sporulation, quorum sensing 43 
and virulence. They may also provide insights for development of novel antimicrobial treatments 44 
targeting TCS (5–7). 45 
  46 
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Materials and Methods:  1 
 2 
Cloning, protein expression and purification 3 
 4 
The nucleotide sequence encoding residues 1-230 of NarQ was cloned from Escherichia coli 5 
strain BL21 (DE3) and introduced into the pSCodon1.2 expression vector (StabyCodon T7, 6 
Eurogentec, Belgium) via NdeI and XhoI restriction sites. Consequently, the construct harbored 7 
C-terminal 6×His tag. Mutation R50K was introduced by site-directed mutagenesis. Both the 8 
WT protein and the mutant version were expressed in E. coli strain SE1 (StabyCodon T7, 9 
Eurogentec, Belgium). Cells were cultured in shaking baffled flasks in ZYP-5052 auto-inducing 10 
medium (55) containing 100 mg/l ampicillin. After 2 hours of incubation at 37 °C, the 11 
temperature was decreased to 30 °C and incubation continued overnight. Harvested cells were 12 
disrupted in M-110P Lab Homogenizer (Microfluidics, USA) at 25000 psi in a PBS buffer with 13 
addition of 50 mg/l DNase I (Sigma-Aldrich, USA) and EDTA-free protease inhibitor cocktail 14 
Complete (Roche). The membrane fraction of cell lysate was isolated by ultracentrifugation at 15 
90000 g for 1 h at 4º C. The pellet was resuspended in a buffer containing 50 mM 16 
NaH2PO4/Na2HPO4, pH 8.0, 0.3 M NaCl and 2% DDM (Anatrace, Affymetrix, USA) and stirred 17 
overnight for solubilization. The insoluble fraction was then removed by ultracentrifugation at 18 
90000 g for 1 h at 4º C. The supernatant was loaded on a gravity flow column containing Ni-19 
NTA resin (Qiagen, Germany) and the protein was eluted in a buffer containing 20 mM Tris, pH 20 
8.0, 0.3 M NaCl, 0.2 M imidazole and 0.1% DDM. Imidazole was removed by dialysis against 21 
20 mM Tris, pH 8.0, 0.3 M NaCl and 0.1% DDM for 3 hours. The eluate was subjected to size-22 
exclusion chromatography on 125 ml Superdex 200 PG column (GE Healthcare Life Sciences, 23 
USA) in a buffer containing 20 mM Tris, pH 8.0, 0.3 M NaCl, 0.1% DDM. Protein-containing 24 
fractions were pooled and concentrated to 30 mg/ml for crystallization. 25 
 26 
Crystallization 27 
 28 
The crystals were grown using the in meso approach (22–24), similarly to our previous work (14, 29 
56, 57). The solubilized protein in the crystallization buffer was added to the monooleoyl-formed 30 
lipidic phase (Nu-Chek Prep, USA). Crystallization trials were set up using the NT8 robotic 31 
system (Formulatrix, USA). The crystals were grown at 22 °C and reached the final size of 50-32 
150 µm within 2 weeks. The best holo state crystals in space groups F222 and P2 were obtained 33 
using the precipitants 0.6 M KH2PO4/Na2HPO4 pH 4.6, 5 mM NaNO3 and 0.3 M 34 
KH2PO4/Na2HPO4 pH 7.6, 250 mM NaBr, respectively. The best apo state crystals in the space 35 
group I212121 were obtained using the precipitant 1.6 M (NH4)3PO4 pH 5.8. Before harvesting, 36 
the crystals were incubated for 5 min in the respective precipitant solutions supplemented with 37 
20% glycerol. For iodide-SAD experiments, the soaking solution additionally contained 0.5 M 38 
NaI. All crystals were harvested using micromounts (MiTeGen), and were flash-cooled and 39 
stored in liquid nitrogen. 40 
 41 
Acquisition and treatment of diffraction data 42 
 43 
The diffraction data were collected at 100 K at ESRF beamline ID23-1 (58) equipped with a 44 
PILATUS 6M-F detector. The data collection statistics are reported in Table S1. In all cases the 45 
diffraction was anisotropic as determined by decay of the CC1/2 values in 20º cones along the 46 
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reciprocal cell directions a*, b*, and c* (59). In the space group I212121, the resolution limits 1 
along the directions a* and b* were 2.55 and 2.17 Å, and along the direction c* the CC1/2 value 2 
was ~0.9 at the resolution cut-off of 1.9 Å. In the native dataset in the space group F222, the 3 
resolution limits along the directions a* and b* were 2.26 and 1.94 Å, and along the direction c* 4 
the CC1/2 value was ~0.8 at the resolution cut-off of 1.94 Å. In the space group P2, the resolution 5 
limit along the direction a* was 2.82 Å, and along the directions b* and c* the CC1/2 values were 6 
~0.6 and 0.9 at the resolution cut-off of 2.42 Å. Diffraction images were processed using XDS 7 
(60). XSCALE (60) was used to merge different datasets and to scale the data for the phasing 8 
steps. POINTLESS (59) and AIMLESS (59) were used to merge, scale, assess the quality, 9 
convert intensities to structure factor amplitudes and generate Free-R labels.  10 
 11 
Structure determination and refinement 12 
 13 
The holo-S state structure in the space group F222 was solved using experimental phasing, and 14 
the apo and holo-A state structures in the space groups I212121 and P2, respectively, were solved 15 
using molecular replacement with MOLREP (61) and the sensor domain from the structure in the 16 
space group F222 as a search model. For the F222 structure solution, 8 isomorphous datasets 17 
from NaI-soaked crystals were collected and merged for subsequent SAD phasing. The iodide 18 
sites were determined using ShelxD (62) with the HKL2MAP (63) interface, with the CCall and 19 
CCweak values of 40.0% and 15.4%. The resolution was extended to 1.94 Å using the native F222 20 
data collected from a single crystal. 178 Ala residues were placed in 5×50 cycles of autotracing 21 
and density modification using ShelxE (62). Initial model was improved using automatic model 22 
building software ARP-wARP (64). The final F222 model was built using only the native data. 23 
For the I212121 and P2 structure solution, native datasets collected from single crystals were used 24 
in each case. All models were refined manually using Coot (65) and REFMAC5 (66). 25 
Intermediate conformations shown in movies S1 and S2 were calculated using the NOLB 26 
algorithm (68). 27 
  28 
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Figure captions 1 
 2 

