
HAL Id: hal-01526272
https://hal.science/hal-01526272v1

Preprint submitted on 22 May 2017 (v1), last revised 5 Jun 2018 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validated and numerically efficient Chebyshev spectral
methods for linear ordinary differential equations

Florent Bréhard, Nicolas Brisebarre, Mioara Joldes

To cite this version:
Florent Bréhard, Nicolas Brisebarre, Mioara Joldes. Validated and numerically efficient Chebyshev
spectral methods for linear ordinary differential equations. 2017. �hal-01526272v1�

https://hal.science/hal-01526272v1
https://hal.archives-ouvertes.fr

Validated and numerically efficient Chebyshev
spectral methods for linear ordinary differential

equations

Florent Bréhard∗ Nicolas Brisebarre† Mioara Joldeş‡

May 22, 2017

1 Introduction
Solutions of Linear Ordinary Differential Equations (LODEs) are ubiquitous
in modeling and solving common problems nowadays. Examples include ele-
mentary and special functions evaluation, manipulation or plotting, numerical
integration, or locally solving nonlinear problems using linearizations.

While many numerical methods have been developed over time [21], in some
areas like safety-critical systems or computer-assisted proofs [43], numerical ap-
proximations are not sufficiently reliable and one is interested not only in com-
puting approximations, but also enclosures of the approximation errors. The
width of such an enclosure gives an effective quality measurement of the com-
putation, and can be used to adaptively improve accuracy at run-time. Most
often, machine approximations rely on polynomials, since they are compact to
store and efficient to evaluate and manipulate via basic arithmetic operations
implemented in hardware on current processors. For widely used functions, such
polynomial approximations used to be tabulated in handbooks [1]. Nowadays,
computer algebra systems also provide symbolic solutions when possible, but
usually they are handled through numeric routines. However, when bounds for
the approximation errors are available, they are not guaranteed to be accurate
and are sometimes unreliable.

Our contribution is an efficient algorithm for computing rigorous polynomial
approximations (RPAs) for LODEs, that is to say a polynomial approxima-
tion together with a rigorous error bound. More specifically, we deal with the
following problem:

Problem 1. Let r be a positive integer, α0, α1, . . . , αr−1 and γ continuous
functions over [−1, 1]. Consider the LODE

f (r)(t) + αr−1(t)f (r−1)(t) + · · ·+ α1(t)f ′(t) + α0(t)f(t) = γ(t), t ∈ [−1, 1], (1)
∗LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France and LAAS-CNRS, 7

Avenue du Colonel Roche, 31077 Toulouse, France (florent.brehard@ens-lyon.fr).
†CNRS, LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France (nicolas.

brisebarre@ens-lyon.fr).
‡CNRS, LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse, France (joldes@laas.

fr)

1

florent.brehard@ens-lyon.fr
nicolas.brisebarre@ens-lyon.fr
nicolas.brisebarre@ens-lyon.fr
joldes@laas.fr
joldes@laas.fr

together with conditions uniquely characterizing the solution:

a) For an initial value problem (IVP), consider:

Λ · f := (f(t0), f ′(t0), . . . , f (r−1)(t0)) = (v0, v1, . . . , vr−1) (1a)

for given t0 ∈ [−1, 1] and (v0, v1, . . . , vr−1) ∈ Rr.

b) For a generalized boundary value problem (BVP), conditions are given by
r linearly independent linear functionals λi : C0 → R:

Λ · f := (λ0(f), . . . , λr−1(f)) = (`0, . . . , `r−1) (1b)

for given (`0, . . . , `r−1) ∈ Rr.

Given an approximation degree p ∈ N, find the coefficients of a polynomial
ϕ(t) =

∑p
n=0 cnTn(t) written on the Chebyshev basis (Tn), together with a tight

and rigorous error bound η such that ‖f − ϕ‖∞ := supt∈[−1,1] |f(t)− ϕ(t)| 6 η,
where ‖ · ‖∞ denotes the supremum norm over [−1, 1].

1.1 Previous works
Within the scopes of RPAs, all sources of inaccuracies such as rounding errors
and method approximation errors must be taken into account without compro-
mising efficiency, in order to render the whole process rigorous from a math-
ematical point of view. One important tool used is interval analysis [29]. In
general, replacing all numerical computations with interval ones does not yield
a tight enclosure of rounding or truncation errors: issues like overestimation or
wrapping effect [32] are often present. So, important care has to be put in the
adaptation of numerical algorithms to rigorous computing, which often accounts
for finding suitable symbolic-numeric objects that maintain both the efficiency
and the reliability of computations.

Previous works computed such RPAs using either Taylor series [27, 31, 32],
Chebyshev series [7], minimax polynomials [9] (best approximation polynomials
with respect to supremum norm).

Broadly speaking, the idea of working with polynomial approximations in-
stead of functions is analogous to using floating-point arithmetic instead of real
numbers. A first work in this sense, was the ultra-arithmetic [12, 13, 23], where
various generalized Fourier series, including Chebyshev series, play the role of
floating-point numbers. Purely numeric approaches which consider Chebyshev
series include Orszag and Gottlieb’s work [18], Trefethen’s Chebfun [40, 10] and
other contributions like Olver and Townsend’s fast algorithm for LODEs [33].

However, ultra-arithmetic also comprises a function space counterpart of
interval arithmetic, based on truncated series with interval coefficients and rig-
orous truncation error bounds. The main appeal of this approach is the ability
to solve functional equations rigorously using enclosure methods [30, 23, 27, 32].
The great majority of these so-called higher order enclosure methods were de-
veloped based on Taylor approximations (called Taylor Models, Taylor Forms or
Taylor Differential Algebra) [27, 26, 32], due to their simplicity. However, their
well-known shortcoming is their limited local convergence properties. Cheby-
shev or Fourier series are superior [32, 5, 41] for real functions approximation
and their use in validated computing was recently revived [7, 3, 25].

2

Concerning validation methods, two classes can be distinguished: firstly,
self-validating methods produce an approximation together with a rigorous er-
ror bound at each step. This is typically done for basic tasks like arithmetic
operations, i.e. addition, multiplication, etc., on RPAs. Secondly, when work-
ing with function spaces, for instance, a posteriori validation methods are used.
They consist in computing a validated approximation error bound, given a
numerical approximation which was independently computed by some numer-
ical algorithm. Most of these methods rely on topological fixed-point theo-
rems [46, 25, 44, 20, 3].

In [3], one of the authors of this article proposed an a posteriori validation
method, based on convergent Neumann series of linear operators in the Banach
space of continuous functions (C0, ‖ · ‖∞), for efficient RPAs solutions of linear
ordinary differential equations (LODE) with polynomial coefficients, also called
D-finite functions [39]. This class of functions includes many elementary (e.g.,
exp, sin, cos) and special functions (e.g., Airy, Bessel, erf) commonly used in
mathematical physics. D-finite functions have an efficient symbolic-numeric
algorithmic treatment [47, 38], which allowed for the study of the complexity of
validated enclosure methods, from a computer algebra point of view.

In this article, we extend this complexity study to the framework of quasi-
Newton validation methods for Problem 1.

1.2 General setting for quasi-Newton validation
Consider the equation F · x = 0 where F is an operator acting on a Banach
space (E, ‖·‖). A numerical method provides an approximation x̃ of some exact
solution x. One is interested in rigorously bounding the approximation error
between x and x̃. For that, a classical idea is to reformulate the problem as a
fixed-point equation T · x = x with T : E → E an operator whose fixed points
correspond to the zeros of F. The distance between a given approximation and
a fixed point of T is bounded based on the following theorem [4, Thm 2.1]:

Theorem 1. Let (E, ‖·‖) be a Banach space, T : E → E a continuous operator
and x̃ ∈ E an approximate solution of the fixed-point equation T ·x = x. If there
is a radius r > 0 such that

• T ·B(x̃, r) := {T · x | ‖x− x̃‖ 6 r} ⊆ B(x̃, r) := {x | ‖x− x̃‖ 6 r}, and

• T is contracting over B(x̃, r): there exists a constant µ ∈ (0, 1) such that
for all x1, x2 ∈ B(x̃, r), ‖T · x1 −T · x2‖ 6 µ‖x1 − x2‖,

then T admits a unique fixed point x∗ in B(x̃, r) and we have the following
enclosure of the approximation error:

‖T · x̃− x̃‖
1 + µ

6 ‖x∗ − x̃‖ 6 ‖T · x̃− x̃‖
1− µ .

One special class of such operators T are the Newton-like operators acting
on Banach spaces (see [35, Chap.4] and references therein). Suppose that F is
of class C2 over E, and suppose that A = (dF|x=x̃)

−1 exists. Then the fixed
points of:

T = I−A · F : E → E (2)

3

are exactly the zeros of F and T has a null derivative at x̃, so that it is locally
contracting around x̃. Hence, if for a well-chosen r > 0, the hypotheses of
Theorem 1 are respected, one obtains an upper bound for the approximation
error ‖x∗− x̃‖. In general however, we cannot exactly compute (dF|x=x̃)

−1 and
A is only an approximation. Still, this may be sufficient to get a contracting
operator T around x̃.

Note finally the easier case: when T is affine, Theorem 1 can be globally
applied (for any r > 0) as soon as the operator norm of its linear part is strictly
less than 1, because an affine operator is locally contracting if and only if it is
globally contracting.

The general abstract formulation above provides the road-map for our ap-
proach, which is mainly focused on both its theoretical and practical complexity
analysis, which are modeled as follows.

1.3 Computation and complexity model
Our numerical algorithms rely on floating-point arithmetics, either in standard
double precision, or in arbitrary precision when needed. In the later case, GNU-
MPFR library [14] is used. For validated computations, we make use of interval
arithmetics via the MPFI library [36].

Complexity results are given in the uniform complexity model: all basic
arithmetic operations (addition, subtraction, multiplication, division and square
root), either in floating-point or interval arithmetics, induce a unit cost of time.
In particular, we do not investigate the incidence of the precision parameter on
the global time complexity.

Concerning arithmetic operations on functions, when safe enclosure is needed,
we use classes of RPAs called Chebyshev models, specifically defined in Sec-
tion 2.3.

1.4 Overview of our approach and main results
We develop an efficient algorithm for solving Problem 1 when the coefficients
αj and the right hand side γ are represented by Chebyshev models, which is
possible under mild regularity assumption, for example Lipschitz continuity.

The first contribution is the effective construction of a Banach space denoted
Ч1 (which plays the role of E), together with a suitable norm, and the operators
F, T and A, cf. Equation (2), when dealing with Chebyshev series solutions of
linear differential equations. Theoretical properties of the chosen Banach space
Ч1, analogous to the Wiener algebra, are given in Section 2. Then, in Section 3
an integral reformulation of (1) is given. Also recently used in [11] and [3], this
reformulation has better properties than using directly a differential operator
like in [33], because it allows for constructing a compact operator F.

Moreover, in Section 3 we prove an important property from an algorithmic
point of view: F and other related operators have an almost-banded matrix
representation when Equation (1) has polynomial coefficients. This leads to the
formulation of the following subproblem, where for the sake of simplicity, we
focus on the case of an IVP. Note also that approximations over other real or
complex segments (written on the Chebyshev basis adapted to the segment) are
reduced to approximations on [−1, 1] by means of an affine change of variables.

4

Problem 2. Let a0, a1, . . . , ar−1, g ∈ R[t]. Consider the LODE

f (r)(t) + ar−1(t)f (r−1)(t) + · · ·+ a1(t)f ′(t) + a0(t)f(t) = g(t), t ∈ [−1, 1], (3)

over [−1, 1] together with initial conditions at t0 = −1:

f(t0) = v0, f ′(t0) = v1, . . . , f (r−1)(t0) = vr−1.

Given p ∈ N, find the coefficients of ϕ(t) =
∑p
n=0 cnTn(t) and a tight and

rigorous error bound η such that ‖f − ϕ‖∞ := supt∈[−1,1] |f(t)− ϕ(t)| 6 η.

Remark 1. Note that in this problem we focus on the case t0 = −1 for technical
reasons explained in Section 5.1, but our results remain valid for any t0 ∈ [−1, 1].

This problem is solved with the following steps:
Step 2.1. We compute an approximate solution using a purely numerical

algorithm, which runs in linear time. This is not new and different approaches
were used for instance in [33] and [3]. We recall the one from [33] in Section 4.
Based on this algorithm, we develop another variant that is efficient for obtaining
the approximate inverse operator A in Equation (2) in many practical cases.

Step 2.2. A new algorithm based on Theorem 1 is proposed, which provides
the rigorous approximation error bound in Section 5.

