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Short title: Animal modelling meets structural identifiability 

Abstract  

What is a good (useful) mathematical model in animal science? For models 

constructed for prediction purposes, the question of model adequacy (usefulness) 

has been traditionally tackled by statistical analysis applied to observed experimental 

data relative to model-predicted variables. However, little attention has been paid to 

analytic tools that exploit the mathematical properties of the model equations. For 

example, in the context of model calibration, before attempting a numerical 

estimation of the model parameters, we might want to know if we have any chance of 

success in estimating a unique best value of the model parameters from available 

measurements. This question of uniqueness is referred to as structural identifiability; 

a mathematical property that is defined on the sole basis of the model structure 
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within a hypothetical ideal experiment determined by a setting of model inputs 

(stimuli) and observable variables (measurements). Structural identifiability analysis 

applied to dynamic models described by ordinary differential equations (ODE) is a 

common practice in control engineering and system identification. This analysis 

demands mathematical technicalities that are beyond the academic background of 

animal science, which might explain the lack of pervasiveness of identifiability 

analysis in animal science modelling. To fill this gap, in this paper we address the 

analysis of structural identifiability from a practitioner perspective by capitalizing on 

the use of dedicated software tools. Our objectives are (i) to provide a 

comprehensive explanation of the structural identifiability notion for the community of 

animal science modelling, (ii) to assess the relevance of identifiability analysis in 

animal science modelling and (iii) to motivate the community to use identifiability 

analysis in the modelling practice (when the identifiability question is relevant). We 

focus our study on ODE models. By using illustrative examples that include published 

mathematical models describing lactation in cattle, we show how structural 

identifiability analysis can contribute to advancing mathematical modelling in animal 

science towards the production of useful models and highly informative experiments. 

Rather than attempting to impose a systematic identifiability analysis to the modelling 

community during model developments, we wish to open a window towards the 

discovery of a powerful tool for model construction and experiment design.  

 

Keywords: dynamic modelling; identifiability; model calibration; optimal experiment 

design; parameter identification 
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Implications  

Mathematical modelling has played a central role in animal science with a plethora of 

developments for enhancing understanding and guiding sustainable livestock 

farming. Progress in precision farming and omics technologies will call for model 

developments adapted to get the most out of the resulting big data, including better 

modelling practice. Our objective is of providing insight into a mathematical tool 

called structural identifiability analysis that has been seldom used for analysing 

dynamic models in animal science. We illustrate how this tool (when relevant) can 

contribute to advancing mathematical modelling towards the production of useful 

models. 

 

Introduction  

The development of mathematical models in animal science has contributed to 

gaining insight in different central aspects of animal physiology such as metabolism 

and digestion. The potential of modelling has been discussed by different authors 

(France, 1988; Baldwin, 2000; Doeschl-Wilson, 2011).  

A classical modelling approach for describing the dynamics of a system under study 

is to construct dynamic models consisting of ODEs. These models comprise 

parameters (sometimes in large number) whose numerical values need to be 

estimated from experimental data by an adequate calibration routine. In animal 

science modelling, it is a common practice to assess model adequacy by statistical 

analysis applied on observed experimental data relative to the variables predicted by 

the calibrated model (Tedeschi, 2006). However, little attention has been paid to 

analytic tools that exploit the mathematical properties of the model equations. For 
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example, it is a typical situation to encounter difficulties when tackling model 

calibration due to the lack of experimental data on key system variables. Accordingly, 

before performing the model calibration, one might want to know if finding unique 

best values for the model parameters is possible given an experimental set up with 

specified measurements. The theoretical ability to recover the best model parameters 

uniquely is called structural (a priori) identifiability of parameters (Bellman and 

Astrom, 1970).  Structural identifiability is a prerequisite for ensuring that the model 

calibration problem is well-posed (that it is a problem whose solution is unique). This 

property is only based on the model structure and is independent of the accuracy of 

experimental data. When the identifiability issue is addressed by taking into account 

the type and quality of available data, we refer to practical (a posteriori) identifiability. 

This paper is centred on the question of structural identifiability for models described 

by ODEs in animal science. Structural identifiability has been largely addressed by 

the community of control engineering and system identification (Walter and Pronzato, 

1997). In animal science, identifiability analysis has been addressed to analyse 

statistical models focused on animal breeding and genetics (Wu et al., 2010). With 

respect to dynamic ODE models, although the notion of structural identifiability was 

already introduced to the community (Boston et al., 2007), identifiability analysis has 

been rarely addressed (we found only one reference of a mastitis transmission model 

(White et al., 2002)). The lack of pervasiveness of identifiability analysis is also found 

in other domains of biological modelling (Roper et al., 2010; Chis et al., 2011b). A 

possible explanation of this situation is that very often identifiability analysis turns out 

to be difficult and demands expert knowledge on mathematical technicalities. Within 

this context, in this paper we address the structural identifiability analysis from a 

practitioner perspective by capitalizing on the use of dedicated software tools. Our 



5 
 

objectives are (i) to explain simply the notion of structural identifiability for the 

community of animal science modelling, (ii) to assess its relevance in this context 

and (iii) to motivate the community to the use of identifiability analysis in its modelling 

practice (when the concept is relevant). We want to emphasize that it is not our 

intention to impose on the modelling community a requirement to perform 

systematically identifiability analysis in their model developments. Instead, we want 

to open a window towards the discovery of a powerful tool for modelling construction 

and experiment design.  

For the sake of clarity, in Table 1, we define the terms to be used in what follows. We 

focus mainly on dynamic models, although many aspects of what will be discussed 

are generic. For illustration purposes, we will use as a work-horse mathematical 

models describing lactation in cattle. When needed, alternative models will be used 

to tackle specific scenarios.  

The paper is organized as follows. Firstly, a brief theoretical background on 

parameter identification and structural identifiability will be presented. The relevance 

of structural identifiability analysis will be further discussed by case studies. Aspects 

on practical identifiability and optimal experiment design will then be briefly 

addressed. Finally, the main conclusions of the work will be summarized.   

 

Table 1 Definition of terms used in the manuscript  
Term Definition 
System In the modelling context, a system is a conceptual 

abstraction and simplification of the object under study 
(reality). A system consists of a set of inter-related 
components that interact and react as a whole to external 
or internal stimuli (Spedding, 1988). The system is 
delimited by spatial and temporal boundaries. The 
definition of a system sets the basis for model 
construction. It is of common usage to refer to the object 
under study as a system. Hence, we talk about system 
dynamics, system behaviour, etc.  
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Model Set of mathematical equations derived from an 

abstraction and simplification of the real world (Spedding, 
1988). A model is therefore a subjective formalization of 
knowledge on the system under study. Model 
construction can be motivated by two main targets: (1) 
understanding the functions of the system and (2) 
predicting the response of a set of variables for a given 
set of inputs. 
 
When the modelling target is that of understanding 
system functioning, model construction intends to 
describe at least partly the mechanisms that underlie the 
behaviour of the system under study by describing some 
individual elements of the system and their mutual inter-
relation. In this case, the resulting model is referred to as 
a mechanistic model. A compartmental model describing 
the set of reactions in a metabolic pathway is an example 
of mechanistic model.  
 
When a model allows prediction of the time trajectories of 
a set of variables, the model is referred to as a dynamic 
model. Dynamic models are often described by ordinary 
differential equations (ODE). These models are, by 
construction, mostly mechanistic. 
 
 

State variables An ODE model is often referred to as a state-space 
model. It consists of equations describing the derivatives 
of characterizing variables with respect to time. These 
variables are called state variables. They represent the 
memory that the system has of its past (Khalil, 2000). 
They also represent systems properties such as a 
substrate concentration or an organ’s weight (France, 
1988).    
 
 

Observables  Subset of the predicted variables of a model that, with 
respect to a defined experimental setting, can be 
observed (measured). In a dynamic model, they can be 
state variables (e.g.,  body weight in an animal model) or 
a function of the state variables (e.g., the pH in a rumen 
fermentation model). In ODE models, observables are 
often referred to as model outputs.  

 
Inputs In the dynamic modelling context, inputs are forcing 

variables (stimuli or challenges) external to the system 
that influences the system dynamics. For example, in a 
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mathematical model of animal digestion, the food intake  
rate can be a model input. 

 
Parameters Scalars (assumed here to be constant) that allow the 

evaluation of the functions that describe the model 
equations. The parameters may have known values (e.g. 
physical constants such as the Avogadro number), or 
may need to be estimated from experimental data via 
model calibration.  

