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Stochastic spectral-spatial permutation ordering
combination for nonlocal morphological processing

Olivier Lézoray
Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract—The extension of mathematical morphology to mul-
tivariate data has been an active research topic in recent years. In
this paper we propose an approach that relies on the consensus
combination of several stochastic permutation orderings. The
latter are obtained by searching for a smooth shortest path on a
graph representing an image. The construction of the graph can
be based on both spatial and spectral information and naturally
enables patch-based nonlocal processing.

I. INTRODUCTION

Mathematical morphology (MM) is a non linear image
processing framework with many applications in filtering,
segmentation and classification [1]. The construction of mor-
phological operators relies on complete lattices [2] that impose
the need of an ordering relationship between the elements to
be processed. A complete lattice (T ,≤) is a non-empty set
equipped with a total ordering relation, such that every non-
empty subset P of T has a lower bound ∧P and an upper
bound ∨P . In this context, images are modeled by functions
mapping their domain space Ω, into a complete lattice T ,
and are expressed as f : Ω ⊂ Zl → T ⊂ Rn where l is
the image dimension, n the number of channels, and T is
a non-empty set of vectors. If MM is well defined for gray
scale functions, there exists no general admitted extension that
permits to perform morphological operations on vectors since
there is no natural ordering of vectors [3].

To cope with this well-known issue, several approaches
have been proposed (see [4], [5], [6] and references therein).
The most recently proposed ones define an ordering relation
between the vectors of a set T with the use of h-orderings
[7]. This corresponds to defining a surjective transform h
from T to L where L is a complete lattice equipped with
the conditional total ordering [7]. We refer to ≤h as the h-
ordering given by:

h : T → L and v→ h(v),∀(vi, vj) ∈ T × T

vi ≤h vj ⇔ h(vi) ≤ h(vj) . (1)

Then, T is no longer required to be a complete lattice, since
the ordering of T can be induced upon L by means of h [4].
When h is bijective, this corresponds to defining a space filling
curve [8] or equivalently a rank transform [9].

Most approaches for ordering vectors (including h-
orderings) have focused on building an ordering on the defini-
tion domain of the spectral vectors of the set T , without taking
into account how the corresponding vectors are located in the
image support. This provides a general framework, but it can

be more interesting to find the best order for a given image
rather than looking for the best order in general, as argued in
[10]. Recent h-ordering approaches have searched to define
total orders that are adapted to only the set T of spectral
vectors of an image [5]. In addition, this adaptation can
consider also the spatial organization of the spectral vectors
in the image. Indeed, some vectors of the set T will never
have to be compared since they will not appear within a given
structuring element. Consequently, having an ordering that
considers spatial proximity in addition to spectral proximity
can be of strong interest. Some works have considered that
trend of spectral-spatial ordering with the use of hierarchical
clustering [11], binary partition tree [12] or local hamiltonian
path [13].

In this paper we propose a new spatial-spectral ordering
based on the combination of several stochastic orderings (also
called permutations) that each construct a global hamiltonian
path on an image. The paper is organized as follows. In section
II we present the construction of a global hamiltonian path on
an image with 1D permutation ordering on grid-graphs. We
then expose in section III how this ordering can take into
account both spatial and spectral proximity with the use of
nonlocal graphs. Since the proposed ordering depends on a
starting pixel, several orders are obtained that are combined
using a consensus approach in section IV. Last sections present
results and conclude.

II. ONE DIMENSIONAL PERMUTATION ORDERING

We consider that the domain Ω of the image is a grid graph
G = (V,E) where vertices V = {v1, . . . , vm} correspond
to pixels and edges eij = (vi, vj) connect vertices with 8-
adjacency. The notation vi ∼ vj is used to denote two adjacent
vertices. With this definition, images are represented as graphs
signals [14] that associate vectors to vertices and are defined
by the mapping f : G → T ⊂ Rn where T is a non-empty
set of vectors (we will consider only RGB color vectors,
i.e., n = 3). To each vertex vi ∈ G is associated a vector
vi = f(vi). The set T = {v1, · · · , vm} denotes the vectors
associated to all the vertices of the graph (with a row-major
numbering of the image graph vertices). We will use the
notation T [i] = vi to denote the i-th element of a set.