 3 
 4 
Figure 1. Overall structure of the crystallized NarQ fragment in apo and holo states. The 5 
protein is observed as a symmetric dimer in both the apo and holo-S states in the space groups 6 
I212121 and F222, respectively, and as an asymmetric dimer in holo-A state in the space group 7 
P2. Termini of the second protomer are denoted with primes. The crystallized fragment 8 
comprises the transmembrane domain (helices TM1 and TM2), the periplasmic sensor domain 9 
(helices H1-H4) with the nitrate ion binding at the dimerization interface, and the intracellular 10 
HAMP domain (helices AS1 and AS2). The structures are aligned by sensor domains. 11 
Hydrophobic membrane boundaries (black) were calculated using the OPM server (67) with the 12 
symmetric ligand-bound structure as a template.  13 
  14 



20 
 

 1 
Figure 2. Signaling-associated conformational changes in the NarQ TM domain. 2 
Superposition of the apo state structure (grey) and symmetric holo state structure (colored) is 3 
shown. Left, changes in conformation of the helix TM1. Middle, changes in conformation of the 4 
helix TM2. Right, changes in the arrangement of the TM helices. Cα atom positions of the 5 
residues from CC layer 9 are marked with the spheres to highlight the displacements in the 6 
direction perpendicular to the membrane. The structures are aligned by the sensor domains. 7 
  8 
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 1 
 2 
Figure 3. Details of the signal transduction from the TM domain to and through the HAMP 3 
domain. (A) inactive apo state. (B) active holo-S state. (C) superposition of the apo (grey) and 4 
holo-S (colored) states. A piston-like displacement of the cytoplasmic end of TM1 relative to 5 
TM2 and the TM2-AS1 hinge is transmitted to the membrane-proximal end of AS2 and results in 6 
lever-like rotations of the HAMP domain protomers around the hinges. Since the HAMP domain 7 
protomers move in opposite directions, the positions of membrane-distal ends of helices AS2 8 
also change relative to each other. Positions of the Leu225 Cα atom are marked with the spheres. 9 
The grey bar shows the position of TM1 ends in the apo state structure. The domains are aligned 10 
by the residues 175-177. 11 
  12 
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 1 
 2 
Figure 4. Mechanism of NarQ transmembrane signaling. Binding of the ligand results in a 3 
piston-like displacement towards the periplasm of the helices TM1 relative to TM2 and 4 
consequent lever-like conformational changes in the HAMP domain, which cause dissociation or 5 
destabilization of the signaling helix.  6 
  7 
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 1 