In particular, for a fixed given LODE, our validation algorithm runs in linear
time, in terms of basic arithmetic operations, with respect to the degree p of
the approximation to be validated.

Finally, we generalize this method in Section 6 in two directions:

• when the coefficients αj are not polynomials anymore, but functions in
Ч1 represented by Chebyshev models,

• and when the conditions are generalized boundary conditions (1b).

This allows us to construct Chebyshev models for a quite large class of functions,
starting from H0 = R[t] and defining Hi+1 as the solutions of Problem 1 where
all the αj(t) and γ(t) are in Hi, or some closure of it under other operations
like inversion, square root, etc. In fact, if the αj(t) and γ(t) are rigorously
approximated by Chebyshev models, then the generalized method gives us a
Chebyshev model for the solution. Thus, a chain of recursive calls to the method
can be used to approximate any function of H =

⋃
iHi.

2 Function approximation by Chebyshev series
Taylor expansions are among the best established polynomial approximations.
For instance, a function f , supposed to be analytic at 0, can be approximated by
its n-th order truncated Taylor series f(0)+f ′(0)t+f ′′(t)t2/2+· · ·+f (n)(0)tn/n!.
This is in some sense the best infinitesimal polynomial approximation of f of de-
gree n around 0. Despite its simplicity, Taylor expansion has several drawbacks
when uniformly approximating a function f over a given compact interval. The
domain of convergence of Taylor series of f at x0 is a complex disc centered at
x0 which avoids all the singularities of f . Thus when f is not smooth enough
on the disc surrounding the considered interval, convergence can not be ensured
and one needs to suitably split the interval and provide a Taylor series for each

5

subsegment. Moreover, even when convergent, the n-th order truncated Taylor
series of f is usually not the best uniform polynomial approximation of degree
n over the segment under consideration. From this point of view, Chebyshev
series approximations prove to be a better choice (see also Theorems 2 and 3
below) and excellent accounts for that are given in [5, 8, 15, 28, 34, 41, 37]. In
this section, we recall some facts useful in the sequel.

2.1 Chebyshev polynomials and Chebyshev series
The Chebyshev family of polynomials is defined using the following three-term
recurrence relation:

T0(X) = 1, T1(X) = X,

Tn+2(X) = 2XTn+1(X)− Tn(X), n > 0,

which gives a basis for R[X]. Equivalently, Tn is defined to be the only poly-
nomial satisfying Tn(cos(θ)) = cos(nθ) for all θ ∈ R. In particular, one gets
that |Tn(t)| 6 1 for all t ∈ [−1, 1]. To obtain more symmetric formulas, one
can define T−n := Tn for all n > 0, which is consistent with the trigonometric
definition of Tn.

Similarly to the monomial basis, we have simple formulas for multiplication
and (indefinite) integration:

TnTm =
1

2
(Tn+m + Tn−m), n,m ∈ Z,∫

Tn =
1

2

(
Tn+1

n+ 1
− Tn−1
n− 1

)
, n ∈ Z, (4)

where Tn+1/(n+1), resp. Tn−1/(n−1), is 0 by convention when the denominator
vanishes (that is, when n = 1, resp. n = −1). However, contrary to the
monomial basis, derivation in the Chebyshev basis does not have a compact
expression:

T ′n = n
∑
|i|<|n|

i 6=n mod 2

Ti =

{
n(T−n+1 + · · ·+ T−1 + T1 + · · ·+ Tn−1), n even,
n(Tn−1 + · · ·+ T0 + · · ·+ Tn−1), n odd.

(5)
Another important property is that Chebyshev polynomials form a family

(Tn)n>0 of orthogonal polynomials with respect to the following inner product,
defined on L2, the space of real-valued measurable functions over [−1, 1] for
which

∫ 1

−1 f(t)2(1− t2)−1/2 dt < +∞:

〈f, g〉 :=

∫ 1

−1

f(t)g(t)√
1− t2

dt =

∫ π

0

f(cos θ)g(cos θ) dθ ∈ R, f, g ∈ L2.

One has: 〈T0, T0〉 = π, 〈Tn, Tn〉 = π
2 , for n > 0, and 〈Tn, Tm〉 = 0, for n 6=

m.
Whence, the n-th order Chebyshev coefficient of f ∈ L2 is defined by:

[f]n :=
1

π
〈f, Tn〉 =

1

π

∫ π

0

f(cos θ) cos(nθ) dθ, n ∈ Z. (6)

6

Note that [f]−n = [f]n for all n ∈ Z and the symmetric n-th order truncated
Chebyshev series of f is defined by:

пn · f :=
∑
|i|6n

[f]iTi = [f]−nT−n + · · ·+ [f]0T0 + · · ·+ [f]nTn, n > 0.

Remark 2. Note that we chose a so-called two-sided symmetric expression for
the Chebyshev series, but this is exactly the orthogonal projection of f onto the
linear subspace spanned by T0, T1, . . . , Tn, to which we will refer as the so-called
one-sided expression for Chebyshev series.

Therefore, пn · f is the best polynomial approximation of f of degree n for
the norm ‖·‖2 induced by the inner product.

Beside convergence of пn ·f to f in L2 [8, Chap. 4], one also has the following
result of uniform and absolute convergence [41, Thm. 3.1]:

Theorem 2. If f is Lipschitz continuous on [−1, 1], it has a unique represen-
tation as a Chebyshev series,

f(x) =

∞∑
k=−∞

[f]kTk(x), with [f]−k = [f]k for all k ∈ Z,

which is absolutely and uniformly convergent.

This theorem shows the effectiveness of approximating by truncated Cheby-
shev series even when functions have low regularity. Moreover, the smoother f
is, the faster its approximants converge. From [41, Thm 7.2], one has that if the
νth derivative of f is of bounded variation V , then for a truncation order n, the
speed of convergence is in O(V n−ν). According to [41, Thm 8.2] for analytic
functions, if ρ > 0 and f is analytic in the neighborhood of the set bounded by
the Bernstein ρ-ellipse Eρ = {z = (ρeiθ + ρ−1e−iθ)/2 ∈ C | θ ∈ [0, 2π]} of foci
−1 and 1, the convergence is in O(Mρ−n), where M upper bounds |f | on Eρ.
In particular, for entire functions (ρ = ∞), the convergence is faster than any
geometric sequence.

Moreover, truncated Chebyshev series are near-best approximations with re-
spect to the uniform norm on the space C0 = C0([−1, 1]) of continuous functions
over [−1, 1] [41, Thm. 16.1]:

Theorem 3. Let n ∈ N, n > 1 and f ∈ C0, let p∗n denote the polynomial of
degree at most n that minimizes ||f − p||∞, Then

||f − пn · f ||∞ 6
(

4 +
4

π2
log(n+ 1)

)
‖f − p∗n‖∞.

It turns out that for computing rigorous upper bounds on ||f − пn · f ||∞,
we need to define a more convenient intermediate norm, which upper bounds
the uniform norm, and thus set our approach in a corresponding Banach space
defined in what follows.

2.2 The Banach space (Ч1, ‖·‖Ч1)

For a function f ∈ C0, we define the quantity:

‖f‖Ч1 :=
∑
n∈Z
|[f]n| ∈ [0,+∞].

7

Let Ч1 denote the subset of C0 containing all the functions f with ‖f‖Ч1 <
+∞. These functions exactly coincide with their Chebyshev series in the fol-
lowing sense:

Lemma 1. If f ∈ Ч1, then пn · f converges absolutely and uniformly to f .

Proof. Since, for all i ∈ Z, ‖[f]iTi‖∞ 6 |[f]i| and
∑
i∈Z |[f]i| = ‖f‖Ч1 < ∞ by

definition of f ∈ Ч1, пn · f =
∑
|i|6n[f]iTi converges absolutely and uniformly

(and therefore also in L2) to a continuous function, which is necessarily f from
Fejer’s theorem [22, §I.3.1].

Note that Ч1 is analogous to the Wiener algebra A(T) of absolutely conver-
gent Fourier series [22, §I.6]: for f ∈ Ч1, we have ‖f‖Ч1 = ‖f(cos)‖A(T). More
precisely we have:

Lemma 2. (Ч1, ‖·‖Ч1) is a Banach algebra, which means that it is a Banach
space satisfying

‖fg‖Ч1 6 ‖f‖Ч1‖g‖Ч1 for all f, g ∈ Ч1. (7)

Proof. It is identical to the proofs from [22, §I.6].

It follows from Lemma 1 and Theorem 2 that Ч1 is included in C0 and
contains the set of Lipschitz functions over [−1, 1]. Actually, the inclusions are
strict, see [48, §VIII.1] and [48, §VI.3] respectively.

Moreover, the uniform and Ч1 norms can be partially ordered:

‖g‖∞ 6
∑
n∈Z
‖[g]nTn‖∞ 6

∑
n∈Z
|[g]n| = ‖g‖Ч1 for all g ∈ Ч1.

Conversely, we have from (6):

|[g]n| 6 ‖g‖∞ for all g ∈ Ч1 and n ∈ Z.

However, since g has in general an infinite number of non-zero coefficients, this
fact cannot be used directly to bound ‖g‖Ч1 by the uniform norm of g.

We now consider the action of a bounded linear operator F : Ч1 → Ч1. By
definition, its operator norm is ‖F‖Ч1 := sup‖f‖Ч161 ‖F · f‖Ч1 . Such operators
include multiplication by g ∈ Ч1 or integration (indefinite or from a specific
point).

Proposition 1. Let f =
∑
n∈Z anTn ∈ Ч1. For indefinite integration operator∫

and respectively definite integration
∫ t
t0

from specific t0 ∈ [−1, 1], with t ∈
[−1, 1], one has: ∫

f =
∑
n 6=0

an−1 − an+1

2n
Tn,

∫ t

t0

fdt =
∑
n 6=0

an−1 − an+1

2n
(Tn(t)− Tn(t0)),

‖
∫
‖Ч1 = 1,

‖
∫ t

t0

‖Ч1 6 2. (8)

8

Proof. The first two equations follow from (4). Whence, we deduce ‖
∫
f‖Ч1 6

‖f‖Ч1 , and so ‖
∫
‖Ч1 6 1. Equality is attained for

∫
T0 = (T−1 + T1)/2 =

T1. For definite integration the operator bound is tight for t0 = −1 since
‖
∫ t
−1 T0dt‖Ч1 = ‖T1 + T0‖Ч1 = 2, but not for t0 = 0, where ‖

∫ t
0
‖Ч1 = 1.

In general, computing the Ч1-norm of an operator F reduces to evaluating
F at all the polynomials Ti for i ∈ Z:

Lemma 3. For a bounded linear operator F : Ч1 → Ч1, its Ч1-operator norm
is given by:

‖F‖Ч1 = sup
i>0
‖F · Ti‖Ч1 .

Proof. Take f =
∑
n∈Z anTn ∈ Ч1. We have:

‖F · f‖Ч1 = ‖
∑
n∈Z

anF · Tn‖Ч1 6
∑
n∈Z
|an|‖F · Tn‖Ч1

6
(∑
n∈Z
|an|

)
sup
i∈Z
‖F · Ti‖Ч1 = ‖f‖Ч1 sup

i>0
‖F · Ti‖Ч1

which shows that ‖F‖Ч1 6 supi>0 ‖F · Ti‖Ч1 . The converse inequality is clearly
true since the family of the Ti is a subset of {f ∈ Ч1 | ‖f‖Ч1 6 1}.

2.2.1 Matrix representation

It is sometimes convenient to study a bounded linear operator F : Ч1 → Ч1

using its matrix representation [17], which is usually constructed based on the
action of F on a basis of Ч1. In our case, the one-sided Chebyshev family
(Tn)n∈N is a Schauder basis for the space Ч1.

Proposition 2. A bounded linear operator F : Ч1 → Ч1 can be uniquely de-
scribed by the matrix (Fij)i,j∈N, where Fij is the i-th coefficient of the one-
sided (see also Remark 2) Chebyshev series of F · Tj. Specifically, using (6),
Fij = 2[F · Tj]i for i > 0 and F0j = [F · Tj]0. Moreover,

‖F‖Ч1 = sup
j∈N

∑
i∈N
|Fij | := ||F ||1. (9)

Proof. In [17], the one-to-one correspondence between bounded linear operators
and infinite matrices is given. Equation (9) follows from Lemma 3, remarking
that for fixed j,

∑
i∈N |Fij | = ‖F · Tj‖Ч1 .

It is important to remark that for assessing the action of F, it is sometimes
more convenient to use two-sided infinite matrices, which do not necessarily
correspond to symmetric Chebyshev series. For completeness, this is formally
defined in the sequel.