To construct an image-adaptive h-ordering, we propose to
construct a space-filling curve [8] on the grid graph G. This
corresponds to the constuction of a global hamiltonian path
on all the image: a path that goes through all the vertices of
the grid graph and traverses each vertex only one. This was



previously explored in [13] but with local hamiltonian paths.
However, with such a local ordering, the associated dilation
and erosion are not strictly speaking morphological operators
since they do not commute with the sup. We consider a more
general approach and build an order for all the set T in the
form of a global hamiltonian path.

Given the set T , the construction of an hamiltonian path
amounts to define a sorted permutation P = PT of the vectors
of T with P a permutation matrix of size m ×m. Let σ be
a permutation of the index set I = {1, · · · ,m}. If σ(i) = j,
then Pij = 1 and 0 otherwise. The induced permutation is
P = PT = {vσ−1(1), · · · , vσ−1(m)} where (σ−1 ◦ σ) is the
identity. Any permutation is not of interest, and spatial and
spectral constraints have to be taken into account [10]. To this
end we consider the construction of a smooth permutation.
The smoothness of an ordered set is expressed by the Total
Variation of its elements:

‖T ‖TV =

m−1∑
i=1

‖vi − vi+1‖ (2)

The optimal permutation operator P can be obtained by
minimizing the total variation of PT :

P∗ = arg min
P

‖PT ‖TV (3)

This optimization problem provides a permutation such that
the corresponding hamiltonian path is the shortest one and
is equivalent to solve the traveling salesman problem. This
problem being too computationally demanding for large sets, it
can be solved using a randomized version of nearest neighbors
heuristics presented in [15], [16]. We recall the principle of
this algorithm in Algorithm 1. This algorithm starts from
an arbitrary vertex and continues by finding the two nearest
unexplored neighbor vertices and choosing one of them at
random.

Fig. 1. Example of permutation ordering. First line presents the original
image, second line an obtained index I and its associated permutation P .

After the construction of the permutation, we define the h-
ordering from the constructed permutation as h(vi) = σ(i)
and this defines the complete lattice (T ,≤h). Given a graph
signal f : G→ T , a new representation is obtained in the form
of the pair (I,P) with I(vi) = σ(i). When a graph signal is

Algorithm 1 Permutation construction
Input: set of vectors T = {v1, · · · , vm} and graph G

Generate a random probability vector p = [p1, · · · , pm]
Randomly choose an index j ∈ I = {1, · · · ,m}
Set σ−1(1) = j (or equivalently σ(j) = 1).
Set P = {vσ−1(1)} and J = {σ−1(1)}
for i = 1 to m− 1 do

Let N(vσ−1(i)) = {k|(vσ−1(i), vk) ∈ E} \ J
if |N(vσ−1(i))| = 1 then
σ−1(i+ 1) = N(vσ−1(i))

else
if |N(vσ−1(i))| ≥ 2 then

Find the first vj1 and second vj2 nearest neighbors
of vσ−1(i) in N(vσ−1(i))

else
if |N(vσ−1(i))| = 0 then

Find the first vj1 and second vj2 nearest neighbors
of vσ−1(i) in I \ J

end if
end if
qi = 1

1+exp

( ‖v
σ−1(i)

−vj1
‖−‖v

σ−1(i)
−vj2

‖

α

)
If (qi < pσ−1(i)) then σ−1(i+1) = j2 and σ−1(i+1) =
j1 otherwise.

end if
P = P ∪ {vσ−1(i+1)}
J = J ∪ {σ−1(i+ 1)}

end for
Output: ordered set P and associated index set J

encoded in this way, the spectral information is not directly
carried by the index I , but is stored in a separate piece of
data called a palette: the set P of sorted vectors. Figure 1
presents the obtained permutation and index from an original
image. A drawback of the described ordering is its greediness
nature. Indeed, as can be seen in Figure 1, the last part of the
permutation is not smooth.

The original graph signal f can be directly recovered since
f(vi) = P[I(vi)] = T [i] = vi. As exposed in [5], [14], from
such a representation, morphological operations can be defined
and applied to the graph signal. The erosion and dilation of
a graph signal f at vertex vi ∈ G by a structuring element
Bk ⊂ G are defined as:

εBk(f)(vi) = {P[∧I(vj)], vj ∈ Bk(vi)} (4)

δBk(f)(vi) = {P[∨I(vj)], vj ∈ Bk(vi)} . (5)

A structuring element Bk(vi) of size k defined at a vertex vi
corresponds to the set of vertices that can be reached from vi
in k walks.