 
Model structure The model structure refers to the set of mathematical 

functions that specify the coupling between the state 
variables, the inputs and observables (Bellman and 
Astrom, 1970). A structural property is derived from the 
model equations and is (almost) independent  of the 
values of the parameters (Walter and Pronzato, 1997). 
The linearity/nonlinearity of a model with respect to its 
parameters is an example of a structural property. 
 

Model complexity Throughout the manuscript, model complexity refers to 
the high-dimensionality of a model in terms of its 
parameters and state variables. Additionally, complexity 
is also related to the model structure: at the same number 
of state variables and parameters, a nonlinear model is 
more complex than a linear model.  
 

Model calibration The action of using a mathematical (numerical) routine for 
finding the value of unknown parameters of a model that 
best fit an experimental data set. The problem of finding 
the model parameters (an inverse problem) is formulated 
as the minimization of an adequate measure of the 
distance between the model observables and the 
experimental data. Model calibration is also called 
parameter identification (or estimation) and model fitting.  
 

Over-parameterization Development of models that contain more parameters 
than are needed to adequately describe the responses 
observed (Baranyi et al., 1996).  

 

Theoretical framework  

Model calibration  

Model calibration is the step that connects the model with the system under study. 

Once experimental data on the system are available and a model structure has been 
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packages for tackling the parameter identification problem (Maiwald and Timmer, 

2008; Muñoz-Tamayo et al., 2009; Balsa-Canto and Banga, 2011) .  

The parameter identification problem is often an ill-posed problem (it is a problem 

whose solution is not unique). This characteristic is the result of the different aspects, 

namely model structure, experimental data and numerical algorithms (Walter and 

Pronzato, 1997; Vargas-Villamil and Tedeschi, 2014). Ideally, we expect that the 

problem solution provides reliable numerical values of the parameters. In the 

following, we discussed tools for tackling the parameter identification problem.  

 

Structural identifiability  

Once the structure of a model is fixed and before attempting a numerical estimation 

of the model parameters, we might want to know if we have chances of succeeding 

in estimating unique optimal values of the model parameters from a given 

experimental setup. As previously mentioned, the possibility of recovering uniquely 

the model parameters relates to the mathematical property of structural identifiability, 

which is addressed on the sole basis of the model structure within a hypothetical 

ideal experiment determined by a setting of model inputs (stimuli) and observable 

variables (measurements). In this theoretical framework, it is assumed that the model 

represents perfectly the system, the observables are noise-free, and the inputs can 

be chosen freely to provide a sufficient excitation on the model response.  

The property of structural identifiability is independent of real experimental data and 

is determined as follows. Let ���� be a fixed model structure with a set of 

parameters � = ���,⋯ , �
��. ���� describes the relationship between input variables 

and observables. Let us denote by ���� = ���∗� the equality of the input-output 

behavior of the model structure obtained for the two parameter sets �, �∗. A 
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parameter ��	�� = 1,⋯��� is structurally identifiable if the equality ���� = ���∗� 
implies that �� =	��∗, that is 

           ���� = ���∗� ⇒ 	�� =	��∗                                         (1) 

To perform the analysis of identifiability, the equality ���� = ���∗� is translated into 

a set of equations in �. These equations can often be put in the form of a set of 

polynomial equations in � (parameterized by �∗). If the resulting set of equations has 

a unique solution for the parameter ��, the parameter is said to be structurally 

globally identifiable. If the number of solutions for �� is finite, the parameter is 

structurally locally identifiable. If infinite solutions exist for ��, the parameter is 

nonidentifiable. A model is structurally globally (or locally) identifiable if all its 

parameters are structurally globally (or locally) identifiable. A model is nonidentifiable 

if at least one of its parameters is nonidentifiable. A mathematical rigorous definition 

of structural identifiability is given by Walter and Pronzato, 1997.  

Different mathematical methods exist for testing the structural identifiability of 

dynamic models. The tools involved include the Laplace transform, Taylor series, 

generating series, similarity transformation, and differential algebra. The interested 

reader is referred to the dedicated literature (Carson et al., 1983; Walter and 

Pronzato, 1996; Chis et al., 2011b; Raue et al., 2014). In Supplementary material S1, 

the Laplace transform, Taylor series expansion, and generating series methods are 

described. 

To illustrate the notion of structural identifiability, consider the following model:  

� = � ∙ � ∙ �. We assume a hypothetical experimental protocol where �, � are 

measured. It is straightforward to conclude that only the quantity � ∙ � is uniquely 

identifiable, while the individual parameters �, � are nonidentifiable. Nonidentifiability 
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might imply that the model is over-parameterized (see Table 1). In this trivial 

example, it is clear that the model can be defined by one parameter instead of two.  

As mentioned in the Introduction, testing the identifiability of a model might turn out to 

be difficult, demanding expertise on mathematical technicalities (see Supplementary 

material S1). It is not our objective to go into the details of such technicalities. Rather, 

we take a practitioner perspective capitalizing on the developments of several 

software tools. These tools facilitate identifiability analysis by the practitioner (who 

does not have necessarily extensive knowledge in identifiability theory). Some of the 

identifiability software are:  

DAISY (Differential Algebra for Identifiability of SYstems) (Bellu et al., 2007)  which is 

implemented in the symbolic language REDUCE, GenSSI (Generating Series for 

testing Structural Identifiability) (Chis et al., 2011a) implemented in Matlab®, and the 

IdentifiabilityAnalysis application (Karlsson et al., 2012) implemented in Mathematica. 

All of these three toolbox are freely available. The identifiability methods used by 

DAISY and GenSSI are explicitly referred in their acronyms. The 

IdentifiabilityAnalysis application uses the exact arithmetic rank approach. While 

DAISY and GenSSI perform global identifiability analysis, IdentifiabilityAnalysis 

performs local identifiability analysis, but has the advantage of allowing the analysis 

of complex models. Overall, the outcome of these toolboxes is a qualitative report 

that displays the parameters that are identifiable.     

 

The relevance of identifiability  

In the following, we discuss the relevance of the identifiability question by means of 

five case studies with different modelling objectives.  
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Case study 1: we would like to know if we have a chance of succeeding in estimating 

uniquely the parameters of our model 

The aim pursued here is of a mathematical nature. We want to know if the parameter 

identification problem is well-posed. Let us consider the mathematical model 

proposed by Wood, 1967 that describes the lactation curve in cattle. We will refer to 

this model as MW. In this model, the daily milk production by the mammary gland (�) 

is described by the following gamma type algebraic equation   

                 ���� = � ∙ �� ∙ exp�− ∙ ��            (2) 

Where � is the time after calving and �, �,   are empirical parameters that determine 

the shape of the curve.  MW is not an ODE model (although it can be transformed into 

an ODE by simply deriving in time Eq. (2)). Since MW is relatively simple, its 

identifiability can be assessed by inspection. Indeed, by taking logarithms in both 

sides of Eq. (2), we obtain  

          ln ���� = ln � + � ∙ ln � −  ∙ �		                 (3) 

If continuous data of milk yield are available, it can be concluded that the model 

parameters are uniquely identifiable (Wood, 1967) and thus the parameter 

identification problem is well-posed.  

 

Case 2: we are interested in knowing the actual value of the model parameters 

because of their biological relevance 

In some cases, we are content with providing a model that satisfactorily predicts a 

variable of interest without the need to address identifiability issues. However, if our 

modelling objective goes beyond the purely predictive scope and we aim to improve 

the understanding of the phenomena that govern the system under study, the 

situation changes. In this case, we can be interested in knowing the actual values of 
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the model parameters. In mechanistic models, the parameters are biologically 

meaningful and we may wish to identify them uniquely because of their relevance.  

Let us consider the lactation curve model proposed by Dijkstra et al., 1997, that we 

will refer to as MD. In contrast to MW, MD was originally formulated as an ODE model. 

Both models have equivalent predictive capabilities (Friggens et al., 1999). In MD, the 

daily milk production is described by  

       
$%
$& = '� ∙ exp	�−'( ∙ �� ∙ � − ') ∙ �,										��0� = �+        (4) 

with �+ the initial condition of milk production.  The parameter '� is the specific rate of 

secretory cell proliferation at parturition, '( is a decay parameter that modulates the 

proliferation of secretory cells, and ') is a specific rate of cell death. The analytical 

solution of MD is  

���� = �+ ∙ exp ,-.
-/

∙ 01 − exp	�−'( ∙ ��1 − ') ∙ �2		                (5) 

For models with parameters that are biologically meaningful, the question of 

identifiability appears relevant and useful since knowing the actual value of the 

parameter can be of help for providing biological insight on the system under study. 