Definition 1. Let a bounded linear operator F : Ч1 → Ч1. A matrix F̂ =
(F̂ij)i,j∈Z is a representation of the operator F if for all j ∈ Z, F · Tj =∑
i∈Z F̂ijTi.

9

In general, this representation is not unique but the following necessary
condition holds for (F̂ij)i,j∈Z:

[F · Tj]i =
F̂ij + F̂(−i)j

2
= [F · T−j]i =

F̂i(−j) + F̂(−i)(−j)

2
, (10)

which implies unicity when the series
∑
i∈Z F̂ijTi is symmetric.

However, relaxing the symmetry requirement makes it possible to obtain
numerically interesting sparse matrix forms as described in Section 3.2.1 for
instance. Note that for computing ‖F‖Ч1 , one readily has:

‖F‖Ч1 = sup
j>0
‖F · Tj‖Ч1 = sup

j>0

(
|F0j |+

∑
i>0

|F̂ij + F̂−ij |
)
. (11)

2.3 Definition of Chebyshev models and elementary oper-
ations

Now we define Chebyshev models for the ‖ · ‖Ч1 norm in order to provide a
rigorous tool for computations in function spaces. This is slightly different
from [7], where the uniform norm is considered.

Definition 2. A Chebyshev model f of degree n, for a function f in Ч1, is a
pair (P , ε) where P = c0T0 + c1T1 + · · · + cnTn is a polynomial given in the
Chebyshev basis with interval coefficients and ε > 0 is a floating-point error
bound, such that

∃P = c0T0 + · · ·+ cnTn, (∀i ∈ J0, nK, ci ∈ ci) and ‖f − P‖Ч1 6 ε.

Similarly to [7], basic operations like addition, subtraction and multiplica-
tion by a scalar are easily defined for Chebyshev models. The corresponding
operation is performed on the underlying polynomials and the error bound is
trivially deduced. In the case of addition and subtraction for instance, the error
bound of the result is equal to the rounded-up sum of the error bounds of the
two operands. The complexity in the uniform model is linear with respect to
the degrees of the operands.

For multiplication, let f = (P , ε) and g = (Q, η) two Chebyshev models.
Then f · g = (R, δ) with R = P · Q and δ = ‖Q‖Ч1η + ‖P ‖Ч1ε + εη, using
Inequality (7). Complexity is mainly determined by the multiplication of two
polynomials expressed in Chebyshev basis with interval coefficients. Although
numerical fast multiplication algorithms exist for polynomials in Chebyshev
basis [2, 16], their interval arithmetics translations fail as of today to produce
accurate results when the degrees become large. This is why we keep on with
the traditional quadratic time multiplication algorithm.

Using Formula (8), we can easily define the integration of a Chebyshev model
f = (P , ε) from t0 ∈ [−1, 1] by

∫ t
t0
f = (R, δ) with R(t) =

∫ t
t0
P (s)ds and

δ = 2ε.
Concerning multiplication and integration, one notices that the degree of the

resulting Chebyshev model h = (R, δ) model exceeds the one of the operand(s).
As a consequence, if we want to fix a maximal degree n for the Chebyshev
models, then the polynomial part R of the resulting Chebyshev model h must

10

be truncated at degree n and the error corresponding to the discarded part must
be added to the total error bound. One gets h = (пn ·R, δ + ‖(I− пn) ·R‖Ч1),
whose degree does not exceed n.

Other operations like division or square root cannot be defined in such an
algebraic way. The method we implemented is to first compute a polynomial
approximation in Chebyshev basis and then obtain a rigorous error bound by
means of a fixed-point method.

Note also that solving Problem 1 can be seen as obtaining a Chebyshev
model solution of a LODE: if its coefficients are polynomials or functions in Ч1

rigorously approximated by Chebyshev models, then the procedure returns a
Chebyshev model for its exact mathematical solution.

3 Integral operator and its truncations
From Formula (5), we observe that the action of the derivation operator on
the Chebyshev coefficients is represented by a dense upper triangular matrix.
It implies that a direct translation of the differential equation (1) into a lin-
ear problem produces a dense infinite-dimensional system of linear equations.
Moreover it is ill-conditioned in the general case [19]. Hence, numerical algo-
rithms to solve (1) using this method are neither efficient nor accurate. From
the validation point of view, since the derivation is not an endomorphism of
Ч1 (some functions in Ч1 are not even differentiable), designing a topological
fixed-point method directly from Equation (1) seems rather tedious.

One way to circumvent these limitations consists in transforming the dif-
ferential equation (1) into an integral one. The indefinite integration operator
has far better properties: first, it is an endomorphism of Ч1. Second, it has a
sparse matrix representation in Ч1, cf. (4), and its conditioning is significantly
better than that of the differential one [19]. Thus, one can expect more effi-
cient and accurate numerical algorithms in this case. The following standard,
but crucial proposition (see [24] or [45, Chap. 2] for a proof) establishes this
transformation.

Proposition 3. Let f be a function of class Cr over [−1, 1]. Then f is a
solution of the linear IVP problem (1a) if and only if ϕ = f (r) ∈ C0 is solution
of the Volterra integral equation:

ϕ+ K · ϕ = ψ with (K · ϕ)(t) =

∫ t

t0

k(t, s)ϕ(s)ds, t ∈ [−1, 1], (12)

where:

• the kernel k(t, s) is a bivariate continuous function given by:

k(t, s) =

r−1∑
j=0

αj(t)
(t− s)r−1−j
(r − 1− j)! , (t, s) ∈ [−1, 1]2,

• the right hand side ψ is given by:

ψ(t) = γ(t)−
r−1∑
j=0

αj(t)

r−1−j∑
k=0

vj+k
(t− t0)k

k!
, t ∈ [−1, 1].

11

By a slight abuse of terminology, we will call r the order of the integral operator
K.

Remark 3. Proposition 3 can be applied to the polynomial case of Problem 2 by
replacing αj and γ with polynomials aj and g. It produces an equivalent integral
equation with a bivariate polynomial kernel k(t, s) and a polynomial right hand
side ψ(t). This will be of first importance in Section 3.2 where we deal with the
polynomial case.

Solving Equation (12) with numerical algorithms on computers relies most of
the time [17, 18] on a reduction of this infinite-dimensional problem to a finite-
dimensional one. In fact, usually, one approximately computes several coeffi-
cients of the Chebyshev expansion of the exact solution. This is often done based
on approximations of the inverse operator. The question of which functional
space the solution ϕ belongs to is of major importance both for the numerical
approximation and the computation of the validated uniform error bound. In
what follows we first recall the classical action of K on (C0([−1, 1]), ‖·‖∞), with
a focus on Picard iteration. Then, in Section 3.2, we prove analogous prop-
erties in the (Ч1, ‖·‖Ч1) space, based on operator iterations and truncations.
This Banach space proves to be the natural framework to deal with Chebyshev
coefficients without losing the link with the norm ‖ · ‖∞ (since ‖ · ‖∞ 6 ‖ · ‖Ч1).

3.1 Inverse of I+K in (C0([−1, 1]), ‖·‖∞)
It is classical that in this Banach space the operators K and I+K are endomor-
phisms. For n ∈ N, the operator Kn is a bounded linear operator with operator
norm

‖Kn‖∞ 6 (2C)n

n!
, where C := sup

−16s,t61
|k(t, s)| <∞. (13)

Picard iteration [24, 35] is a standard way to prove the invertibility of I + K
in (C0([−1, 1]), ‖·‖∞) and give an explicit form for (I + K)−1, by its Neumann
series:

(I + K)−1 =
∑
n∈N

(−1)nKn = I−K + K2 + · · ·+ (−1)nKn + · · · .

This yields an explicit approximation process for the solution of (12):

ϕ0 = ψ, ϕn+1 = ψ −K · ϕn =

(
n∑
k=0

(−1)kKk

)
· ψ, n ∈ N.

Iterating the integral operator K can also be used for validation purposes, as
presented for example in [3]. However, in our quasi-Newton validation context,
the Banach space (C0, ‖ · ‖∞) seems difficult to work with when considering
multiplication, integration and truncation of Chebyshev series as operations on
the coefficients.

3.2 Inverse of I+K in (Ч1, ‖·‖Ч1)

In this section, we provide a concrete description of the action of the integral
operator K on the Chebyshev coefficients of a function. We note the following
crucial caveat:

12

Remark 4. Henceforth and until the end of Section 3, we exclusively consider
the polynomial case given by (3). The results presented below could to some
extent be generalized to the non-polynomial case (where all functions belong to
Ч1), but this would require a more complicated two-variable approximation the-
ory without being essential to the validation procedure of the general problem 1a,
presented in Section 6.

Under this assumption, the kernel k(t, s) is polynomial and hence we can
decompose it in the Chebyshev basis according to the variable s:

k(t, s) =

r−1∑
j=0

bj(t)Tj(s), (14)

with b0, . . . , br−1 polynomials written in the Chebyshev basis. Such an ele-
mentary procedure is described in Algorithm 1. To implement it in a rigorous
framework, one can use interval arithmetics or even rational arithmetics when
the coefficients of the aj(t) are rationals.

Algorithm 1 Computation of the bj(t) defining the kernel k(t, s)

Input: The order r and the polynomials aj(t) (j = 0 . . . r − 1) written in the
Chebyshev basis.

Output: The polynomials bj(t) (j = 0 . . . r − 1) defining the kernel k(t, s) as
in (14).
B Expand (t− s)k =

∑k
`=0 ξk`(t)T`(s) for k ∈ J0, r − 1K.

1: ξ00(t)← 1
2: for k = 1 to r − 1 do
3: for ` = 0 to k do ξk`(t) = 0 end for
4: for ` = 0 to k − 1 do
5: ξk`(t)← ξk`(t) + tξk−1,`(t)
6: ξk,`+1(t)← ξk,`+1(t)− ξk−1,`(t)/2
7: ξk,|`−1|(t)← ξk,|`−1|(t)− ξk−1,`(t)/2
8: end for
9: end for

B Compute the bj(t).
10: for j = 0 to r − 1 do
11: bj(t)← 0
12: for k = 0 to r − 1 do
13: bj(t)← bj(t) + ak(t)ξr−1−k,j(t)/(r − 1− k)!
14: end for
15: end for

If ϕ ∈ Ч1, then K · ϕ is in Ч1 since

‖K · ϕ‖Ч1 = ‖
r−1∑
j=0

bj(t)

∫ t

t0

Tjϕds‖Ч1 6 2B‖ϕ‖Ч1 ,

with B =

r−1∑
j=0

‖bj‖Ч1 > C.

where we used (7) and (8). This shows that K, and hence I + K, are bounded
linear endomorphisms of Ч1. However, we do not have for the moment any

13

information about the invertibility of I + K in Ч1. So far, its injectivity in Ч1

is established, because this operator was an isomorphism (hence injective) over
the superspace C0([−1, 1])).

3.2.1 Matrix representation of I + K in Ч1

According to Definition 1, let us establish a convenient two-sided matrix rep-
resentation of K. For that, we consider the polynomials bj ’s in the symmetric
Chebyshev basis:

bj =
∑

−dj6k6dj

bj,kTk, bj,k ∈ R, 0 6 j < r.

For i, j ∈ Z, we have TjTi = (Ti+j + Ti−j)/2. Now, for t ∈ [−1, 1], we have∫ t

t0

Tj(s)Ti(s)ds = γiji(t)− γiji(t0),

with

γijk(t) = − 1

4(i− j − 1)
Tk−j−1(t) +

1

4(i− j + 1)
Tk−j+1(t)

− 1

4(i+ j − 1)
Tk+j−1(t) +

1

4(i+ j + 1)
Tk+j+1(t), (15)

where, following the convention in Section 2, the terms for which the denomi-
nator vanishes are 0.

In particular, for t0 = −1 and using Tk(−1) = (−1)k one obtains:

γijk(−1) = −(−1)k+j
(

j + 1

2(i2 − (j + 1)2)
+

j − 1

2(i2 − (j − 1)2)

)
. (16)

Let j ∈ J0, r − 1K, multiplying by bj , we get, for t ∈ [−1, 1],

bj(t)

∫ t

t0

Tj(s)Ti(s)ds = −γiji(t0)
∑

−dj6k6dj

bj,kTk(t) +
∑

−dj6k6dj

bj,kγij(i+k)(t).