III. SPECTRAL-SPATIAL PERMUTATION ORDERING

In Algorithm 1, there is no restriction on the considered
graph. However, in section II, we have restricted ourselves
to 8-adjacency grid graphs, but there is no reason to do so.



In this section we consider several possible graphs for the
construction of the permutation. The graph can use only spatial
or spectral information, or both.

• 8-adjacency grid graph (denoted G0): this graph construc-
tion connects each vertex to its 8 spatially closest nearest
neighbors.

• B-adjacency graph (denoted GB): this graph construction
connects each vertex vi to all the vertices contained in a
square box of size (2B + 1)× (2B + 1) around vi.

• K-Nearest Neighbor graph (denoted GsK): this graph
construction connects each vertex vi to its K nearest
neighbors (in terms of spectral distance) within the set
of all vertices.

The first two kinds of graphs G0 and GB consider only the
spatial proximity information to connect vertices whereas the
graph GsK considers only the spectral proximity information
and is a nonlocal graph. It can be interesting to construct
graphs that combine the use of both spatial and spectral
proximity to infer the set of edges. For the graph GsK it is
even recommended since its construction cannot ensure that
the graph is connected and Algorithm 1 will not be able to
reach all vertices. This can be easily obtained by considering
the union of the set of edges from the previously considered
graphs. Given such a graph construction, with Algorithm
1, a spectral-spatial permutation ordering is then obtained.
This can be very interesting since both spatial and spectral
proximities are taken into account to build the permutation
and this can reduce computation complexity and ensure that
relevant nearest neighbors are found. In addition, the spectral
proximity used to determine the nearest neighbors within the
set of adjacent vertices can consider any distance measure. In
particular, instead of using a classical L2 distance between
the vectors vi associated to vertices, one can consider patches
pwi =

(
f(xi + t),∀t ∈ [−w/2, w/2]2

)T
of size w × w to

obtain a smoother ordering.

G0 G10

G0 ∪ Gs20 with vi G0 ∪ Gs20 with p3i
Fig. 2. Illustration of the influence of graph construction on the obtained
permutation ordering.

Figure 2 presents several permutation orderings obtained
with different graphs. It can be seen that with G0 the per-
mutation is not very smooth and the result obtained with

a box-constrained graph is much better (graph G10). Finally
the permutation ordering can be very different by considering
both spatial and spectral information. Last line of Figure 2
illustrates this with two permutations built on the union of a
grid graph G0 and a nearest neighbor graph Gs20 with measuring
spectral similarity either with color vectors vi or patches p3i
of size 3× 3.

IV. CONSENSUS ORDERING

Algorithm 1 is a randomized process that starts from an
arbitrary vertex of the graph. As a consequence, at each run
of the permutation ordering, if a different starting vertex is
chosen, a different result is obtained. In [15], [16], the authors
have made the most of this by using several permutations
for denoising purposes. We propose to proceed differently
and to combine several permutation orderings into a single
one. We denote as hi a given ordering and we consider
a set of l available orderings. The principle of combining
several orderings (also called ranks or permutations) into
a single one is known as ranking aggregation, the aim of
which being to provide a consensus ranking [17]. Finding the
consensus permutation can be formulated as an optimization
problem, which is usually NP-hard [18] and heuristic ranking
aggregation methods have been proposed. In this paper we
consider the following ones [17].

a) Instant-Runoff aggregation: this aggregation method
determines the ranking position of the item with the fewest
votes and iterates on the resting items. The process is as
follows. One begins by counting the first place votes according
to the rankings with respect to the remaining items with

R(vj) =
l∑
i=1

δi(vj) where δi(vj) indicates the first place votes

according to permutation hi and is defined by

δi(vj) =

{
1 if vj ≥hi vk, ∀k 6= j

0 otherwise
(6)

The item with the fewest votes is assigned the lowest position
in the obtained consensus rank.

b) Borda count: this methods determines the ranking
position of all items simultaneously. It assigns each item vj
(j ∈ I) a score Bi(vj) based on the positions provided by the
permutations hi (i = 1, . . . , l):

Bi(vj) = 1− hi(vj)− 1

m
(7)

According to the scores, Borda count generates a final score

using mean aggregation BS(vj) = 1
l

l∑
k=1

Bk(vj). The fused

ranking is obtained by sorting the aggregated scores of items.
c) Weighted Borda count: we propose to modify the