For example, we may wish to know unequivocally the specific rate of secretory cell 

proliferation at parturition (parameter '�) of MD. For that, we tested the identifiability 

of MD in Eq. (4) with the DAISY toolbox. DAISY handles models described by 

polynomial equations. Since MD has an exponential equation, the model was suitably 

manipulated to facilitate the identifiability analysis as follows. We include a new state 

variable ����� = exp	�−'( ∙ ��, which results in the following ODEs     

$%
$& = '� ∙ �� ∙ � − ') ∙ �, 						��0� = �+  

     
$3.
$& = −'( ∙ ��,			���0� = 1         (6) 
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If the milk yield is measured, the model parameters are uniquely identifiable. The 

computation time for the identifiability testing was less than one second on an Intel 

processor of 3.20 GHz with 8.0 GB RAM. The output file provided by DAISY is 

displayed in Table 2.  

 

Table 2 Output file of DAISY resulting from the identifiability analysis of the lactation 
model of Dijkstra et al., 1997. The model was suitably manipulated to be expressed 
with polynomial equations (a  requirement of DAISY). The model is structurally 
globally identifiable since the basis gi provides a unique solution for all the 
parameters.  
NUMBER OF EQUATIONS$ 
n_ := 3$ 
VARIABLES VECTOR$ 
b_ := {y1,x1,x2}$ 
UNKNOWN PARAMETER(S) VECTOR$ 
b1_ := {k1,k2,k3}$ 
NUMBER OF INPUT(S)$ 
nu_ := 0$ 
NUMBER OF OUTPUT(S)$ 
ny_ := 1$ 
NUMBER OF STATE(S) $ 
nx_ := 2$ 
MODEL EQUATION(S)$ 
c_ := {df(x1,t)=k1*x1*x2 - k3*x1,  
df(x2,t)= - k2*x2,y1=x1}$ 
CHARACTERISTIC SET$ 
aa_(1) := df(y1,t,2)*y1 - df(y1,t)**2 + df(y1,t)*y1*k2 + 
y1**2*k2*k3$ 
aa_(2) :=  - x1 + y1$ 
aa_(3) := df(y1,t) - x2*y1*k1 + y1*k3 
UNKNOWN PARAMETER(S) VECTOR$ 
b1i_ := {k1,k2,k3}$ 
RANDOMLY CHOSEN NUMERICAL PARAMETER(S ) VECTOR$ 
b2i_ := {k1=108,k2=111,k3=55}$ 
EXHAUSTIVE SUMMARY$ 
flist1i_ := {k2 - 111,k2*k3 - 6105,ic1*( - k1 + k3 + 53)}$ 
gi_ := {{k1=108,k3=55,k2=111}}$ 
MODEL GLOBALLY IDENTIFIABLE 
 
 

To enlarge the discussion about the cases where identifiability is relevant, we tackled 

in Supplementary material S2, the identifiability analysis of a kinetic model of ruminal 

lipolysis and biohydrogentation under in vitro conditions (Moate et al., 2008). This 

model has the potential to be used as primary scaffold for improving the mechanistic 
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description of rumen fermentation in existing models where lipid metabolism is either 

represented in a simplified fashion (Baldwin et al., 1987; Mills et al., 2001) or not 

accounted for (Muñoz-Tamayo et al., 2016).  

 

Case 3: the model should predict unobserved variables.  

The theoretical framework of structural identifiability assumes perfect experimental 

data (noise-free and continuous in time). Additionally, some hypotheses on the initial 

conditions of the state variables need to be assumed. Initial conditions can be 

assumed to be unknown or fixed. These assumptions have implications on the 

results of identifiability testing (Saccomani et al., 2003). We will use an example 

borrowed from Balsa-Canto and Banga, 2010, and further discussed by Villaverde 

and Barreiro, 2016. Let us consider a system described perfectly by the following 

ODE model  

d�����
d� = �� ∙ �� ∙ �(, 						���0� = ��+			 

d�(���
d� = �( ∙ 5, 					�(�0� = 	 				�(+	 

    ����� = 	 �����                                       (7) 

The model has two state variables (��,	�().  The input variable 5 is assumed to be 

known. Only the state variable �� can be measured. This condition is represented in 

the definition of the observable variable	��. The initial conditions are set by a 

hypothetical experimental protocol. By solving analytically the model equations in Eq. 

(7), we obtain the following equation for the model observable 

         ����� = 	 	��+ ∙ exp��� ∙ �(+ ∙ � + 0.5 ∙ �� ∙ �( ∙ 5 ∙ �(�                         (8) 

Let us now assume that the initial conditions are set to ��+ = 1, �(+ = 0, which leads 

to  ����� = 	exp�0.5 ∙ �� ∙ �( ∙ 5 ∙ �(�. It is clear that under these initial conditions, only 
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the quantity  �� ∙ �( can be recovered from the observable variable. Hence, we can 

conclude that the model is nonidentifiable (i.e., ��, �(	cannot be uniquely identified). 

This result implies that when performing the calibration, infinite solutions can be 

found which will make the calibration difficult.  

Let us now assume that the model has the following true parameter values:  �� =
1.0, �( = 2.0 and that the input is 5 = 1.0. By true parameters we refer to the ideal 

assumption that the model represents perfectly the system. In reality the true 

parameters are unknown. Now, under the hypothetical experimental conditions, any 

set of parameters fulfilling the condition �� ∙ �( = 2.0 is a solution of the parameter 

identification problem. Assume that noise-free data is available and that the 

optimization routine led to the following estimated parameters �� = 2.0, �( = 1.0. Note 

that the parameters fulfil the relationship �� ∙ �( = 2.0. To demonstrate the relevance 

of structural identifiability we compare the time series of ��	and �( from the model 

simulation using the true parameters and the set of estimated parameters. This 

comparison was performed by using the original initial conditions of the hypothetical 

experimental protocol (	��+ = 1, 	�(+ = 0, Figure 2A) and an additional set of initial 

conditions (	��+ = 1, 	�(+ = 0.5, Figure 2B).  

From this example, the following conclusions can be drawn: 

a. If our modelling objective is to predict the dynamics of ��, we can think at first sight 

that the identifiability question is irrelevant because whatever estimated parameters 

we obtain, we will be able to predict ��. This reasoning, however, needs to be taken 

with caution. If we constrained our modelling scope to the experimental protocol with 

initial conditions 	��+ = 1, �(+ = 0, the question of identifiability is indeed irrelevant. As 

observed in the left top plot of Figure 2 (panel A), the response of the two models 

evaluated with the true and estimated set of parameters are identical and thus we will 



 

be content in finding a set of parameters such that 

interested in enlarging the prediction capabilities of the model to a broader 

experimental context, the question of identifiability becomes relevant

We observe in the right top plot of Figure 2

estimated parameters differs from the response with the 

implies that any prediction of 

the model calibration will be wrong. 

b. If, in addition to predicting

the  identifiability question is of greater relevance. The two bottom plots illustrate that 

if structural identifiability cannot be guaranteed, the model predictions of 

certainly be wrong.  

Figure 2 Relevance of structural
true values of parameters 
the model response with parameters 
calibration scenario (dashed black lines) 
A), and where only 	��	can be measured ideally
the model is nonidentifiable (only 
conditions are 	��+ = 1, �(+
conditions in panel A cannot
conditions.  
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be content in finding a set of parameters such that �� ∙ �( � 2.0. However, if we are 

interested in enlarging the prediction capabilities of the model to a broader 

the question of identifiability becomes relevant

right top plot of Figure 2 (panel B) that the model response with 

estimated parameters differs from the response with the true parameters. This result 

implies that any prediction of ��	in a different experimental context from that used for 

the model calibration will be wrong.  

ing the dynamics of ��, we are interested in predicting 

the  identifiability question is of greater relevance. The two bottom plots illustrate that 

entifiability cannot be guaranteed, the model predictions of 

elevance of structural identifiability analysis. The model response 
values of parameters �� � 1.0, �( � 2.0	(continuous blue lines) is compared to 

the model response with parameters (�� � 2.0, �( � 1.0) obtained from a hypothetic 
calibration scenario (dashed black lines) with initial conditions 	��+ �

can be measured ideally (noise free). Under these conditions, 
the model is nonidentifiable (only �� ∙ �(	is identifiable). In panel B, the initial 

� 0.5. The parameters estimated from the experimental 
not provide accurate predictions under other experimental 

. However, if we are 

interested in enlarging the prediction capabilities of the model to a broader 

the question of identifiability becomes relevant and necessary. 