 2 
Figure S1. Domain architectures of representative microbial membrane sensor proteins. TM1 and TM2, 3 
transmembrane helices. AS1 and AS2, HAMP domain helices. NarQ is E. coli nitrate and nitrite sensor, Tsr is E. 4 
coli serine chemoreceptor, NpSRII and NpHtrII are Natronomonas pharaonis sensory rhodopsin II and sensory 5 
rhodopsin transducer II. In chemo- and photoreceptor systems, the kinase is a separate protein. While only 6 
monomers are shown, all of the proteins are normally dimeric with chemo- and photoreceptor dimers forming 7 
higher-order oligomeric assemblies. 8 

9 
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 1 
 2 
Figure S2. Crystallographic details. (A-C) Data for the space group I212121 (symmetric apo state structure). (D-F) 3 
Data for the space group F222 (symmetric holo state structure). (G-I) Data for the space group P2 (asymmetric holo 4 
state structure). (A, D, G) Crystal packing. The NarQ dimers pack in layers, as is typical for Type I membrane 5 
protein crystals, obtained through in meso crystallization. (B, E, H) Relative distributions of the B-factor values. The 6 
scale in each drawing is different. In each space group, the membrane-distal parts of the HAMP domain are notably 7 
disordered. (C, F, I) Example of the electron density maps for the chain A residues around the ligand binding site. 8 
Weighted 2Fo–Fc electron density maps are contoured at the level of 1.5 σ. 9 
  10 
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 1 
 2 
Figure S3. Structure of the NarQ periplasmic sensor domain. (A-C) Structure of the sensor domain in the apo 3 
state. The R50K mutant was used for structure determination. (A) Overall structure of the domain. The H2-H3 loop 4 
is anchored into the membrane with the residues Trp89 and Tyr90. (B) Ligand-binding site of apo NarQ. Three 5 
ordered water molecules are observed. (C) Comparison of the NarQ (yellow) and NarX (green, chain A from PDB: 6 
3EZI (21)) sensor domains in the absence of ligands. Positions of the backbone atoms of the helices H1 and H4 are 7 
virtually indistinguishable. (D-F) Structure of the sensor domain in the holo state. (D) Overall structure of the 8 
domain. The ligand is bound at the dimerization interface between the helices H1 and H1’. The H2-H3 loop is 9 
anchored into the membrane with the residues Trp89 and Tyr90. (E) Nitrate-binding site of NarQ. The ion is bound 10 
by Arg50 side chains and Gly47 backbone oxygen atoms. Below the nitrate ion, a tetrahedrally coordinated water 11 
molecule is observed. Potential hydrogen bonds are shown as black dashed lines. The interaction of NO3

- partially 12 
positively charged nitrogen atom with the Gly47 partially negatively charged backbone oxygen atom is shown with 13 
orange dashing. (F) Comparison of the ligand-bound NarQ (yellow) and NarX (green, PDB: 3EZH (21)) sensor 14 
domains. Positions of the backbone atoms of the helices H1 and H4 are virtually indistinguishable. Positions of the 15 
TM2 backbone atoms present in the NarX construct used for crystallization(21) are also identical to those of NarQ. 16 
Positions of the NarX TM2’ backbone atoms are different, possibly due to the absence of corresponding TM1 and 17 
TM1’ residues that would stabilize the correct conformation. Note that NarX position relative to the membrane 18 
boundaries probably differs from that of NarQ (not shown).  19 

20 
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 1 

Figure S4. Structure of the NarQ transmembrane domain. TM1 is in blue, and TM2 is in yellow. (A) Apo state. 2 
(B) Symmetric holo state. (C) Asymmetric holo state. In each panel, overall structure (left) and side chain packings 3 
in the 9 CC layers (right, view from the periplasm) are shown. In each structure, ordered water molecules are 4 
observed in or around CC layer 4. 5 
 6 