(17)
This expression shows that there exists a two-sided matrix representation,

say (B̂j,ki)k,i∈Z, of the operator ϕ → bj(t)
∫ t
t0
Tj(s)ϕ(s)ds which is sparse and

has a so-called almost-banded structure. More precisely, it is made of a central
horizontal band of non-zero coefficients B̂j,ki, with −dj 6 k 6 dj , i ∈ Z, which
we call initial coefficients together with a diagonal band of non-zero coefficients
B̂j,ki, with i ∈ Z and i− j − 1− dj 6 k 6 i+ j + 1 + dj , which we call diagonal
coefficients. A graphic view of this structure is shown in Figure 3.2.1.

Remark 5. Note that this matrix representation does not ensure symmetry
of the series

∑
k∈Z B̂j,kiTk for any i ∈ Z. As explained in Section 2.2.1, this

relaxation allows for a structure which is interesting for numerical solving. The
action of the operator in terms of symmetric Chebyshev series, as well as its
norm, can be easily recovered with Formulas (10) and (11).

14

The following definition establishes formally the notion of almost-banded
matrix, in the finite as well as in the (one or two-sided) infinite case. It is robust
in the sense that if a two-sided infinite matrix representing an endomorphism of
Ч1 is (h, d)-almost-banded, then so is its unique one-sided representation, and
so are all its finite-dimensional truncations (defined in Subsection 3.3).

Definition 3. Let I be a set of indices (typically N, Z or J0, n − 1K for some
n > 0), and h, d two nonnegative integers.

1. For i ∈ I, v ∈ RI is said to be (h, d)-almost-banded around index i if for
all j ∈ I, vj = 0 whenever |j| > h and |i− j| > d.

2. The order n square matrix A = (aij)i,j∈I ∈ RI×I is said to be (h, d)-
almost-banded if for all j ∈ I, the j-th column v(j) = (aij)i∈I ∈ RI of A
is almost-banded around index j.

It turns out that a two-sided matrix representation of K has an almost-
banded structure: to obtain K · Ti, it suffices to sum all the contributions from
Equation (17) for 0 6 j < r. Hence K · Ti is (h, d)-almost-banded around index
i, which shows that the integral operator K has an (h, d)-almost-banded matrix
representation, where:

h = max
06j<r

dj , d = max
06j<r

j + 1 + dj .

The width of the horizontal band is 2h+1 centered around 0 and that of the di-
agonal band is 2d+1, as shown in Figure 3.2.1. With a slight terminology abuse,
such operators are directly called almost-banded operators in what follows.

j = 0↓

i = 0

→

Figure 1: Almost-banded structure of operator K.

3.2.2 Iterations of K in Ч1 and almost-banded approximations of
(I + K)−1

We recalled in Subsection 3.1 the convergence of the Neumann series I−K+K2−
. . . to (I + K)−1 in (C0, ‖·‖∞). The following lemma establishes an analogous
result in Ч1:

15

Lemma 4. The operator I + K is invertible in Ч1 and its inverse is given by
the Neumann series

∑
i>0(−K)i which converges in o(εn) for all ε > 0. More

precisely:

• ∑n
i=0(−1)iKi is a sequence of (dn, dn)-almost-banded operators;

• ‖∑i>n(−1)iKi‖Ч1 6
∑
i>n(6di+ 1) (2C)i

i! (C defined in Equation (13)).

Proof. In Ч1, since K is (h, d)-almost-banded, with h < d, a straightforward
induction shows that Kn is (hn, dn)-almost-banded, with dn = nd and hn < dn.

Fix an index j ∈ Z. Then the symmetric Chebyshev series of Kn · Tj has at
most (2dn+1)+(2hn+1)+(2dn+1) 6 6nd+1 non-zero coefficients. Moreover,
for each index k corresponding to a non-zero coefficient, we have, from (2.2)
and (13), |[Kn · Tj]k| 6 ‖Kn · Tj‖∞ 6 (2C)n/n!. Hence, we get:

‖Kn · Tj‖Ч1 6 (6dn+ 1)
(2C)n

n!
,

from which we conclude using Lemma 3.

This shows that obtaining an approximate solution of (12) via iterations of
K, is similar both in (C0([−1, 1]), ‖·‖∞) and in (Ч1, ‖·‖Ч1). However, the action
of K and its iterates involves handling an infinite dimensional space. In the
sequel, we prove that suitable truncations of K allow for obtaining approximate
solutions in finite dimensional subspaces of Ч1 and these solutions converge in
o(εn) for all ε > 0 to the exact solution of (12).

3.3 Approximate solutions via truncations K[n] of K
The n-th truncation (also called the n-th section in [17]) of the integral operator
K is defined as follows:

K[n] = пn ·K · пn.
The truncation method (also called projection method in [17]) to solve Equa-

tion (12) consists in replacing K by K[n] and solving the finite-dimensional linear
problem:

ϕ+ K[n] · ϕ = ψ. (18)

Note that a representation matrix M of K[n] can be trivially obtained by
extracting the square matrix (K̂ij)−n6i,j6n from the infinite representation ma-
trix (K̂ij)i,j∈Z of K. Obviously, M has an (h, d)-almost-banded structure. This
implies that solving Equation (18) reduces to solving a linear system of equa-
tions with a specific almost-banded structure. We revisit in Section 4 efficient
algorithms for solving such systems.

Moreover, we prove the following important fast convergence result:

Theorem 4. Let ϕ∗ := (I+K)−1 ·ψ the exact solution of integral equation (12)
and ϕ̃n := (I + K[n])−1 · ψ the solution of the truncated system (18). We have:

‖ϕ∗ − ϕ̃n‖Ч1 = o(εn) for all ε > 0.

16

In [3, Thm. 4.4] and [33, Thm. 4.5], similar convergences rates were proven
in the different context of the uniform norm and for rather different approx-
imations schemes: either the considered operator is different (the differential
operator is handled in [33]) or the employed tools are more involved (main
asymptotic existence theorem for linear recurrences is needed in [3]). The proof
of Theorem 4 requires important theoretical properties concerning the truncated
operator K[n] in relation with K in the space Ч1, which are given in the next
two additional lemmas. They are also of first importance for the validation
method developed in Section 5.

Firstly, let us prove that K[n] is a good approximation of K in the Ч1 sense.

Lemma 5. Let K be the integral operator in (12), of order r and polynomial
coefficients bj. Let (h, d) be the parameters of its almost-banded structure and
n > r + d be the truncation order, then:

(i) K[n] · Ti = K · Ti for all i such that |i| 6 n− d.

(ii) K[n] → K in Ч1 as n→∞. More precisely:

‖K−K[n]‖Ч1 6 Bmax

(
1

n+ 1− r − d ,
2

n− r

)
with B =

r−1∑
j=0

‖bj‖Ч1 ,

which implies a convergence speed of O(1/n) as n→∞.

Proof. For (i), if |i| 6 n−d, then K·Ti is of degree at most max(h, n−d+d) = n
because n > d > h. Hence:

K[n] · Ti := пn ·K · пn · Ti = пn ·K · Ti = K · Ti.

For (ii), note first that from Lemma 3 and (i), one has:

‖K−K[n]‖Ч1 = sup
i>0
‖K · Ti −K[n] · Ti‖Ч1 = sup

i>n−d
‖K · Ti −K[n] · Ti‖Ч1 .

Now, for ϕ ∈ Ч1 one has the following decomposition:

(K−K[n])ϕ = K · ϕ− пn ·K · пn · ϕ = K · (I− пn) · ϕ+ (I− пn) ·K · пn · ϕ.

Whence, one can evaluate K−K[n] on all remaining Ti’s for i > n− d:
• If n − d < i 6 n, then (K − K[n]) · Ti = (I − пn) · K · Ti. Note that,

since n > h, only the diagonal coefficients of K · Ti may bring a nonzero
contribution. Moreover, we have |i± j± 1| > n+ 1− d− r. From that we
deduce an upper bound of the approximation error:

‖(I− пn) ·K · Ti‖Ч1 6 B

n+ 1− r − d .

• If i > n, then (K −K[n]) · Ti = K · Ti. We have that |i ± j ± 1| > n − r
for 0 6 j < r. Hence:

‖K · Ti‖Ч1 6 2B

n− r
We conclude by taking the maximum of these two bounds.

17

The convergence of K[n] to K also implies that I + K[n] is invertible for n
large enough:

Lemma 6. For n large enough, we have that:

(i) the endomorphism I + K[n] is invertible.

(ii) (I + K[n])−1 converges to (I + K)−1, with:

‖(I + K[n])−1 − (I + K)−1‖Ч1 6 ‖(I + K)−1‖2Ч1

1− ‖(I + K)−1 · (K−K[n])‖Ч1

‖K−K[n]‖Ч1

= O

(
1

n

)
as n→∞

(iii) (I + K[n])−1 =
∑
i>0(−K[n])i.

Proof. For (i) and (ii), using the bound in O(1/n) for ‖K −K[n]‖Ч1 obtained
in Lemma 5, the invertibility of I+K[n] as well as the announced explicit upper
bound for ‖(I + K[n])−1 − (I + K)−1‖Ч1 directly follow from [17, Chap. 2, Cor.
8.2].

For (iii), since by Lemma 4 the Neumann series of K absolutely converges,
there is a p > 0 such that ‖Kp‖Ч1 < 1. Since K[n] → K as n → ∞, there is
an n such that ‖(K[n])p‖Ч1 < 1. Therefore, the Neumann series of (K[n])p is
absolutely convergent, and the following factorization establishes the absolute
convergence of the Neumann series of K[n]:

∑
i>0

(−K[n])i =

∑
i<p

(−K[n])i

 ·
∑
i>0

(−K[n])pi



Note that from the previous lemma, one readily obtains that ϕ̃n := (I +

K[n])−1 ·ψ converges to the exact solution ϕ := (I+K)−1 ·ψ in O(1/n). However,
we can now prove the far better convergence result of the main Theorem 4.

Proof of Theorem 4. Take n > d large enough so that I + K[n] is invertible by
Lemma 6. Let ϕn = (

∑
i6bn/2dc(−1)iKi) · ψ denote the approximate solution

obtained by computing the Neumann series of K at order bn/2dc. Since this
series is an (dbn/2dc, dbn/2dc)-almost-banded operator, we get that ϕn is a
polynomial of degree at most deg(ψ) + dbn/2dc 6 deg(ψ) + n/2. Hence, for n
large enough, the degree of ϕn does not exceed n − d, so that we have the key
equality K[n] · ϕn = K · ϕn, according to Lemma 5 (i). From that we deduce:

ϕ∗ − ϕ̃n =

(
I−

(
I + K[n]

)−1
(I + K)

)
· (ϕ∗ − ϕn) .

From Lemma 6 (ii) and Lemma 4, we finally get:

‖ϕ∗ − ϕ̃n‖Ч1 = O

(
(2C)bn/2dc

bn/2dc!

)
,

which is an o(εn) for all ε > 0.

18

For completeness, we note the following alternative proof of Lemma 4. The
convergence of the finite-dimensional truncations K[n] to K in Ч1 implies that
K is a compact endomorphism of the Banach space Ч1. The Fredholm alter-
native [6] says in that case that I + K : Ч1 → Ч1 is injective if and only if it
is surjective. But, as mentioned at the beginning of Subsection 3.2, we already
have the injectivity of this operator. Hence, we conclude that I+K is bijective,
and moreover that it is a bicontinuous isomorphism of Ч1 (using the Banach
continuous inverse theorem).

We discuss in the next section algorithms concerning almost-banded matri-
ces, since this structure is essential both for efficient algorithmic computation
of ϕ̃ and its a posteriori validation step.

4 Algorithms involving almost-banded matrices
Let A and B be two order n square matrices, respectively (hA, dA) and (hB , dB)-
almost-banded. In Table 4 we recall several elementary operations which are
straightforward, the result is (when appliable) an almost-banded matrix, and
their complexity is in O(n) provided that the almost-banded parameters are
supposed constant with respect to n.

Operation Result’s a.-b. structure Complexity
λA, with λ ∈ R (hA, dA) O(n(hA + dA))

A+B or A−B (max(hA, hB),max(dA, dB))
O(n(max(hA, hB)
+ max(dA, dB)))

A · v dense O(n(hA + dA))dense v ∈ Rn
A · v

(max(hv + dA, hA), dv + dA) O((hA + dA)(hv + dv))(hv, dv) a.-b.v ∈ Rn
A ·B (max(hB + dA, hA), dB + dA) O(n(hA + dA)(hB + dB))
‖A‖1 - O(n(hA + dA))

Table 1: Elementary operations on almost-banded (a.-b.) matrices: A and B
are order n square matrices, respectively (hA, dA) and (hB , dB)-almost-banded.