(panel B) that the model response with 

parameters. This result 

from that used for 

, we are interested in predicting �(, 

the  identifiability question is of greater relevance. The two bottom plots illustrate that 

entifiability cannot be guaranteed, the model predictions of �(	will 

 

response with the 
(continuous blue lines) is compared to 

obtained from a hypothetic 
� 1, 	�(+ � 0 (panel 

Under these conditions, 
In panel B, the initial 

estimated from the experimental 
ctions under other experimental 
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The lack of identifiability of this model can easily be reversed. Indeed, by simply 

setting	�(+ > 0, the parameters ��, �( are uniquely identifiable. In Supplementary 

material S1, we show the structural identifiability analysis of this model by using the 

Taylor series and the generating series methods. We also analysed the parameter 

identifiability of the model using DAISY. The identifiability analysis was performed in 

less than one second. This example stresses the importance of the design of an 

experimental protocol (including the initial conditions) for guaranteeing structural 

identifiability.  

 

Case 4: we attempt to use our model for testing hypotheses that cannot be verified 

experimentally  

In animal science, the lack of experimental data on key variables can lead to multiple 

model structures for representing the same process (Sauvant, 1994). This multiplicity 

comes from the subjective nature of modelling construction that makes modelling 

similar to a form of art (Barnes, 1995). One of the powerful applications of 

mathematical modelling is that of providing a mean to address questions that are 

difficult to tackle experimentally. These applications include the opportunity of 

modelling abstract/theoretical variables that cannot be measured. We will illustrate 

this powerful role of models with the topic of nutrient partitioning. This issue is central 

in animal nutrition since the amount of nutrient that fuels a function (such as growth 

or lactation) is the basis for predicting nutrient requirements and develop feeding 

systems and recommendations.  

Nutrient partitioning is regulated by two systems: a short-term system, namely 

homeostatic system, and a long-term system, namely homeorhetic system (Sauvant, 
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1994). Homeostasis regulations consists of an ensemble of adaptation and survival 

functions of an individual, such as glycaemia regulation after a meal. Homeorhetic 

regulations correspond to the orchestrated hormonal changes that drive metabolism 

to support the succession of physiological states that favour species survival. An 

example of a homeorhetic regulation is the increase of body reserves mobilisation in 

early-lactation to support milk production.  

Different approaches exist to represent homeorhetic control of nutrient partitioning 

(Friggens et al., 2013) but their common feature is the use of theoretical components 

to account for complex underlying mechanisms. These theoretical variables are used 

in models as proxy for translating the effects of mechanisms at underlying levels of 

organisation. For instance, the concept of “theoretical hormones” or “meta-hormones” 

has been used to represent the driving forces of body reserves changes (Hanigan et 

al., 2007). The concept of “priorities” for life functions has been used to investigate 

dynamic trajectories of lactating ruminants (Puillet et al., 2008; Martin and Sauvant, 

2010). All these conceptual elements are used to represent the result of complex 

mechanisms that control nutrient partitioning and that are not possible to measure 

experimentally. The incorporation of theoretical driving forces in animal science 

modelling has been useful to move forward in predicting animal responses to their 

nutritional environment; i.e. coordinated responses of both body reserves and milk 

production in the dairy goat (Puillet et al., 2008) and in the dairy cow (Martin and 

Sauvant, 2010).  

Let us consider in some detail the compartmental model developed by Puillet et al., 

2008 to represent a homeorhetic regulatory system that controls body reserves 

changes and milk production across parity in dairy goats. Model equations, based on 

a system of priorities, are:  



 

d

d9�

d�

  

where the state variables 

reserves mobilization, milk production, and 

mass-action kinetics (determined by the kinetic parameters 

capture the major phases of 

represented as a transfer of priorities

parturition, the priorities for using reserves and for producing milk are high. Then 

priority for body reserves mobilization decreases and

production increases until it reaches a peak. This is follow

milk production to body reserves reconstitution.

constructed on biological basis. Indeed, 

to the body lipid mobilization

non-esterified fatty acids content

to the observed dynamics of a lactation curve.  

Figure 3 Schematics of the 
al., 2008. The compartments 
mobilization, milk production, and body reserves reconstitution. System dynamics
driven by mass-action kinetics (
 

We tested the identifiabilit

parameters ('�,	'() are uniquely identifiable if at least two state variables are 

measured simultaneously. 
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�
� '� ∙ : � '( ∙ 9, 9�0� � 9+			 
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$&
� '( ∙ 9,						<�0� � <+			   

here the state variables :, 9, < represent respectively the priorities for 

, milk production, and body reserves reconstitution. 

(determined by the kinetic parameters '�,

capture the major phases of body reserves changes throughout lactation

represented as a transfer of priorities. Figure 3 displays the model 

parturition, the priorities for using reserves and for producing milk are high. Then 

priority for body reserves mobilization decreases and, simultaneously, priori

production increases until it reaches a peak. This is followed by a shift in priority from 

milk production to body reserves reconstitution. The model structure has been 

constructed on biological basis. Indeed, the priority : follows an analogo

the body lipid mobilization dynamics (which can be indirectly assessed by plasma 

content), and the priority 9 follows an analogous 

dynamics of a lactation curve.   

Schematics of the homeorhetic regulatory model of a dairy goat 
. The compartments :, 9, < are respectively the priorities for body reserves 

mobilization, milk production, and body reserves reconstitution. System dynamics
action kinetics (with the parameters '�,	'(). 

fiability of the model in Eq. (9) with DAISY

are uniquely identifiable if at least two state variables are 

. They are also uniquely identifiable if either 

               (9) 

the priorities for body 

constitution. Simple 

	'() are used to 

lactation process, 

model schematics. At 

parturition, the priorities for using reserves and for producing milk are high. Then 

simultaneously, priority for milk 

by a shift in priority from 

The model structure has been 

analogous dynamics 

be indirectly assessed by plasma 

analogous dynamics 

 
homeorhetic regulatory model of a dairy goat of Puillet et 

are respectively the priorities for body reserves 
mobilization, milk production, and body reserves reconstitution. System dynamics is 

DAISY. The model 

are uniquely identifiable if at least two state variables are 

They are also uniquely identifiable if either 9 or <  are 
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measured and the initial conditions are known. If only : is measured, the model is 

nonidentifiable. The computation time for identifiability testing was less than one 

second.  

It should be noted that the priorities described by the model are abstract variables 

that cannot be measured. In this case, the model construction is motivated by 

providing a conceptual and pertinent structure that concretizes biological hypothesis 

rather than producing a quantitative prediction tool. It was also constructed to 

overcome the existing difficulty of performing experiments to quantify homeorhetic 

mechanisms. As a consequence, the question of structural identifiability is in this 

case not relevant and does not preclude the models usefulness as a tool for 

understanding. Indeed, model simulations have provided useful information to 

analyse theoretical dynamics of phenotypic variables of interest such as milk 

production and body reserves.  

With an academic motivation, let us analyse the hypothetical case where the 

priorities :, 9, <	of the model in Eq. (9) can be measured by an adequate 

experimental technique. This hypothetical case is here assumed to demonstrate the 

relevance that identifiability analysis can have for guiding experiment design. 

Suppose we plan to perform a series of experiments for estimating the model 

parameters with a limited budget of 10 €. The cost of measuring :, 9,		and <	is 

respectively 2 €, 8 €, and 10 €. How to select what to measure? Well, given the 

critical situation of funding in research, we will be tempted to choose to measure only 

: and use the remaining 8 € in other projects. This decision is of course wrong, 

because measuring only : will not provide quality information for model calibration. 

Measuring either 9 or <  will be adequate. If we measure only 9, we will have 2 € to 
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compensate our financial deficit. However, if we want to get the most out of the 

experiment, the wisest choice is to measure both 	: and 9.  