7 
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 1 

Figure S5. Comparison of the experimentally determined structures of TCS TM domains. In each case, the N-2 
terminal α-helix TM1 is shown in blue and the C-terminal one is shown in yellow. Glycine and proline residues of 3 
the TM helices are shown with red spheres. There are generally more glycine and proline residues in the last TM 4 
helix of the histidine kinases. The scale is the same for all of the proteins. X-ray structure of NpHtrII (28) is aligned 5 
to ligand-bound NarQ structure using the positions of the HAMP-domain proximal residues that are similar, 6 
opposite to the positions of the residues in the middle of the membrane and at the periplasmic side. Since there is no 7 
sequence similarity between the TM domains, NMR structures of ArcB, QseC and KdpD (15) are aligned to the 8 
NarQ structure so that their helices are roughly at the same positions relative to the membrane. Structural 9 
comparison with ArcB, QseC and KdpD is hampered since the structures are monomeric and information about the 10 
dimerization interfaces is lacking (15). It is not clear whether the ArcB and QseC fragments are in the correct 11 
physiological state. In the KdpD structure, presence of the additional TM helices (TM2 and TM3, cyan and 12 
magenta) probably ensures correct folding of the TM domain and proper orientations of the N-terminal and C-13 
terminal helices. 14 
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Figure S6. Structure of the junctions between the NarQ TM helices and adjacent domains. (A-C) Apo state 2 
structure. (A) Connections between the TM helices and the sensor domain. Both TM1-H1 and TM2-H4 transitions 3 
maintain the helical structure. A phosphate anion is bound close to the hydrophobic membrane boundary. Putative 4 
hydrogen bonds are shown with the black dashes. (B) and (C) Connections between the TM helices and the HAMP 5 
domain. (B) Structure of the proline kink in the TM2-AS1 junction. (C) Structure of the TM1-AS2 link. 6 
Cytoplasmic terminus of TM1 is connected to the membrane-proximal end of AS2 via two hydrogen bonds. One 7 
bond is direct (Val7-Glu207) and the other is mediated by a conserved water molecule (Ser8-Glu207). (D-F) Holo-S 8 
symmetric state structure. (D) Connections between the TM helices and the sensor domain. There is a break in the 9 
helical structure at the TM1-H1 junction, while the H4-TM2 transition is continuous. The break is stabilized by a 10 
water molecule and several hydrogen bonds (black dashes). (E) and (F) Connections between the TM helices and 11 
the HAMP domain.  (E) Structure of the proline kink in the TM2-AS1 junction. There is a hydrogen bond between 12 
Asn206 and Gln175 backbone carbonyl oxygen atom that connects the cytoplasmic end of TM2 and membrane-13 
proximal end of AS2. (F) Structure of the TM1-AS2 link. The cytoplasmic terminus of TM1 is connected to the 14 
membrane-proximal end of AS2 via two hydrogen bonds. One bond is direct (Val7-Glu207) and the other is 15 
mediated by a conserved water molecule (Ser8-Glu207). Glu207 side chain conformation is also stabilized by a 16 
hydrogen bond with Asn181’ of the adjacent helix AS1’. 17 
 18 
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Figure S7. Structure of the junctions between the TM helices and HAMP domain in Af1503 (PDB: 4CQ4 3 
(30)). (A) Structure of the proline kink in the TM2-AS1 junction. (B) Structure of the TM1*-AS2 link. Cytoplasmic 4 
terminus of the helix TM1* is connected to the membrane-proximal end of AS2 via two hydrogen bonds. One bond 5 
is direct (Ile239*-Glu311) and the other is mediated by a water molecule (Ala240*-Glu311). The water molecule is 6 
also stabilized by a hydrogen bond with the side chain of Thr181’ of the adjacent helix AS1’. Notation TM1* is 7 
chosen to emphasize that the structure corresponds to unnatural antiparallel tetramer of the construct comprising the 8 
mutated TM2 helix and the HAMP domain of the Af1503 protein (30). Consequently, positions of TM1 in the 9 
correctly folded full-length Af1503 can differ from those presented. 10 
 11 
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Figure S8. Structure of the NarQ HAMP domain in apo, symmetric holo and asymmetric holo states. 2 
Structures are aligned by the residues of the TM2-AS1 junction. In the apo state structure, side chains of the residues 3 
Leu225 and Tyr226 are not resolved and consequently are marked with spheres. In the symmetric holo state 4 
structure, AS2 helices of symmetry-related molecules are marked AS2’’ and AS2’’’, and only one of two alternative 5 
side chain conformations of Leu225 is shown in each case. Note that Phe195 of layer 5 resides on the linker and not 6 
on AS1 or AS2, and that not all of the linker residues are resolved in the apo and asymmetric holo state structures. 7 
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Figure S9. Comparison of the NarQ apo state HAMP domain and Af1503 soluble mutant HAMP domain. (A) 2 
Structure of the HAMP domain in the apo state of NarQ. (B) Structure of the HAMP domain in the soluble mutant 3 
of Af1503 receptor (PDB: 4CQ4) (30). (C) Superposition of the apo-state NarQ HAMP domain (grey) and Af1503 4 
HAMP domain (colored). The HAMP domain structures are similar. The grey line shows the position of TM1 ends 5 
in the apo state NarQ structure. 6 
 7 
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Figure S10. Coiled coil models of NarQ signaling helix domain. Two conformations are possible. Conformation 1 3 
is shown in red and conformation 2 is shown in blue. The packing in the layers 1-3 is different, while the packing in 4 
the layers 4-6 is similar. The phase stutter is possible in the region of the residues 232-236. Residues Glu235, 5 
Lys236, Thr237 belong to the characteristic conserved signaling helix motif (32). 6 
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Figure S11. Signaling-associated conformational changes in the NarQ sensor domain. Superposition of the apo 3 
state structure (grey) and symmetric holo state structure (colored) is shown. The black arrows indicate the directions 4 
of the displacements of NarQ elements upon binding of the ligand (not drawn to scale). The structures are aligned 5 
using the residues 48–53 (membrane-distal part of the helix H1).  6 