Borda count score in order to take into account the smoothness
of each permutation. Indeed, in our case, we aggregate per-
mutation orderings that represents smooth shortest paths and
we would like to obtain a consensus permutation that is also
smooth. To do so, we consider a weighted score defined by

Bis(vj) = Bi(vj)×∇Pi(vj) (8)



P1 P2 P3 P4 P5

Original image Instant-Runoff P Borda count P Weighted borda count P Weighted borda count I
Fig. 3. Consensus combination of different stochastic permutations.

where ∇Pi(vj) is a 1D-gradient measured on the permutation
ordering from the right and left neighbors of vj in Pi

Figure 3 illustrates the principle of permutation order-
ing combination. Given an original image (appears on
last row, first column), five different permutation orderings
(P1, · · · ,P5) have been generated using different starting
vertices. They are shown in first row of Figure 3. The obtained
permutations can be very different from one to another due
to the stochastic nature of Algorithm 1. Last row of Figure
3 presents the different consensus permutations that can be
obtained with Instant-Runoff, Borda count or weighted Borda
count. As it can be seen, the borda count provides a smoother
consensus than the Instant-Runoff, and this is enhanced with
the proposed weighted version of the Borda count.

V. RESULTS

Now that we have a method that enables the generation
of a consensus permutation from several stochastic ones, we
are in position to use the obtained permutation to perform
morphological processing of images. In this section we inves-
tigate the influence of the different parameters of the approach:
the combination method, the graph under construction, the
spectral proximity measure. Figure 4 presents an illustration of
the influence of these parameters with the result of a closing
operation φ = εδ with a 5 × 5 square structuring element.
The number of combined permutation is 5 and the considered
graph is G10.

As shown in the two first rows of Figure 4, there is few
differences between Instant-Runoff and Borda count consensus
combination, and closings with these combination methods
are not able to well preserve the object edges in the image.
This is not the case for weighted Borda count where the
edges are preserved and well-delineated, as expected for a
morphological processing. Last row of Figure 4 presents
the influence of the graph construction. This corresponds to
the weighted Borda count combination of 5 spatial-spectral
stochastic permutations with the use of either color vectors or
5 × 5 patches for spectral proximity measurement. As it can
be seen the combination of both spatial and spectral can be

Original image Instant-Runoff

Borda count Weighted Borda count

G10 ∪ Gs20 with vi G10 ∪ Gs20 with p5i
Fig. 4. Influence of the parameters on a stochastic permutation closing with
the proposed approach.

interesting but only when the proximity measure is accurate
enough. Indeed, with color vectors the obtained result does not
differ much from the one with only spatial constraints for the
graph construction. Inversely, the use of patches has enabled
to enhance the result that is much more contrasted, and better
preserves edges and texture. This offers a new alternative for
nonlocal morphological processing of images. This is all the
more visible in Figure 5 where a closing is performed (with a
5× 5 SE) on an image with a local processing based on color



vectors (with a G10 graph) and a nonlocal processing based
on patches (with a G10 ∪ Gs20 graph).

Original image local closing nonlocal closing

Fig. 5. Interest of patch-based processing with, for each row and from left
to right, the original image, a local and a nonlocal closing.

Finally we compare the proposed nonlocal processing with
the approach of [19] (denoted NL MM). Figure 6 presents the
results of classical MM, non local morphology with [19] and
with our approach. For nonlocal processing 5× 5 patches are
considered. As it can be seen, the approach of [19] does not
provide accurate results and acts more like a gamma correction
and artificially enhances background noise. This can be seen
on the gradient image that does not correspond to the expected
result of a gradient operator. In contrast, our approach has
an interpretation that is similar to the classical morphological
operators while leveraging the simplification effect to preserve
important edges and textures in the image. The gradient image
illustrates this and enables a much more accurate extraction
of the edges.

VI. CONCLUSION

This paper has introduced a novel approach for nonlocal
morphological processing of images. Several stochastic per-
mutation orderings are first constructed so as to obtain smooth
paths on a graph. The construction of the graph can benefit
from both spatial and spectral information and enables to
obtain permutation ordering that rely on patches instead of
single colors. The permutation orderings are combined into a
single one using a weighted borda count approach to produce
a smooth permutation ordering consensus.
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[4] E. Aptoula and S. Lefèvre, “Multivariate mathematical morphology
applied to colour image analysis,” in Multivariate image processing:
methods and applications, C. Collet, J. Chanussot, and K. Chehdi, Eds.,
pp. 303–337. ISTE - John Wiley, 2009.
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