Let us now consider the following model and assume that it can be an alternative 

model of the regulatory model in Eq. (9) 

d:���
d� = − '�

') + : ∙ : ∙ 9, :�0� = :+		 

d9���
d� = '�

') + : ∙ : ∙ 9 − '( ∙ 9, 9�0� = 9+		 

  
$;�&�
$& = '( ∙ 9,						<�0� = <+			               (10) 

This model is more complex than the model in Eq. (9). Firstly, it is nonlinear because 

the flux from : to 9 is described by a nonlinear function (Michaelis-Menten kinetics) 

instead of a first-order kinetics, and secondly it has one additional parameter (')). 

We tested the identifiability of the model using DAISY, GenSSI and 

IdentifiabilityAnalysis. The computation time was less than one second in all the three 

toolboxes. In this case, the parameters of the model are identifiable if any of the state 

variables is measured. If only : is measured the model parameters are identifiable, 

which contrasts to the identifiability properties of the original model described by Eq. 

(9) (nonidentifiable if only : is measured). The result appears at first sight as 

counterintuitive, since in modelling practice complex models are often penalized. In 

the framework of structural identifiability, nonlinear models tend to be more 

identifiable than linear models (Walter and Pronzato 1996; Roper et al., 2010). In the 

previous example, adding a nonlinearity and a supplementary parameter help to 

improve the structural identifiability of the model. However, the increase of the 

number of parameters has, in general, a negative influence on the practical 

identifiability by rendering the model calibration harder, and increasing the risk of 

overfitting.  



23 
 

 

Case 5: what if in our modelling scenario the question of structural identifiability is 

relevant but our model is nonidentifiable?  

As it was previously mentioned, the lack of experimental data on key variables 

imposes a particular challenge in the modelling task and can lead to various 

difficulties including the lack of structural identifiability. Models where the number of 

parameters is very high with respect to number of observables may lack of structural 

identifiability. Although, as demonstrated in the case study 4, we cannot affirm 

systemically that models with more parameters are less identifiable than models with 

less parameters. The identifiability depends on the model structure and on how the 

parameters appear in the observables. After this clarification, the lack of identifiability 

of mathematical models is not an uncommon scenario, and is often encountered in 

domains such as system biology. Then, what to do? One popular solution consists in 

capitalizing on existing knowledge by setting some parameters to known values 

reported in the literature. This strategy results in reducing the number of unknown 

parameters to be estimated and may favour the identifiability of the reduced 

parameter set. Caution should be paid in selecting parameters obtained from 

experimental conditions that are compatible to the case study. Parameter reduction 

can also be performed by grouping some of the model parameters (Schaber and 

Klipp, 2011). A second solution is to design a new experiment that renders the model 

identifiable by selecting an adequate  set of observables (Anguelova et al., 2012).  

If after exhausting the above-mentioned alternatives the nonidentifaibility cannot be 

eliminated, this does not necessarily mean that our model is useless. Firstly, the 

modelling construction requires the verbal hypotheses on the system under study to 

become specific and conceptually rigorous (Schaber and Klipp, 2011). This 
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conceptual step is central for gaining insight on the system behaviour, and pointing 

out the aspects that need to be deepened. Secondly, if our modelling purpose is to 

predict, we can assess numerically to what extend the lack of identifiability can 

impact model predictions. We can identify which set of variables of the model are the 

less sensitive to the actual values of the parameters (Gutenkunst et al., 2007) and 

which model predictions can be uniquely determined despite lack of identifiability 

(Cedersund, 2012). We emphasised that the nonidentifiability of a model does not 

preclude its usefulness. A relevant example is the model of the circadian clock in 

Arabidopsis thaliana (Locke et al., 2005). The model has 29 parameters, from which 

only 17 parameters are at least locally identifiable under certain stimuli (Chis et al., 

2011b). Although its lack of identifiability, the model of Arabidopsis thaliana 

represents an important modelling contribution for enhancing understanding of the 

loops of genes that drive circadian locks in living organisms. By being aware of the 

lack of identifiability and by using adequate tools, nonidentifiable models can still be 

useful by providing both qualitative and quantitative information for gaining insight on 

system behaviour (Schaber and Klipp, 2011; Cedersund, 2012).  

A brief summary about the relevance of identifiability discussed here is given in Table 

3.  

Table 3 Summary of the case studies for assessment the relevance of structural 
identifiability  
Case 
study 

Model objective Scientific question addressed Relevance of 
identifiability 

1 
 

To represent an observed 
variable for further prediction 
 

Is the parameter estimation well-
posed? 

Yes 

2 
 

To represent an observed 
variable by using a biologically 
based model for further 
prediction 
 

Can we theoretically know the 
actual value of a parameter that 
is biologically meaningful? 

Yes 

3 To represent an observed 
variable and predict an 
unobserved variable 

Can we guarantee highly quality 
predictions for variables that 
cannot be experimentally 

Yes 
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measured? 
 

4 
 
 

 
To provide a conceptual 
modelling framework of 
phenomena that are difficult to 
evaluate experimentally 

 
Is it a model consisting of 
abstract variables that cannot be 
experimentally measured 
biologically pertinent?  
 

 
No 

5 To represent mechanistically a 
complex biological process 

Is it a nonidentifiable model 
useful? 

Yes 

  

To sum up, structural identifiability analysis remains desirable whenever feasible in 

the model calibration context, since it determines if the parameter identification 

problem has a unique solution when we have unlimited available data. Identifiability 

testing can provide guidelines for designing experiments and be useful for facilitating 

model simplification by identifying some potential over-parameterizations. Together, 

this information facilitates the model calibration step. Identifiability analysis is 

therefore relevant when (i) we are interested in the actual values of the model 

parameters, and (ii) we want to predict variables, in particular those that cannot be 

measured directly. Although structural identifiability is a desired property of a model, 

we clearly state that a nonidentifiable model can still be a useful model.  

In addition to the identifiability methods previously mentioned, identifiability analysis 

can also be performed numerically, for example by using interval analysis (Braems et 

al., 2001). Numerical approaches allow the computational complexity associated with 

identifiability methods based on algebraic manipulations of observable derivatives to 

be overcome. Indeed, when dealing with complex models, identifiability analysis may 

be impossible to perform even with the advanced software tools applied here, and 

recent developments (Villaverde et al., 2016), and thus the assessment of structural 

identifiability by numerical means is of great value. A very intuitive solution consists in 

using prior values of the model parameters for generating simulated data for a 

hypothetical experimental setup and perform the model calibration. By inspection, we 
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can assess if the resulting parameter estimates are close to the priors values used 

for data generation. If this is this case, the model might be at least locally identifiable 

(Walter and Pronzato, 1997). A more sophisticated solution is that of the profile 

likelihood approach (Raue et al., 2009) which provides a powerful numerical method 

for assessing structural and practical identifiability of high-dimension models.  

  

On practical identifiability and optimal experiment design for parameter 

estimation 

In the previous section, we mentioned that structural identifiability is a necessary 

condition for the well-posedness of the model calibration problem. However, 

structural identifiability does not guarantee the accuracy of the estimation and the 

quality of the model predictions (Carson et al., 1983). In practice, we aim to find 

accurate parameter estimates from experimental data. The actual accuracy of the 

parameter identification depends on the characteristics of the actual experimental 

data. The question to be addressed is: for a fixed model structure and given a set of 

experimental data, how accurate will be the estimated parameters? Data are always 

corrupted by noise, and are usually in short supply (although this situation is rapidly 

changing due to the progress of precision farming technologies). Hence, even if the 

model is structurally identifiable, the quality of the estimation can be poor, leading to 

parameter estimates that can even take values that are physically meaningless. 

Furthermore, there might exist many sets of parameter values that fit the data equally 

well, which can be troublesome for drawing biological based conclusions as 

discussed by Boer et al., 2017 when addressing the parameter estimation of a bovine 

estrous cycle model. 
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Tackling the accuracy of the parameter identification with respect to experimental 

data is the core of practical identifiability. To illustrate the notion of practical 

identifiability, let us consider the model � = � ∙ �� + � ∙ �( and assume that the 

variables ��, �(, � can be measured. The parameters �, � are structurally identifiable. 

Now, consider that experimental data are available and that ��, �(,	are proportional 

(�. =.		�( =  ∙ ��,). With these data, the parameters �, � are not practically identifiable. 

The only quantity that is practically identifiable is 	� + � ∙   . The parameter estimates 

under these experimental conditions will not be accurate. Accuracy of the parameter 

estimation is related to parameter uncertainty (high accuracy implies low uncertainty) 

and is assessed by the computation of the confidence intervals of the parameter 

estimates. Large confidence intervals imply low reliability on the parameter estimates 

(practical unidentifiability).  