Note that the product A · B is computable in O(n(hA + dA)(hB + dB))
operations by applying the evaluation on a sparse vector defined at line 5 in
the table on all the columns of B. In the dense case, when hA + dA ≈ n
and hB + dB ≈ n, this corresponds to the naive O(n3) algorithm, hence a fast
multiplication algorithm becomes more appropriate.

We now turn to efficient algorithms for solving almost-banded linear systems
as well as matrix inversion. In Subsection 4.1, we recall Olver and Townsend’s
algorithm for solving size-n almost-banded linear systems O(n). This directly
leads to a quadratic algorithm for inverting an almost-banded matrix. To
achieve linear complexity for inversion, we give in Subsection 4.2 a modified
version of this algorithm.

19

4.1 A reminder on Olver and Townsend’s algorithm for
almost-banded linear systems

Let M denote an (h, d)-almost-banded order n square matrix with h 6 d, and
y ∈ Rn. The goal is to solve the almost-banded linear system M · x = y for
unknown x ∈ Rn. The procedure is split into two parts. First, a QR decom-
position Q ·M = R is computed, with Q orthogonal and R upper triangular.
Then, the equivalent system R · x = Q · y is solved by back-substitution. The
key challenge is to maintain a linear complexity with respect to n in both steps.

4.1.1 First step: QR decomposition

This is computed in Algorithm 2 using Givens rotations’ method which elim-
inates line after line the coefficients of M under the diagonal to finally ob-
tain R, as shown in Figure 4.1.1. More precisely, at step i, for each j ∈
Ji + 1,min(i + d, n − 1)K, we apply a well-chosen rotation

(
cij −sij
sij cij

)
on

lines i and j in order to get Rji = 0. Note that at the end of each step i,
Rii 6= 0 if and only if the matrix M is invertible.

The direct application of this process would cause the progressive filling-in
of the rows, which would give a dense upper triangular matrix R. In fact, this
phenomenon can be controlled by noticing that for each i < n − 2d − 1, the
"end of the row" i of R,

(
Ri,i+2d+1 . . . Ri,n−1

)
, is a linear combination

of the corresponding dense part of M :
(
M`,i+2d+1 . . . M`,n−1

)
for ` ∈

J0, hK. Hence, it suffices to manipulate instead the coefficients λi` of the linear
combination:

(
Ri,i+2d+1 . . . Ri,n−1

)
=

h∑
`=0

λi`
(
M`,i+2d+1 . . . M`,n−1

)
. (19)

M = 99K
i

step(i)

99K = R

Figure 2: Step 1 of Olver and Townsend’s algorithm

Based on this observation, Algorithm 2 returns the QR decomposition Q ·
M = R under the following representation:

• Q is completely determined by cij , sij :

Q =

n−1∏
i=0

min(i+d,n−1)∏
j=i+1

Q(ij),

20

Algorithm 2 Step 1 of Olver and Townsend’s algorithm
Input: An (h, d)-almost-banded order n matrix M with h 6 d.
Output: A QR factorization Q ·M = R: Q defined by cij , sij as in (20); R

defined by Rij (i ∈ J0, n− 1K, j ∈ Ji,min(i+ 2d, n− 1)K) and λi` as in (19).
1: R←M
2: for i = 0 to n− 1 do for j = 0 to h do λij ← 0 end for end for
3: for i = 0 to h do λii ← 1 end for
4: for i = 0 to n− 1 do
5: for j = i+ 1 to min(i+ d, n− 1) do
6: if Rji = 0 then
7: cij ← 1 and sij ← 0
8: else
9: r ←

√
R2
ii +R2

ij

10: cij ← Rii/r and sij ← −Rji/r
11: for k = i to min(i + 2d, n − 1) do

(
Rik
Rjk

)
←
(
cij −sij
sij cij

)
·(

Rik
Rjk

)
12: for ` = 0 to h do

(
λi`
λj`

)
←
(
cij −sij
sij cij

)
·
(
λi`
λj`

)
13: end if
14: end for
15: end for

where the Q(ij) are rotation matrices defined by:

(Q(ij))k` =


1 if k = ` and k 6= i, j,
cij if k = ` = i or k = ` = j,
sij if k = j and ` = i,
−sij if k = i and ` = j,

0 otherwise.

(20)

• R is upper triangular and represented by its 2d+1 upper diagonals (entries
Rij for i ∈ J0, n − 1K and j ∈ Ji,min(i + 2d, n − 1)K are given explicitly)
together with the coefficients λi` (i ∈ J0, n − 1K and ` ∈ J0, hK) defining
the rest of R as in (19).

Formally, one has:

Proposition 4. Algorithm 2 applied on an (h, d)-almost-banded matrix of order
n with h 6 d is correct and runs in O(nd2) operations.

Proof. Given in [33].

4.1.2 Second step: back-substitution

Once step 1 is performed and returns Q ·M = R, we first apply the rotations
Q(ij) on the right hand side y ∈ Rn to obtain Q · y in O(nd) operations. Now
we have to solve R · x = Q · y := yQ.

21

If R is regarded as a dense upper triangular matrix, the classical back-
substitution algorithm requires O(n2) operations. However, based on the sparse
representation of R, the back-substitution in Algorithm 3 is more efficient. Its
main idea to compute the solution xi (for i going backwards from n− 1 to 0) is
to use Equation (19) for expressing Rij as soon as i < n− 2d− 1, j > i:

xi =

yQi − n−1∑
j=i+1

Rijxj

 /Rii =

yQi − i+2d∑
j=i+1

Rijxj −
n−1∑

j=i+2d+1

Rijxj

 /Rii

=

yQi − i+2d∑
j=i+1

Rijxj −
h∑
`=0

λi`zi`

 /Rii,

where

zi` =
(
M`,i+2d+1 . . . M`,n−1

)T ·(xi+2d+1 . . . xn−1
)

=

n−1∑
j=i+2d+1

M`jxj .

Then, once zi` is computed, zi−1,` is updated in constant time:

zi−1,` = M`,i+2dxi+2d + zi`.

This leads to the following proposition:

Proposition 5. Algorithm 3 is correct and requires O(nd) operations.

Proof. Given in [33].

Algorithm 3 Step 2 of Olver and Townsend’s algorithm
Input: An invertible (h, d)-almost-banded order n matrix M with h 6 d, its

QR decomposition produced by Algorithm 2 and a vector y ∈ Rn.
Output: The solution vector x of M · x = y.

B Compute Q · y
1: for i = 0 to n− 1 do
2: for j = i+ 1 to min(i+ d, n− 1) do

3:

(
yi
yj

)
←
(
cij −sij
sij cij

)
·
(
yi
yj

)
4: end for
5: end for

B Back-substitution
6: for ` = 0 to h do z` ← 0 end for
7: for i = n− 1 down to 0 do

BB Update z`
8: if i+ 2d+ 1 < n then
9: for ` = 0 to h do z` ← z` +M`,i+2d+1xi+2d+1 end for

10: end if
BB Compute xi

11: xi ←
(
yi −

∑min(i+2d,n−1)
j=i+1 Rijxj −

∑h
`=0 λi`z`

)
/Rii

12: end for

22

4.2 An algorithm for almost-banded approximation of in-
verse of almost-banded matrix

Based on Olver and Townsend’s algorithm, the inverse of an (h, d)-almost-
banded order n matrix M (with h 6 d) can be computed in quadratic time
O(n2d). First, step 1 is performed in O(nd2) operations (Proposition 4) to
obtain a QR decomposition Q · M = R. Then, each column v(i) of index
i ∈ J0, n− 1K of M−1 is computed by solving M · v(i) = e(i), where e(i) denotes
the i-th vector of the canonical basis of Rn. This is achieved by using n times
step 2, resulting in a total of O(n2d) operations.

Unfortunately, this algorithm has quadratic running time and returns a dense
inverse matrix representation. In some cases however, such as the validation
process developed in Section 5, a sparse approximation of M−1 is sufficient. As
proved in Lemma 6 (iii), the inverse ofM = I+K[n] is approximable by almost-
banded matrices. This leads to adapting the full inversion procedure described
above to compute only coefficients on diagonal and horizontal bands.

Let A ' M−1 be the required approximate inverse with an almost-banded
structure given by the parameters (h′, d′) (we do not require h′ 6 d′). Firstly,
one computes the QR decomposition Q ·M = R in O(nd2) operations. Then,
Step 2 of Olver and Townsend’s algorithm is modified, as detailed in Algo-
rithm 4. For each i ∈ J0, n − 1K, the i-th column v(i) of A is computed as an
approximate solution of R ·x = Q · e(i), in the form of an (h′, d′)-almost-banded
vector around index i:

1. Q · e(j) ∈ Rn is computed only partially, between entries i− d and i+ d′.
Note that in general Q ·e(j) has zero entries between indices 0 and i−d−1,
and is dense from i− d to n− 1.

2. The back-substitution only computes entries of the solution from indices
i + d′ to i − d′, and from h′ to 0. Since the other entries are implicitly
set to 0, these computed coefficients are only approximations of the en-
tries at the same position in the exact solution. But considering that the
neglected entries were small enough, this approximation is expected to be
convenient.

We provide a complexity analysis of Algorithm 4, but nothing is stated
concerning the accuracy of the obtained approximation. This procedure should
really be seen as a heuristic in general.

Proposition 6. Algorithm 4 involves O((h+ d)(h′ + d′)) operations.

Proof. The first step (computing the diagonal coefficients ofQ·y) clearly requires
O(dd′) arithmetic operations. Now consider the second step (the partial back-
substitution) and enter the main loop at line 11, where index j lives in a set of
size O(h′ + d′). First, we need to update the values z`. At first sight, each z`
seems to involve a sum of O(h′ + d′) terms. But in fact, the total amortized
cost related to line 13 is O((h′ + d′)h), since at the end of the algorithm, each
z` is equal to

∑
k∈J2d+1,n−1K∩(D∪H)M`kxk, which is a sum of O(h′ + d′) terms.

As a matter of fact, jz 6 j + 2d + 1 most of the time, except when h′ < i− d′
and the current index j falls from i − d′ to h′. After that, the computation of
xj involves two sums with a total of O(h + d) terms. We therefore obtain the
claimed complexity.

23

Algorithm 4 Almost-banded approximate column inversion
Input: An (h, d)-almost-banded order n matrixM with the QR decomposition

Q ·M = R produced by Algorithm 2 and parameters h′, d′, i with h′ ∈
Jh, n− 1K, d′ ∈ Jd, n− 1K and i ∈ J0, n− 1K.

Output: (h′, d′)-almost-banded vector x around index i such that M ·x ≈ e(i).

1: D← Ji− d′, i+ d′K ∩ J0, n− 1K and H← J0, h′K−D

B Compute diagonal coefficients of Q · y
2: for j in D ∪ Ji+ d′ + 1, i+ d′ + dK− {i} do yj ← 0 end for
3: yi ← 1
4: for j in D going upwards do
5: for k in Jj + 1, j + dK ∩ J0, n− 1K going upwards do

6:

(
yj
yk

)
←
(
cjk −sjk
sjk cjk

)
·
(
yj
yk

)
7: end for
8: end for

B Partial back-substitution
9: for ` ∈ J0, hK do z` ← 0 end for

10: jz ← n− 1
11: for j in D ∪ H going downwards do

BB Update z`
12: if j + 2d < jz then
13: for ` ∈ J0, hK do z` ← z` +

∑
k∈Jj+2d+1,jzK∩(D∪H)Mlkxk end for

14: jz ← j + 2d
15: end if

BB Compute xj
16: if j ∈ D then c← yj else c← 0

17: xj ←
(
c−∑k∈Jj+1,j+2dK∩(D∪H)Rjkxk −

∑h
`=0 λj`z`

)
/Rjj

18: end for

Algorithm 5 Almost-banded approximate inverse
Input: An (h, d)-almost-banded order n matrixM with the QR decomposition
Q ·M = R produced by Algorithm 2 and parameters h′, d′ with h′ ∈ Jh, n−1K
and d′ ∈ Jd, n− 1K.

Output: (h′, d′)-almost-banded matrix A with A ≈M−1.
for i = 0 to n− 1 do
for j = 0 to n− 1 do V [j]← 0 end for
V [i]← 1
Compute W ≈M−1 · V using Algorithm 4
Set i-th column of A to W

end for

24

Corollary 1. Algorithm 5 produces an (h′, d′)-almost-banded approximation of
an (h, d)-almost-banded order n matrix M in O(n(h+ d)(h′ + d′)) operations.

We now turn to the a posteriori validation step.