 7 
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Table S1. Data collection, phasing and refinement statistics 1 
 Apo Holo F222 NaI Holo F222 Native Holo P2 
Data collection     
Space group I212121 F222 F222 P2 
Cell dimensions       
    a, b, c (Å) 39.59, 

59.37, 
239.58 

57.17, 
73.48, 
236.45 

57.58, 
73.87, 
235.56 

53.46, 
39.87, 
120.36 

    α, β, γ  (°)  90, 90, 90 90, 90, 90 90, 90, 90 90, 100.62, 90 
Wavelength (Å) 0.972 1.85 0.972 0.972 
Resolution (Å) 47.64-1.90 

(1.94-1.90)* 
60-2.7 

(2.9-2.7) 
39.4-1.94 

(1.99-1.94) 
52.55-2.42 
(2.51-2.42) 

Rmerge (%) 7.5 (156.4) 17.1 (74.4) 8.3 (98.9) 9.4 (66.6) 
I/σI 11.8 (1.2) 21.7 (3.4) 14.5 (2.0) 7.6 (1.8) 
CC1/2 (%) 99.8 (80.2) 100 (93.9) 99.9 (77.9) 99.5 (67.2) 
CCanom (%)  79 (14)   
Completeness (%) 99.9 (99.9) 99.9 (99.8) 98.9 (98.1) 96.6 (96.6) 
Unique reflections 22891 (1426) 13242 (2584) 18674 (1221) 18809 (1732) 
Redundancy 6.4 (6.6) 43.0 (13.3) 5.5 (5.8) 2.8 (2.9) 
     
Refinement     
Resolution (Å) 47.64-1.90  39.4-1.94 52.55-2.42 
No. reflections 21742  17728 17932 
Rwork/ Rfree (%) 23.2/28.5  19.0/25.4 21.8/28.6 
No. atoms     
    Protein 1763  1849 3388 
    Ligand 0  4 4 
    Water and ions 119  172 62 
    Lipids 0  34 6 
B-factors     
    Protein 51.6  34.3 52.1 
    Ligand -  27.7 28.2 
    Water and ions 61.5  42.8 41.0 
    Lipids -  57.0 62.3 
R.m.s deviations     
    Bond lengths (Å)  0.007  0.008 0.006 
    Bond angles (°) 1.0  1.1 0.9 
Ramachandran analysis     
    Favored (%) 97  98 97 
    Allowed (%) 3  2 3 
    Outliers (%) 0  0 0 
*Highest resolution shell is shown in parenthesis. 2 
  3 
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Movie S1. Mechanism of transmembrane signaling by sensor histidine kinase NarQ. 1 
 2 
Movie S2. Comparison of symmetric and asymmetric ligand-bound NarQ structures. 3 
 4 
 5 