One classical approach for determining the confidence intervals of the parameter 

estimates is via the computation of the Fisher Information Matrix (FIM). In 

Supplementary material S3, we recall the principles of this classical approach and 

introduce some aspects of optimal experiment design (OED) for parameter 

estimation. The goal of OED is to find, under a set of constraints, an experiment 

setup that allows an accurate estimation of the model parameters (which translates in 

small confidence intervals). To illustrate the power of OED, consider the curve 

lactation model MD in Eq. (4). The OED problem is defined with a prior nominal 

parameter set (extracted from literature or experimental data). Let us assume that 

these nominal values are '� = 0.1, '( = 0.15, ') = 0.005, and that the initial condition 

of yield milk is �+ =10 with t0 = 0.1 d. We aim to find three sampling times (along 100 

days) that provide high informative content for estimating the model parameters 

accurately. For that, we defined an OED problem in which the optimal sampling times 



 

were found by maximizing the determinant of the FIM. Maximizing the determinant of 

the FIM implies minimizing the volume of the 

Supplementary material S3

the Matlab® Toolbox IDEAS

http://genome.jouy.inra.fr/logiciels/IDEAS

Nelder–Mead Simplex method

The optimal sampling times were: 

comparison, we calculated the confidence intervals obtained from 

sampling time setup (t0 = 0.1 d, 

the obtained optimal sampling times, together with the sampling times from 

equidistant strategy.  

Figure 4 Lactation model of
sampling times obtained from optimal experiment design (
 

Table 4 shows the comparative results. 

provide substantially a better accuracy of the estimation than equidistant sampling 
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were found by maximizing the determinant of the FIM. Maximizing the determinant of 

minimizing the volume of the confidence interval

Supplementary material S3). The FIM was obtained by symbolic manipulation 

Toolbox IDEAS (Muñoz-Tamayo et al., 2009), which is freely available at 

http://genome.jouy.inra.fr/logiciels/IDEAS. The OED problem was solved using the 

Mead Simplex method implemented in Matlab®.  

The optimal sampling times were: t0 = 0.1 d, t1 = 7.5 d, t2 = 29 d, 

comparison, we calculated the confidence intervals obtained from 

0.1 d, t1 = 33.4 d, t2 = 66.7 d, t3 = 100 d). 

the obtained optimal sampling times, together with the sampling times from 

Lactation model of Dijkstra et al., 1997. Equidistant sampling times (
sampling times obtained from optimal experiment design (•).  

shows the comparative results. Optimal sampling times obtained from OED 

a better accuracy of the estimation than equidistant sampling 

were found by maximizing the determinant of the FIM. Maximizing the determinant of 

confidence intervals (see 

manipulation using 

which is freely available at 

The OED problem was solved using the 

d, t3 = 100 d. For 

comparison, we calculated the confidence intervals obtained from an equidistant 

. Figure 4 displays 

the obtained optimal sampling times, together with the sampling times from the 

 
. Equidistant sampling times (■), vs 

Optimal sampling times obtained from OED 

a better accuracy of the estimation than equidistant sampling 
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times. For '�, '(, the standard deviations from the OED are only 5% of the standard 

deviations provided by the equidistant sampling setup. For '), the standard deviation 

from the OED is 50% of that obtained with the equidistant sampling setup.  

Table 4 Accuracy of the parameter estimates of the lactation model of Dijkstra et al., 
1997 for an optimal sampling strategy and a equidistant sampling strategy 

 Accuracy of the estimation   �±2 ∙ ?. @. � 
Parameter Equidistant strategy OED strategy 

'� 0.035 0.0014 
'( 0.055 0.0028 
') 0.0002 0.0001 

  
This example illustrates the capabilities of OED and the interest of incorporating this 

tool into our modelling practice when data have not been collected yet. OED allows 

maximum exploitation of experimental data for model calibration, and avoid pitfalls 

from applying traditional experiment designs without cautious analysis. In fact, it is 

common practice to use factorial designs for defining an experimental setup. If the 

levels are not chosen adequately, the factorial design can lead to practical 

identifiability problems such a singular FIM (see Muñoz-Tamayo et al., 2014 for an 

illustrative example). If this occurs, the reliability of the parameter estimates cannot 

be assessed given that confidence intervals computation requires the FIM to be 

invertible (see Supplementary material 3).  

It goes without saying that the identification of model parameters is a very 

challenging problem, where difficulties are encountered even for models of moderate 

complexity.  In the case of a complex model, one may wonder however about the 

practical relevance of providing a result about the identifiability of the model, given 

that identifying the parameters of the model from actual noisy data is already 

extremely difficult.  In this respect, by studying the parameter sensitivities of a 

collection of 17 models of biological systems, Gutenkunst et al., 2007 have 

elaborated the concept of sloppiness, that establishes that some parameters (sloppy) 
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can change by orders of magnitude without affecting significantly the model output. 

Sloppiness is related to the condition number of the FIM (Supplementary material S3) 

and results from high differences between the eigenvalues of the FIM. The parameter 

identification of a sloppy model data suffers from high uncertainty as a result of a 

singular (ill-conditioned) FIM. The authors claimed that sloppiness is a universal 

property of systems biology models and suggest that modellers should focus on 

predictions rather than on identifying the actual values of the model parameters. 

Given this work, it may seem tempting to desist from any efforts to look for an 

accurate parameter identification. Nevertheless, the notion of sloppiness has been 

subject of debate and its value as conceptual tool has been questioned. In the 

comprehensive work of Chis et al., 2016, it has been demonstrated that sloppy 

models can be identifiable and that OED can substantially improve the practical 

identifiability of models, even if they are complex. Chis et al., 2016 suggested that 

OED should be performed on the basis of classical criteria such as maximizing the 

determinant of the FIM instead of looking at minimizing model sloppiness. 

Accordingly, addressing parameter identifiability in complex models is not a hopeless 

quest when the adequate tools are deployed.     

 

Conclusions 

This article was centred on introducing and discussing the mathematical tool of 

structural identifiability analysis, which has been seldom applied in animal science 

modelling. This lack of pervasiveness in our domain is probably due to the 

mathematical technicalities which identifiability analysis relies on. These 

technicalities are beyond the academic background in animal science. But this hurdle 

can be overcome by adopting a practitioner perspective and capitalizing on existing 
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dedicated identifiability software that should facilitate the application of identifiability 

analysis in our domain. By using illustrative examples, we attempted to open a 

window towards the discovery of a powerful tool for modelling construction and 

experiment design when the identifiability question is relevant. Overall, identifiability 

analysis is relevant when the purpose of the modelling construction is the prediction 

of variables that cannot be measured, and when we are interested in knowing the 

actual value of the model parameters.  Finally, the success to getting the most out of 

structural identifiability analysis in animal science modelling relies on a constructive 

dialog between experimenters and modellers.  
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Supplementary material S1 
 
Three methods for performing structural identifiability analysis of dynamic 
models 

This section describes briefly three methods for testing structural identifiability in 
dynamic models. Consider the model described by the following ordinary differential 
equations 
 

dA���
d� = B�A, C, �, ��, A�D� = AD	 

EF��� = G�A, C, �, ��           (1) 
 
where � is the time, A is the vector of state variables, EF is the vector of model 
observables, and C is the vector of external stimuli (input vector). The equations 
contain a set of parameters defined by the vector	�, and f,f,f,f, gggg are vector functions.  
 
Laplace Transform 

If the model in Eq. (1) is linear, a classical approach for testing its structural 
identifiability is via the analysis of the transfer function of the model resulting from the 
Laplace transformation (Bellman and Astrom, 1970). The transfer function matrix 
J�?, �� is defined by 

       J�?, �� = K�L,��
M�L,��          (2) 

where ? is the argument of the Laplace domain,  K�?, �� and M�?, ��	are the Laplace 
transforms of the observables (EF) and inputs (C).  

Once J�?, �� is written in canonical form, we can proceed to write the transfer 
function matrix for two parameters sets �, �∗. Further, by establishing the relation 
J�?, �� ≡ 	J�?, �∗� we can derive a set of equations translating the identities of the 
coefficients of J�?, �� and J�?, �∗�. 
If the solution for the set of equations is unique for �, that is � = �∗, the model is 
structurally identifiable.  