5 A quasi-Newton validation method
Given an approximate solution ϕ̃ of the integral equation (12), we propose an
a posteriori validation method which computes a rigorous upper bound for the
approximation error ‖ϕ∗ − ϕ̃‖Ч1 , where ϕ∗ denotes the exact solution of (12).
This is based on the general quasi-Newton framework explained in Section 1.2.
In this case, F · ϕ := ϕ + K · ϕ − ψ is affine, with linear part I + K. The
quasi-Newton method requires an approximate inverse operator A ≈ (I + K)−1

such that ‖I−A · (I+K)‖Ч1 < 1. Of course, computing an exact inverse would
solve the problem but is out of reach. Instead of that, from Lemma 6, we know
that for n large enough, (I + K[n])−1 exists and is a good approximation of
(I + K)−1. Since (I + K[n])−1 is defined by an (n+ 1)-order square matrix (its
restriction over пn · Ч1) extended over the whole space Ч1 by the identity, we
define A as an (n+ 1)-order square matrix A approximating (I + K[n])−1 over
пn ·Ч1, extended by the identity over the whole space:

A · ϕ = A · пn · ϕ+ (I− пn) · ϕ.

The first technical issue is to numerically compute (or represent) both very
accurately and efficiently such a matrix A. Specifically, we aim both for a linear
complexity computation with respect to n and for minimizing ‖In+1−A ·M‖1,
where M is an order n + 1 matrix representation for I + K[n]. Among several
possibilities to achieve these two requirements, we found none optimal for both.
Therefore, we propose two solutions:

S1 As seen in Section 4, Olver and Tonwsend’s Algorithm 3 can be used to
numerically computeM−1. The main advantage is that the approximation error
‖In+1 − A ·M‖1 is really close to 0 using standard precision in the underlying
computations. Drawback is the quadratic complexity of O(n2d).

S2 Our new heuristic approach is based on Lemma 6 (iii) which states that
(I + K[n])−1 is well approximated by almost-banded matrices. So it is natural
to look for a matrix A with a (h′, d′)-almost-banded structure. Given h′ and
d′, Algorithm 4, detailed in Section 4, produces an (h′, d′)-almost-banded ap-
proximation A of (I + K[n])−1 in O(n(h′ + d′)(h + d)) arithmetic operations
(Proposition 1). If the parameters (h′, d′) of the almost-banded structure of A
can be chosen small enough compared to n, this alternative method should be
substituted to the standard one.

Deciding which of these two methods should be used in practice is non-
trivial: while the second one is more appealing due to the resulting sparsity of
A, unfortunately nothing is said about the order of magnitude of n such that the
conclusion of Lemma 6 (iii) is valid, nor about the precise speed of convergence
of the Neumann series of M , which would give a good intuition for the values of
h′ and d′ to choose. In what follows, the complexity analysis is thus provided

25

both for both cases: a sparse vs. a dense structure of the matrix A. This will
allow us to discuss in detail the choice of these parameters in Section 5.2.1.

Next, one has to provide a rigorous Lipschitz constant µ (required by The-
orem 1) for the Newton-like operator. We have:

‖I−A · (I + K)‖Ч1 6 ‖I−A · (I + K[n])‖Ч1 + ‖A · (K−K[n])‖Ч1 , (21)

which can be interpreted as:

• ‖I−A · (I + K[n])‖Ч1 is the approximation error because A was (maybe)
not the exact representation matrix of I + K[n].

• ‖A · (K−K[n])‖Ч1 is the truncation error because K[n] is not exactly K.

Once we have obtained a quasi-Newton operator T with a certified Lipschitz
constant µ < 1 the validation of a candidate solution ϕ̃ is summarized in Sub-
section 5.2, together with its complexity analysis. In the sequel we focus on the
bounding of the truncation error.

5.1 Bounding the truncation error
The truncation error is computed by providing an upper bound for supi>0B(i)

where B(i) := ‖A ·(K−K[n]) ·Ti‖Ч1 . The indices i are divided into four groups:
– For i ∈ J0, n− dK, K[n] · Ti = K · Ti (Lemma 5) and hence B(i) = 0.
– For i ∈ Jn − d + 1, nK, A · (K −K[n]) · Ti = (I − пn) ·K · Ti are explicitly
computed.
– For i ∈ Jn+1, n+dK, B(i) = ‖A·K·Ti‖Ч1 and some of the diagonal coefficients
of K · Ti are of index less than n and are therefore non-trivially affected by A.
We choose to explicitly compute all these A ·K · Ti.
– For i > n+ d, (K−K[n]) · Ti = K · Ti and the diagonal coefficients of K · Ti
are all located at indices strictly greater than n. We have B(i) = BI(i) +BD(i)
with:

• BD(i) = ‖(I− пn) ·K · Ti‖Ч1 due to diagonal coefficients, which decrease
in O(1/i) from Equation (15).

• BI(i) = ‖A ·пn ·K ·Ti‖Ч1 due to initial coefficients multiplied by A, which
decrease in O(1/i2) from Equation (16).

The main difficulty is to bound B(i) for i > n + d, since we deal with an
infinite number of indices i. For that, one possibility is to use the explicit
expression (17), replace i by the interval [n+ d+ 1,+∞) and evaluate A ·K ·Ti
in interval arithmetics. Since, these evaluations often lead to overestimations,
one needs to choose a big value for n, such that the convergence in O(1/n) is
sufficiently small to compensate. Usually, the chosen n is far larger than the
one needed for T to be contracting.

Another solution consists in computing A · K · Ti0 where i0 > n + d and
bounding the difference between B(i) and B(i0) for all the remaining indices
i > i0.

Lemma 7. Let i > i0 > n+ d. Then:

26

1) For the diagonal coefficients, we have

BD(i) 6 BD(i0) +
r
∑r−1
j=0 ‖bj‖Ч1

(i0 − r)2
.

2) For the initial coefficients, we have

BI(i) 6 BI(i0) +
r3
∑r−1
j=0 ‖A · bj‖Ч1

(i20 − r2)2
.

Proof. For 1), from (17) we know that the diagonal coefficients of K · Ti, and
respectively K·Ti0 , are those of the polynomials

∑
06j<r

∑
−dj6k6dj bjkγij(i+k),

and respectively
∑

06j<r

∑
−dj6k6dj bjkγi0j(i0+k). All these coefficients are of

positive index, so that we can shift them by i − i0 positions to the right by
replacing γi0j(i0+k) with γi0j(i+k) without changing the norm. This ruse allows
us to compare polynomials of equal degree i.e., γij(i+k) and γi0j(i+k):

|iBD(i)− i0BD(i0)| =

∣∣∣∣∣∣i
∥∥∥∥∥∥
r−1∑
j=0

dj∑
k=−dj

bjkγij(i+k)

∥∥∥∥∥∥
Ч1

− i0

∥∥∥∥∥∥
r−1∑
j=0

dj∑
k=−dj

bjkγi0j(i+k)

∥∥∥∥∥∥
Ч1

∣∣∣∣∣∣
6

r−1∑
j=0

dj∑
k=−dj

|bjk|‖iγij(i+k) − i0γi0j(i+k)‖Ч1 .

Using the fact that for all x such that |x| < i0 6 i,∣∣∣∣ i

i+ x
− i0
i0 + x

∣∣∣∣ 6 i0
(i0 − |x|)2

|x|,

we get that for any `, ‖iγij`−i0γi0j`‖Ч1 6 ri0/(i0−r)2. We conclude by noticing
that

BD(i) 6 i

i0
BD(i) 6 BD(i0)+

1

i0
|iBD(i)− i0BD(i0)| 6 BD(i0)+

r
∑r−1
j=0 ‖bj‖Ч1

(i0 − r)2
.

For 2) we have that

|i2BI(i)− i20BI(i0)| =

∣∣∣∣∣∣i2
∥∥∥∥∥∥A ·

r−1∑
j=0

γiji(−1)bj

∥∥∥∥∥∥
Ч1

− i20

∥∥∥∥∥∥A ·
r−1∑
j=0

γi0ji(−1)bj

∥∥∥∥∥∥
Ч1

∣∣∣∣∣∣
6

r−1∑
j=0

‖A · bj‖Ч1 |i2γiji(−1)− i20γi0ji(−1)|.

We conclude using (16) and a similar inequality:∣∣∣∣ i2

i2 − x2 −
i20

i20 − x2
∣∣∣∣ 6 i20

(i20 − x2)2
x2.

27

Algorithm 6 Bounding the truncation error
Input: A polynomial integral operator K (given by its order r and the bj(t)),

a truncation order n and an approximate inverse A of I + K[n].
Output: An upper bound δtrunc for the truncation error ‖A · (K−K[n])‖Ч1 .

B All operations are to be performed in interval arithmetics
B Compute δ(1)trunc > supi∈Jn−d+1,nKB(i)

1: δ
(1)
trunc ← 0

2: for i = n− d+ 1 to n do
3: P ← (I− пn) ·K · Ti
4: if ‖P‖Ч1 > δ

(1)
trunc then δ

(1)
trunc ← ‖P‖Ч1

5: end for

B Compute δ(2)trunc > supi∈Jn+1,n+dKB(i)

6: δ
(2)
trunc ← 0

7: for i = n+ 1 to n+ d do
8: P ← A ·K · Ti
9: if ‖P‖Ч1 > δ

(2)
trunc then δ

(2)
trunc ← ‖P‖Ч1

10: end for

B Compute δ(3)trunc > supi>n+d+1BD(i)

11: i0 ← n+ d+ 1 and B ←∑r−1
j=0 ‖bj‖Ч1

12: P ← (I− пn) ·K · Ti0 and δ
(3)
trunc ← ‖P‖Ч1

13: δ
(3)
trunc ← δ

(3)
trunc + rB

(i0−r)2

B Compute δ(4)trunc >
∑
i>n+d+1BI(i)

14: B ←∑r−1
j=0 ‖A · bj‖Ч1

15: P ← A · пn ·K · Ti0 and δ
(4)
trunc ← ‖P‖Ч1

16: δ
(4)
trunc ← δ

(4)
trunc + r3B

(i20−r2)2

17: δtrunc ← max(δ
(1)
trunc, δ

(2)
trunc, δ

(3)
trunc + δ

(4)
trunc)

18: return δtrunc

28

In practice, this method yields more accurate bounds when the parameters
of the problem become somehow large. Note that the bounds announced by
Lemma 7 can be sharpened if we don’t replace |j ± 1| with r. The obtained
formulas are essentially not more difficult to implement, but we omit these
details for the sake of clarity.

Proposition 7. Algorithm 6 is correct and requires O((h′ + d′)(h+ d)d) oper-
ations when A is (h′, d′)-almost-banded, or O(n(h + d)d) operations when A is
dense.

Proof. The correctness is straightforward, using Lemma 7. To reach the claimed
complexity, the polynomials K · Ti involved in the algorithm must be sparsely
computed as an (h, d)-almost-banded vector around index i, using O(rh) arith-
metic operations. Clearly, step 1 for δ(1)trunc (lines 1-5) costs O(drh) opera-
tions. For each i in step 2 for δ(2)trunc (lines 6-10), computing K · Ti costs
O(rh) operations to obtain an (h, d)-almost-banded vector, and applying A
costs O((h′ + d′)(h + d)) or O(n(h + d)) operations, depending on whether
A is (h′, d′)-almost-banded or dense (see Table 4 in Section 4). Hence we get
O((h′+d′)(h+d)d) or O(n(h+d)d) operations. After that, step 3 for δ(3)trunc (lines
11-13) costs O(rh) operations both to compute (I−пn)·K·Ti0 and

∑r−1
j=0 ‖bj‖Ч1 .

Finally, at step 4 (lines 14-16), computing
∑r−1
j=0 ‖A · bj‖Ч1 costs O((h′+ d′)rh)

or O(nrh) operations, and computing A ·пn ·K ·Ti0 costs O(rh+(h′+d′)(h+d))
or O(rh + n(h + d)) operations. We see that in both cases (A (h′, d′)-almost-
banded or dense), the most expensive step is the second one, which gives the
respective expected total complexities.

5.2 Complete validation method and complexity
We now have all the ingredients for the complete validation process: Algorithm 7
obtains a contracting Newton-like operator T and Algorithm 8 validates a can-
didate solution ϕ̃.

For Algorithm 7, the parameters h, d and the ‖bj‖Ч1 directly come from
LODE (3), while the other input parameters n, h′ and d′ must either be known
by the user or obtained from a decision procedure. For that, first, Proposition 8
analyses the complexity of Algorithm 7 (and Algorithm 8) when n, h′ and d′

are given. Then, a more detailed study of the magnitude of these parameters
and an intuition on how to chose them is proposed.