For illustration, let us consider the following single-input and single-output (SISO) 
model 

 
d����
d� = �� + �� ∙ � +  ∙ 5, 					�+ = 0	 

    ���� = ����                                       (3) 

with parameters �, �,    and the input 5. The observable ���� is the state variable 
����. By applying the Laplace transform, we obtain 
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   ?O�?� = �� + �� 	 ∙ O�?� +  	 ∙ P�?�	        (4) 

where O�?�, P�?� correspond respectively to the state variable and the input variable 
in the Laplace domain. The model observable in the Laplace domain is Q�?� = O�?�. 
The transfer function is given by  

R�?� = Q�?�
P�?� =  

? − �� + ��	 

    (5) 

The identity equations are  
           =  ∗                   (6) 

          � + � = �∗ + �∗                  (7) 

From Eq. (6) and Eq. (7), we can conclude that the parameter   is uniquely 
identifiable while the parameters �, � are nonidentifiable since Eq. (7) have infinite 
solutions.  
 
Many examples of identifiability analysis for linear compartmental models are 
presented in Carson et al., 1983.  
 

Taylor series expansion 

This approach was developed by Pohjanpalo, 1978. It assumes that the vector 
functions f,f,f,f, gggg in Eq. (1) are continuously differentiable in their arguments, implying 
that the state and the observable vectors can have infinitely many time derivatives. 
The development of the Taylor series of the observable EF��� in the model described 
by Eq. (1) results  

EF��� = EF�0� + � $EF
$& �0� + &/

(!
$/EF
$&/ �0� +⋯+ &T

-!
$TEF
$&T �0�, ' = 0,1, 2,⋯ ,∞         (8) 

 
Let us denote 

    �- = $TEF
$&T �0�          (9) 

 
Since the observable vector is a unique function of time, all its derivatives (�-) are 
unique and known. The structural identifiability of the model is determined from the 
analysis of the equations of the successive derivatives �- evaluated at two 
parameters sets ��∗. The model is structurally identifiable if  
 

    V-��� = V-��∗�, ' = 0,1,2,⋯ , 'WXY ⇒ 	� = �∗                         (10)  

where 'WXY is at least the number of unknown parameters. 
 
As example, consider the following model  
 

d�����
d� = �� ∙ �� ∙ �(,					��+ = 1.0			 
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d�(���
d� = �( ∙ 5, 					�(+ = 2.0	 

 
    ����� = 	 �����                                     (11) 

 
With parameters ��, �( and the input 5. The model has two state variables	�����, �(���  
and one observable ����� that corresponds to the state variable �����. By developing 
the successive derivatives of �����, we obtain  

 �+ = ��+ = 1.0                       (12) 

 �� = �� ∙ ��+ ∙ �(+ = 2.0 ∙ ��             (13) 

�( = ��( ∙ ��+ ∙ �(+( +	�� ∙ �( ∙ ��+ ∙ 5 = 4.0 ∙ ��( + �� ∙ �( ∙ 5                  (14) 

 
The model is globally identifiable. The parameter ��	can be uniquely obtained from 
the coefficient ��, and subsequently �( can be uniquely recovered from �(.  
 
 
Generating series 

This method was developed by Walter and Lecourtier, 1982 and it is conceptually 
similar to the Taylor series approach.  Consider the model described by the following 
ordinary differential equations 
 

dA���
d� = B+�A, C, �, �� +[B��A, �, ��C�		

\

�]�
, A�D� = AD	 

EF��� = G�A, �, ��                   (15) 
 
 
where B� (� = 0,1,⋯ ,^) and gggg are analytic, implying that the model observables  can 
be expanded in series with respect to time and the model inputs. The coefficients of 
the series are G�A���, �, ��  and the successive Lie derivatives evaluated at � = 0 

                                                    _B`D ⋯ a_B`b 	G�A, �, ��c+         (16) 

where _BG�A, �, �� is the Lie derivative of gggg along ffff, defined by 
 

_BG�A, �, �� = ∑ B��A, �, �� eG�A,�,&�
eAf 		
g�]�       (17) 

with nY the number of state variables. 
 
Analogous to the Taylor series, let h��� the vector of the series coefficients. The 
model is structurally identifiable if (Walter and Pronzato, 1996). 
 

       h��i� = h��∗� 	⇒ �i = �∗                   (18)  

As example, consider again the model in Eq. (11), which can be written as  
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dA���
d� = j�� ∙ �� ∙ �(

0 k 	+ l 0�(
m 5		, A�D� = 	 01.0 2.01n 

EF��� = ��	                              (19) 

where B+�A, C, �, �� = j�� ∙ �� ∙ �(
0 k , B��A, C, �, �� = l 0�(

m  , G�A, �, �� = ��    

The first Lie derivative operators are 

_Bo = 0�� ∙ �� ∙ �(1 e
e3.

                      (20) 

_B. = �(
e

e3/
                                                     (21) 

The coefficients of the series are the following Lie derivatives  

_Bo aG|+ =	 a0�� ∙ �� ∙ �(1 e3.
e3.

c
+
 

=	  a�� ∙ �� ∙ �(|+ = 2 ∙ ��            (22) 

_B._Bo aG|+ =	 �(
e

e3/
aq_BoGrs+ 

    =	  �(
e

e3/
at�� ∙ �� ∙ �(u|+ 

    =	 a�� ∙ �( ∙ ��|+ = �� ∙ �(          (23) 

From the coefficient in Eq. (22), it is deduced that �� is identifiable. From Eq. (23), we 
obtain that �( is identifiable.  
 
Finally, the interested reader is referred to recent literature on structural identifiability 
methods and their comparison (Chis et al., 2011; Miao et al., 2011; Raue et al., 
2014).  
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Supplementary material S2 
 
Structural identifiability of a ruminal lipolysis and biohydrogenation model  
 
To enlarge our discussion on structural identifiability, we analyse here two 
mathematical models developed by Moate et al., 2008 to represent in vitro kinetics of 
two biological processes namely ruminal lipolysis and biohydrogentation. These two 
multistep biological processes were described mathematically by using a multi-
compartmental modelling approach. Each model was calibrated by published 
experimental data (Noble et al., 1974) where only the biological process of interest 
took place. Reactions rates were defined by either Michaelis-Menten kinetics or first-
order kinetics.  
For the lipolysis model, the set of ordinary differential equations of the model are  
 

d�����
d� = − '� ∙ ��

'( + �� ∙ =v-w∙&, ���0� = ��+				 

d�(���
d� = 2

3 ∙ '� ∙ ��
'( + �� ∙ =v-w∙& − 'y ∙ �(,			�(�0� = 0			 

d�)���
d� = 1

2 ∙ 'y ∙ �( − 'y ∙ �), �)�0� = 0		 

$3z�&�
$& = �

) ∙
-.∙3.
-/{3.

∙ =v-w∙& + �
( ∙ 'y ∙ �( + 'y ∙ �), �y�0� = 	0                (1) 

where �� is the concentration of triglyceride fatty acids, �( is the concentration of 
diglyceride fatty acids , �) is the concentration of monoglyceride fatty acids and �y is 
the concentration of non-esterified fatty acids. From the experimental setup, the 
model observables are  
 

����� = 	 ����� 
 

�(��� = 	 �(��� + �)��� 
 

         �)��� = 	 �y���                                                (2) 

The observable �(��� is an aggregated pool of mono and diglyceride fatty acids  
named by Noble et al., 1974 as partial glycerides.  
 
Identifiability analysis was performed using DAISY (Bellu et al., 2007), GenSSI (Chis 
et al., 2011) and IdentifiabilityAnalysis (Karlsson et al., 2012). The model parameters 
are identifiable. For all of these software tools, the computation time was less than 
one second on an Intel processor of 3.20 GHz with 8.0 GB RAM.  
Interestingly, we determined that the observable �(��� = 	 �(��� + �)��� was not 
necessary to guarantee the identifiability of the model parameters. This result 
indicates that sometimes having many observations does not imply necessarily an 
improvement on the structural identifiability of a model. Indeed, in a context of 
resource-consuming measurements, we might be interested in identifying a minimal 
set of measurements that guarantee structural identifiability (Anguelova et al., 2012). 
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However, it is clear that in practice having more measurements can be instrumental 
for performing model calibration.  
 
For the biohydrogenation model, the set of ordinary differential equations of the 
model are  
 

d�y���
d� = − '| ∙ �y

'} + �y , �y�0� = �y+				 

d�|���
d� = '| ∙ �y

'} + �y − '~ ∙ �|
'� + �| + �} ,			�|�0� = 0			 

d�}���
d� = '~ ∙ �|

'� + �| + �} − '� ∙ �} '�+ − �}
'�+

, �}�0� = 		0		 

$3��&�
$& = '� ∙ �} -.ov3�

-.o
, �~�0� = 	0			                                    (3) 

where �y is the concentration of non-esterified fatty acids (linoleic), �| is the 
concentration of rumenic acid, �} is the concentration of vaccenic and �~ is the 
concentration of stearic acid. From the experimental setup, the model observables 
are  
 

����� = 	 �y��� 
 

�(��� = 	 �|��� 
 

�)��� = 	 �}��� 
 

          �y��� = 	 �~���          (4) 
 
Structural identifiability analysis was performed with DAISY. The model parameters 
are identifiable. The computation time was less than one second.  
 
It should be noted however, that the accuracy of the parameter estimates strongly 
depends on the quality of the available data for calibration. Indeed, Moate et al., 2008 
encountered practical identifiability problems for estimating some model parameters. 
To circumvent this obstacle, some parameters were fixed and set as known values.  
 
Note that a mathematical model representing both lipolysis and biohydrogenation 
should integrate the model equations in Eq. (1) and Eq. (3). For the non-esterified 
fatty acids (�y), the resulting differential equation is  
 

$3z�&�
$& = �

) ∙
-.∙3.
-/{3.

∙ =v-w∙& + �
( ∙ 'y ∙ �( + 'y ∙ �) − -�∙3z

-�{3z
, �y�0� = 	�y+			      (5) 

The full model integrating both lipolysis and biohydrogenation has seven state 
variables and ten parameters. As an academic exercise, we analysed the structural 
identifiability of the full model using the model observables in Eq. (2) and Eq. (4). The 
model parameters were identifiable. The computation time in DAISY was about 30 
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seconds, indicating the computational effort required when model complexity 
increases (30 seconds vs 1 second).  
 
The results from structural identifiability analysis are encouraging for modelling 
attempts towards an enhanced mechanistic representation of the rumen ecosystem. 
Although improvements are needed (in particular for describing biohydrogenation), 
the model developed by (Moate et al., 2008) provided a parsimonious and biological 
based approach that can be used as scaffold for incorporating lipid metabolism in 
existing models of rumen fermentation (Baldwin et al., 1987; Mills et al., 2001; 
Muñoz-Tamayo et al., 2016). In a scenario of constructing a predictive model of 
rumen fermentation, the question of identifiability of the model of lipolysis and 
biohydrogenation is relevant since parameter estimates obtained from in vitro data 
can be used as priors in an extended model describing the in vivo system.  
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Supplementary material S3 
 
Calculation of confidence interval from the Fisher Information Matrix and a 
brief comment on optimal experiment design 
 
Assessment of the uncertainty of the parameter estimates   
 
In this section, we recall the theoretical framework for assessing the uncertainty of 
the parameter identification by using the Fisher Information Matrix following the 
classic book of Walter and Pronzato, 1997.  
 
Let us consider the following model described by ordinary differential equations 
 

dA���
d� = B�A, C, �, ��, A�D� = AD	 

EF��� = G�A, C, �, ��           (1) 
 

where � is the time, A is the vector of state variables, EF is the vector of model 
observables, and C is the vector of external stimuli (input vector). The equations 
contain a set of parameters defined by the vector	�, and f,f,f,f, gggg are vector functions.  
 
When real experimental data are available, represented here by the vector E���, we 
can proceed to the model calibration step by finding the vector � that minimizes a 
cost function of the distance between the real measurements E��� and the model 
observables EF���.  
 
It is typical to assume that the vector of experimental data collected at time �� follows 
 

     E���� = EF���, �∗� + ��, � = 1,2, … , ��                                      (2) 
 
where ��	is the number of observation times, EF���, �∗�	is the predicted observable of 
the model with �∗ the true value of the parameter vector and �� is the vector of 
measurement errors which will be assumed here to follow a normal distribution:  
��~��D, ��. 
 
The model calibration can be performed by the maximum likelihood (ML) approach. If 
the covariance matrix � is known, the maximum likelihood estimator minimizes the 
weighted least squares function. Once the parameters estimates (�i) are found by an 
adequate optimization procedure, we can assess the parameter uncertainty via the 
computation of the FIM at the estimated value �i as detailed below.  
 
The FIM can be calculated as  
 

        FIM��i� = ∑ jeEFe� k
�&�,�i�
n �
��]� jeEFe� k

�&�,�i�
                     (3) 

 

The term 
eEF
e�  contains the sensitivities of the observables with respect to the 

parameters. The calculation of the sensitivities can be performed by symbolic 
manipulation of the model equations using dedicated software such as the Matlab® 
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Toolbox IDEAS (Muñoz-Tamayo et al., 2009), which is freely available at 
http://genome.jouy.inra.fr/logiciels/IDEAS. 
 
Under a number of technical assumptions that include theoretical identifiability, the 
covariance matrix � of the ML estimator satisfies 
                                                        	�	 ≥ FIMv���∗�                                                  (4) 
 
This equation is known as the Cramér-Rao inequality. An approximate �� of the 
covariance matrix of the parameters can be computed at the Cramér-Rao lower bond 
evaluated at �i  	 
                                                         �� = FIMv���i�                                                    (5) 
 
It must be kept in mind that this approximation is only valid asymptotically, when the 
number of data points tends to infinity, the statistical hypotheses on the noise are 
satisfied, and that �i is close to �∗. Furthermore, this approach is based on a linear 
approximation of the observables with respect to the parameters, which may be 
inadequate because of model nonlinearities (Carson et al., 1983, Marsili-Libelli et al., 
2003, Raue et al., 2009). When these idealized conditions are far from being 
satisfied, this evaluation of the uncertainty on the estimates via the FIM has thus to 
be considered with caution. 
 
The diagonals of �� are the variances of the parameter estimates. Thus, the square 
root �� of the jth diagonal element of ��	is an estimate of the standard deviation of the 
parameter �̂�. On this basis, an approximate 95% confidence interval of the 
parameter �̂� can be calculated as �̂� ± 2 ∙ ��. It should be noted that the 
determination of the covariance matrix �� requires the FIM to be invertible 
(nonsingular). The condition number of the FIM (i.e., the ratio of the largest 
eigenvalue of the FIM to the smallest) is a useful indicator of the practical 
identifiability of the model given the available data. The higher the condition number, 
the more difficult the optimization is and the lower practical identifiability.  
 
 
A brief introduction to optimal experiment design for parameter estimation.  
 
When designing an experimental configuration with the aim of providing data to be 
used for model calibration, we expect the resulting data to be highly informative for 
allowing accurate estimation of the model parameters. The problem of defining such 
an experimental configuration is the realm of optimal experiment design (OED) for 
parameter estimation.  
 
Since, the FIM is the core for determining the confidence intervals of the parameter 
estimates, classical approaches of OED for parameter estimation rely on the 
optimization of a scalar function of the FIM. The most popular criteria for OED is the 
D-optimality criterion, which maximizes the determinant of the FIM, and the E-
optimality criterion, which maximizes the smallest eigenvalue of the FIM. Maximizing 
the determinant of the FIM implies minimizing the volume of the confidence ellipsoids 
for the parameters (Walter and Pronzato, 1997), while maximizing the smallest 
eigenvalue of the FIM implies minimizing the maximum diameter of the confidence 
ellipsoids for the parameters.  
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The OED problem can be formulated mathematically as follows  
 

    min� ��FIM��,���                  
(6) 

 
where ��FIM��,��� is a scalar cost function of the FIM (e.g., det�FIM��,���) and � is 
the design vector that defines the experimental configuration (e.g. sampling times, 
initial conditions, stimuli). Since the true values of the model parameters are 
unknown, the OED problem is defined with a nominal parameter set �+, whose 
values are obtained from literature or experimental data. This value can be further 
refined in an iterative process. It should be noted that the OED problem is 
constrained by experimental limitations and is only possible when there are some 
degrees of freedom in the procedure for data collection. Finally, the solution of the 
OED problem requires efficient optimization algorithms as discussed in the dedicated 
literature (Walter and Pronzato, 1997; Balsa-Canto et al., 2008).  
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