5.2.1 Complexity in function of the chosen parameters

Proposition 8. Let K be the integral operator associated to the polynomial
LODE (3), n be the truncation order chosen for the quasi-Newton method,
M = I + K[n] and (h, d) the parameters of its almost-banded structure, A the
approximation of M−1 used for T, either dense or (h′, d′)-almost-banded. We
have the following complexity results:

(i) The complexity of producing the Newton-like operator T and validating its
Ч1-norm using Algorithm 7 is:

O(n(h+ d)(h′ + d′)) (or O(n2(h+ d)) when A is dense).

29

Algorithm 7 Creating and validating a Newton-like operator T

Input: A polynomial integral operator K (given by its order r and the bj(t)),
a truncation order n and optional parameters h′ and d′.

Output: An approximate inverse A of I+K[n] ((h′, d′)-almost-banded if h′ and
d′ were specified, dense otherwise) and a certified Lipschitz constant µ.

1: M ← I + K[n], computed as an (h, d)-almost-banded matrix.
2: Compute (Q,R) for M using Algorithm 2(M)

B Compute the approximate inverse A of M
3: if h′ and d′ are specified with h 6 h′ < n and d 6 d′ < n then

BB A is (h′, d′)-almost-banded
4: Compute A (h′, d′)-almost-banded using Algorithm 5
5: else

BB A is dense
6: for i = 0 to n− 1 do
7: for j = 0 to n− 1 do V [j]← 0 and V [i]← 1
8: Numerically compute W = M−1 · V using Algorithm 3
9: Set i-th column of A to W end for

10: end for
11: end if

B Compute the approximation error δapprox > ‖I−A · (I + K[n])‖Ч1

12: δapprox ← 0
13: for i = 0 to n− 1 do
14: Set V to the i-th column of M , as an (h, d)-almost-banded vector
15: Compute W ← A · V and W [i]←W [i]− 1 with interval arithmetics

16: if ‖W‖1 > δapprox then δapprox ← ‖W‖1
17: end for

B Compute the truncation error δtrunc > ‖A · (K−K[n])‖Ч1

18: Compute δtrunc using Algorithm 6

19: µ← δapprox + δtrunc
20: if µ < 1 then
21: return µ
22: else
23: print "Fail, µ > 1"
24: end if

30

Algorithm 8 Validating a candidate solution of an integral equation
Input: A polynomial integral operator K (given by its order r and the bj(t)),

a polynomial right hand side ψ, a truncation order n, (A,µ) obtained from
Algorithm 7 with µ < 1, and a candidate solution ϕ̃.

Output: An error bound ε such that ‖ϕ̃− ϕ∗‖Ч1 6 ε.
B All operations are to be performed in interval arithmetics

1: P ← ϕ̃+ K · ϕ̃− ψ
2: for i = 0 to n do V [i]← [P]i
3: W ← A · V
4: for i = 0 to n do [P]i ←W [i]
5: ε← ‖P‖Ч1/(1− µ)
6: return ε

(ii) Having this validated Newton-like operator, an approximate solution ϕ̃
of (3) (with p = deg ϕ̃ and q = degψ) is validated using Algorithm 8
in:

O(prh+ q + (h′ + d′) min(n,max(p+ d, q)))

(or O(prh+ q + nmin(n,max(p+ d, q))) when A is dense).

Proof. For (i), we consider the different steps to obtain T and bound its Ч1-
norm:

• Computing M = I + K[n] (line 1) costs O(nrh) operations, using the
defining formula (14) of K, and O(nd2) operations are needed for the QR
decomposition (line 2) according to Proposition 4.

• Computing A (lines 3-11) needs O(n(h + d)(h′ + d′)) operations in the
almost-banded case (Corollary 1), or O(n2(h+ d)) in the dense case.

• Using Table 4, line 15 costs O((h′+d′)(h+d)) operations when A is (h′, d′)-
almost-banded, or O(n(h+d)) when it is dense. Hence the computation of
the approximation error is realized in O(n(h′+d′)(h+d)) (almost-banded
case) or O(n2(h+ d)) (dense case) operations.

• The truncation error (line 18) costs O((h′ + d′)(h+ d)d) operations when
A is (h′, d′)-almost-banded, or O(n(h + d)d) in the dense case, following
Proposition 7.

Hence, the total complexity is in O(n(h+ d)(h′+ d′)) when A is (h′, d′)-almost-
banded, or O(n2(h+ d)) when A is dense.

For (ii), computing P (of degree max(p + d, q)) at line 1 costs O(prh +
q) operations. Multiplying by A its n + 1 first coefficients (line 3) requires
O((h′ + d′) min(n,max(p + d, q)) operations (if A (h′, d′)-almost-banded) or
O(nmin(n,max(p+ d, q))) operations (if A dense). Note that at line 2, copying
the n+ 1 first coefficients of P costs min(max(p+ d, q), n) (neglect the null co-
efficients), and in the almost-banded case when max(p+ d, q) < n, lines 4 costs
(max(p + d, q) + h′ + d′) operations (again, neglect the final null coefficients).
This yields the claimed total complexity.

31

5.2.2 Choosing and estimating parameters n, h′ and d′

The complexity claimed by Proposition 8 depends on the parameters n, h′ and
d′. Hence, the performance of the validation method is directly linked to the
minimal values we can choose for these parameters.

In practice, one initializes n = 2d (to avoid troubles with too small values of
n) and then estimates the norm ‖(I + K[n])−1 · (K −K[n])‖Ч1 by numerically
applying this operator on Tn+1. This heuristic is similar to estimating the
truncation error of a Chebyshev series by its first neglected term [8, §4.4, Thm.
6]1. Specifically, for intermediate or large values of n, one has for i 6 n that
‖(K−K[n]) ·Ti‖Ч1 < ‖K ·Ti‖Ч1 , and for i > n+1, one has a decrease in O(1/i)

of ‖K ·Ti‖Ч1 . Recall that for i > n, K[n] ·Ti = 0, from Lemma 5. So, max
i>0
‖(I+

K[n])−1 · (K−K[n]) ·Ti‖Ч1 is approximately achieved for i = n+ 1. Concretely,
the image of Tn+1 reduces to numerically solving the corresponding almost-
banded system with input parameters M and пn ·K · Tn+1 using Algorithms 2
et 3. Then, we double the value of n each time this estimate is greater than 1,
or the validation process fails with this n. Similarly, we start with h′ = h and
d′ = d and we double these values until the approximation error falls below, say,
0.5.

In what follows, we give theoretical estimates for the order of magnitude of
the above mentioned parameters. First a bound for n is

n = O(dB2 exp(2B)), where B =

r−1∑
j=0

‖bj‖Ч1 .

This can be proved since n must be chosen large enough so that the sum of
the approximation and truncation errors falls below 1. For this, a sufficient
condition is ‖(I+K)−1 · (K−K[n])‖Ч1 < 1, using the proof of Lemma 6 (i), (ii)

and [17, Chap. 2, Cor. 8.2]. The estimate follows since ‖K−K[n]‖Ч1 = O(B/n),
from Lemma 5 and

‖(I + K)−1‖Ч1 6
∑
i>0

(6di+ 1)
2C

i!
6 (12dB + 1) exp(2B),

using Lemma 4 and the fact that C (defined in (13)) is upper bounded by B.
Now, for the almost-banded parameters h′, d′, we provide a practical esti-

mate of
h′, d′ = O(dB).

This is based on the observation that for sufficiently large n, we can expect
(K[n])p to behave approximately like Kp. Since ‖Kp‖Ч1 6 (6dp + 1)(2B)/p!,
this quantity falls below 1 as soon as p ≈ 2B exp(1). Moreover, A =

∑p−1
i=0 is

(d(p− 1), d(p− 1))-almost-banded (proof of Lemma 4).
To conclude, although it provides a rigorous complexity estimate, the bound

concerning n is usually very pessimistic. This is because the above mentioned
practical approach of doubling n ends up with far smaller values in most cases.
It often happens that ‖(I+K)−1‖Ч1 does not follow an exponential growth when

1[5, §2.12] presents, as a rule-of-thumb, the estimate of the truncation error by the last
term retained. Actually, it depends on the speed of convergence of the series.

32

B =
∑r−1
j=0 ‖bj‖Ч1 becomes large. For instance, when k(t, s) is nonnegative, then

the Neumann series
∑
i>0 Ki (equal to I+K) alternates signs and the Ч1-norm

of (I + K)−1 is far smaller than the term-by-term exponential bound. Several
examples in Section 7 illustrate this phenomenon. In the difficult cases involving
an exponential growth of ‖(I + K)−1‖Ч1 , the examples in Section 7 also show
how the almost-banded approach helps to keep the computation tractable up to
some extent.

6 Extensions to non-polynomial LODEs
In this section, we show how to address the general case stated in Problem 1. In
Subsection 6.1 we extend the previously described method to the non-polynomial
case with Cauchy boundary conditions. Then we discuss the case of other bound-
ary conditions in Subsection 6.2.

6.1 Extension to non-polynomial IVP
We consider the IVP problem (1a) where the coefficients αj , j = 0, . . . , r − 1,
and the right hand side γ belong to Ч1 and are rigorously approximated by
Chebyshev models αj = (aj , εj) and γ = (g, τ) obtained as in Section 2.3.
Using Proposition 3, we get an integral operator K with a kernel k(t, s) which
is polynomial in the variable s only:

k(t, s) =

r−1∑
j=0

βj(t)Tj(s),

where the βj are non-polynomial functions in Ч1.
To obtain Chebyshev models βj = (̃bj , ηj) of βj it suffices to run Algorithm 1

where one replaces the polynomials aj by Chebyshev models αj and overloads
corresponding arithmetic operations. Then, the polynomials b̃j define a polyno-
mial kernel kP (t, s) as in equation (14) and respectively the polynomial integral
operator KP , such that:

‖K−KP ‖Ч1 6 2

r−1∑
j=0

ηj . (22)

Moreover, since Algorithm 1 only performs linear operations on the Chebyshev
models αj to produce the βj , the quantity

∑
06j<r ηj is upper bounded by

C
∑

06j<r εj for some constant C depending only on r. This justifies the fact
that K is well approximated by KP when the coefficients αj are well approxi-
mated by the aj .

Let us prove that the truncated operators K[n] := пn ·K · пn still converge
to K and that I + K is an isomorphism of Ч1:

Lemma 8. Let K be the integral operator obtained from Proposition 3. We
have

1) K is a bounded linear operator of Ч1 with:

‖K‖Ч1 6 2

r−1∑
j=0

‖βj‖Ч1 .

33

2) K[n] → K for the ‖ · ‖Ч1-operator norm as n→∞. Hence K is compact.

3) I + K is a bicontinuous isomorphism of Ч1.

Proof. 1) Let ϕ ∈ Ч1. From (7) and (8), we have

‖K · ϕ‖Ч1 6
r−1∑
j=0

‖βj‖Ч1(2‖Tj‖Ч1‖ϕ‖Ч1) =

2

r−1∑
j=0

‖βj‖Ч1

 ‖ϕ‖Ч1 .

This shows that K ·ϕ ∈ Ч1 and that K is bounded as endomorphism of (Ч1, ‖ ·
‖Ч1) with the bound claimed above.

2) Let ε > 0. If the εj (and consequently the ηj) are small enough, then
‖K−KP ‖Ч1 6 ε/3 by (22). We know from Lemma 5, since KP is polynomial,
that for n large enough, ‖KP −K

[n]
P ‖Ч1 6 ε/3. We finally get:

‖K−K[n]‖Ч1 6 ‖K−KP ‖Ч1 + ‖KP −K
[n]
P ‖Ч1 + ‖K[n]

P −K[n]‖Ч1

6 ‖K−KP ‖Ч1 + ‖KP −K
[n]
P ‖Ч1 + ‖KP −K‖Ч1

6 ε

3
+
ε

3
+
ε

3
= ε.

3) The proof works exactly as in the polynomial case: we know that K is com-
pact by 2) and that I + K is injective because it is injective over the superspace
C0, cf. Section 3.1, and we conclude thanks to the Fredholm alternative.

Using this result, we can again form the Newton-like operator T as in Sec-
tion 5, with A ≈ (I + K

[n]
P)−1 for some large enough value of n.

The operator norm of the linear part of T can now be decomposed into three
parts:

‖I−A·(I+K)‖Ч1 6 ‖I−A·(I+K
[n]
P)‖Ч1+‖A·(KP−K

[n]
P)‖Ч1+‖A·(K−KP)‖Ч1 .

The first two parts are exactly the ones of (21) (where the polynomial integral
operator K is now called KP) and can be rigorously upper bounded using the
same techniques. The last part can be upper bounded thanks to (22):

‖A · (K−KP)‖Ч1 6 2‖A‖Ч1

r−1∑
j=0

ηj . (23)

It is interesting to notice that the order of magnitude of n is largely determined
by the second part (as in the polynomial case), whereas the third part forces
the ηj (and hence the εj) to be small, which mainly depends on the degree of
the approximating polynomials aj(t) for αj(t).

Finally, let ϕ̃ be the numerical approximation for the solution of the IVP
problem (1a), given as a polynomial in the Chebyshev basis. One upper bounds
‖T ·ϕ̃−ϕ̃‖Ч1 = ‖A ·(ϕ̃+K ·ϕ̃−ψ)‖Ч1 6 ‖A ·z‖Ч1 +τ‖A‖Ч1 , where ζ = (z, τ) is
a Chebyshev model of ϕ̃+K · ϕ̃−ψ obtained by arithmetic operations described
in Section 2.3.

Proposition 9. The results of Proposition 8 remain valid for the IVP validation
in the non-polynomial case (1a).

34

Proof. For computing a rigorous Lipschitz constant for T, the additional term
‖A ·(K−KP)‖Ч1 is bounded by (23). Clearly, this additional cost is dominated
by the complexity obtained in Proposition 8 (i) for the polynomial case.

Then, validating a candidate solution ϕ̃ has the same cost as in the poly-
nomial case (Proposition 8 (ii)), since all polynomial operations are essentially
replaced by their Chebyshev model extensions.

In conclusion, the theoretical extension to the general case is easily obtained.
However, in this case, the degres of αj are not fixed and depend on the the
required approximation accuracy. So, when high accuracy is needed this may
result into large, rather dense matrices. Moreover, if the approximate inverse
A has a large norm and if the ηj are not small enough to compensate it, then
the upper bound on ‖T · ϕ̃− ϕ̃‖Ч1 obtained at the last step can be rather loose.
Thus, the final error bound can be significantly less tight than in the polynomial
case.

6.2 The case of other boundary conditions
Consider now the general boundary conditions operator Λ : Ч1 → Rr of Prob-
lem (1b). In [46] an ad-hoc integral reformulation is proposed to treat a specific
case of such boundary conditions, while other works like [11] propose a generic
reformulation method. Our method consists in reducing a general BVP val-
idation problem to r + 1 IVP validation problems. This is easily observed,
since the initial values vj = f (j)(t0) appearing in the integral reformulation of
Proposition 3 are now unknown. At first sight, this may seem rather naive and
time-consuming. However, the most difficult part which consists in obtaining
a contracting Newton-like operator is performed only once, thus considerably
reducing the total computation time.

Suppose we have a candidate solution f̃ of BVP problem (1b). Our method
consists in rigorously computing a very accurate approximation f and then
comparing it with f̃ .

1. The first step is to provide A and compute an upper bound µ for ‖I −
A · (I + K)‖Ч1 . This depends neither on the initial conditions nor on the
right hand side γ(t).

2. Then, for each i ∈ J0, r−1K, we compute (with Algorithms 2 and 3 for the
underlying linear algebra) and validate with Algorithm 8 an approximation
f̃i for the solution f∗i of the homogeneous LODE associated to (1) (that
is, with right hand side g = 0) with initial conditions:

vj = f
(j)
i =

{
1 if i = j,
0 otherwise, 0 6 j < r.

Similarly, we approximate and validate the solution f∗r of Equation (1)
with right hand side g and null initial conditions (f (j)r = 0 for 0 6 j < r).
Since the validation kernel has been produced at the previous step, the
numerical solving procedure (Algorithms 2 and 3) as well as the validation
(Algorithm 8) are linear in the degree of the approximant. Thus, we obtain
Chebyshev models for f∗i , and for their derivatives f∗i

(j), 0 6 j 6 r.

35

3. The original equation with boundary conditions Λ·f = (λ0(f), . . . , λr−1(f)) =
(v0, . . . , vr−1) admits a unique solution f∗ if and only if there exist c0, c1, . . . , cr−1
uniquely determined such that

f∗ = c0f
∗
0 + c1f

∗
1 + · · ·+ cr−1f

∗
r−1 + f∗r

and

λ0(f∗0)c0 + λ0(f∗1)c1 + · · ·+ λ0(f∗r−1)cr−1 = −λ0(f∗r),

λ1(f∗0)c0 + λ1(f∗1)c1 + · · ·+ λ1(f∗r−1)cr−1 = −λ1(f∗r),

...
λr−1(f∗0)c0 + λr−1(f∗1)c1 + · · ·+ λr−1(f∗r−1)cr−1 = −λr−1(f∗r).

If the quantities λj(f∗i) can be rigorously and accurately computed using
the Chebyshev models of the f∗i

(j) obtained at the previous step, then one
can solve this linear system in interval arithmetics.

4. Using the (interval) coefficients c0, . . . , cr−1 and the Chebyshev models
f0, . . . ,fr−1,fr, we get that:

f = (f, ε) := c0f0 + · · ·+ cr−1fr−1 + fr

is a Chebyshev model for the exact solution f∗. Now, it suffices to com-
pute η = ‖f̃ − f‖Ч1 (which is straightforward since both f̃ and f are
polynomials) and we deduce that the exact error ‖f̃ − f∗‖Ч1 belongs to
the interval [η − ε, η + ε]. Note that the intermediate approximant f has
to be sharp enough, that is, the approximation degree has to be chosen
large enough), such that ε� η which gives a sharp enclosure of the error.

7 Experimental results
Four examples illustrate our validation method and investigate its limitations.
First, Airy differential equation exemplifies the polynomial IVP case. Second,
the non-polynomial IVP case is illustrated by the mechanical study of the un-
damped pendulum with variable length. Third, a non-polynomial BVP problem
is exemplified by a boundary layer problem. Finally, we apply our method to a
practical space mission problem, namely, the trajectory validation in linearized
Keplerian dynamics.

7.1 Airy equation
The Airy function of the first kind is a special function defined by Ai(x) =
1/π

∫∞
0

cos(s3/3 + xs)ds and solution of the Airy differential equation:

y′′(x)− xy(x) = 0, (24)

with the initial conditions at 0:

Ai(0) =
1

32/3Γ(2/3)
, Ai′(0) = − 1

31/3Γ(1/3)
.

36

Airy functions, Ai and Bi, depicted in Figure 7.1, form together the standard
basis of the solutions space of (24) (see [1], Chap. 10 Bessel Functions of
Fractional Order).

In what follows, we apply the validation method on intervals of the form
[−a, 0] or [0, a] (for a > 0), and investigate its behavior in these two different
cases.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-15 -10 -5 0 5

x

Bi(x)
Ai(x)

Figure 3: Airy functions of the first and second kinds

7.1.1 Validation over the negative axis

We rigorously approximate Ai over [−a, 0] for some a > 0, or equivalently
u(t) = Ai(−(1 + t)a/2) over [−1, 1]. This appears for instance in quantum
mechanics when considering a particle in a one-dimensional uniform electric
field. The function u is solution of the following IVP problem:

u′′(t) +
a3

8
(1 + t)u(t) = 0,

u(−1) =
1

32/3Γ(2/3)
and u′(−1) =

a/2

31/3Γ(1/3)
.

After the integral transform, we get:

k(t, s) =
a3

8
(1 + t)(t− s), ψ(t) = −a

3

8
((1 + t)u(−1) + (1 + t)2u′(−1)),

b0(t) =
a3

16
(T0(t) + 2T1(t) + T2(t)), b1(t) = −a

3

8
(T0(t) + T1(t)),

h = 2, d = 3.

Figure 4(a) illustrates the growth of the parameters n, h′ and d′ chosen
for Algorithm 7 in order to obtain a contracting Newton-like operator T when
a varies. We observe that n grows considerably slower than the pessimistic
exponential bound claimed in Section 5.2.2. In counterpart, the quantity h′+d′

is of the order of magnitude of n, which means that the almost-banded approach
computes a dense A and could therefore be replaced by a direct numerical
computation of (I + K[n])−1.

37

As an example, let f̃ be a low-degree (for example 48) approximation of
Ai over [−10, 0] that reaches machine precision, obtained using the integral
reformulation and Algorithms 2 and 3 for linear algebra. We want to validate
this candidate approximation. The problem is rescaled over [−1, 1] as above,
with a = 10. Call ϕ̃ = f̃ ′′, and ϕ∗ the exact mathematical solution of the
integral equation associated to our problem. With n = 72, h′ = 24, d′ = 24,
Algorithm 7 produces a contracting operator T with µ = 0.128. After that, we
run Algorithm 8: we evaluate ‖ϕ̃−T · ϕ̃‖Ч1 = ‖A ·(ϕ̃+K · ϕ̃−ψ)‖Ч1 and obtain
3.87 ·10−18. So we finally get ‖ϕ̃−ϕ∗‖Ч1 6 3.87 ·10−18/(1−0.128) = 4.43 ·10−18

and f̃ = u(−1) + (1 + t)u′(−1) +
∫ t
−1
∫ s
−1 ϕ̃(τ)dτds (of degree 50) approximates

u(t) = Ai(−(1 + t)a/2) within a Ч1-error equal to 1.78 · 10−17, which is already
beyond machine precision.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 50 100 150 200 250 300 350 400 450 500

n
,

h
'+

d
'

a

n
h'+d'

(a) over [−a, 0]

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10

n
,

h
'+

d
'

a

n
h'+d'

(b) over [0, a]

Figure 4: Parameters n and h′ + d′ chosen during the validation, in function of
a

7.1.2 Validation over the positive axis

We similarly pose u(t) = Ai((1+t)a/2) to study Ai over the segment [0, a] (with
a > 0) on the real positive axis. The differential equation and integral transform
are similar to the case above, except for the signs:

u′′(t)− a3

8
(1 + t)u(t) = 0,

u(−1) =
1

32/3Γ(2/3)
and u′(−1) = − a/2

31/3Γ(1/3)
,

k(t, s) = −a
3

8
(1 + t)(t− s), ψ(t) =

a3

8
((1 + t)u(−1) + (1 + t)2u′(−1)),

b0(t) = −a
3

16
(T0(t) + 2T1(t) + T2(t)), b1(t) =

a3

8
(T0(t) + T1(t)),

h = 2, d = 3.

Though, we observe a very different behavior for the parameters in Figure 4(b).
The truncation order n grows exponentially and seems in accordance with the
pessimistic bound (5.2.2). On the opposite, h′+d′ remains significantly smaller
than n, justifying the use of the almost-banded approach.

38

To understand the difference between the positive and negative cases, let us
analyze the behavior of Ai and Bi, see Figure 7.1, which is directly linked to
the norm of (I + K)−1. Over the negative axis, both Ai and Bi have bounded
oscillations. Thus, the intuition is that ‖(I + K)−1‖Ч1 does not grow so fast
when the interval [−a, 0] becomes large, and stays far below the exponential
bound B exp(2B) despite its necessary growth due to these oscillations. On
the contrary, Bi grows exponentially fast over the positive axis (we have the

asymptotic formula Bi(x) ∼ exp(2
3x

3/2)√
πx1/4 when x→ +∞ [1, 10.4.63]). This clearly

implies that ‖(I + K)−1‖Ч1 must grow exponentially with a. For the bound
based on the Neumann series of the operator, one can reason by analogy with
the scalar case, using for example the exponential series exp(x) =

∑
i>0 x

i/i!.
When x is a large negative number, the series is alternating, hence, its evaluation
exp(x) is far smaller than the bound exp(|x|) computed by taking each term of
the series in absolute value.

7.2 Undamped pendulum with variable length
Consider the motion of an undamped pendulum with variable length `(t), which
is modeled by the equation:

θ′′(t) + 2
`′(t)

`(t)
θ′(t) +

g

`(t)
sin θ(t) = 0, (25)

where θ(t) is the angle at time t between the pendulum and its equilibrium
position, and g = 9.81 the gravitational acceleration. On the time interval
[−1, 1] and for a constant variation of the length `(t) = `0(1+ζt) (with |ζ| < 1),
we analyze the evolution of θ(t) in a small neighborhood of 0 such that sin θ can
be linearized into θ. Equation (25) becomes:

θ′′(t) +
2ζ

1 + ζt
θ′(t) +

g

`0(1 + ζt)
θ(t) = 0, θ(−1) = θ0 � 1 and θ′(−1) = 0.

The coefficients of this equation are not polynomials. Hence, we first provide
a Chebyshev model for ξ(t) = 1/(1 + ζt) with |ζ| < 1. If ζ ∈ Q, we can use
the algorithm for certified Chebyshev expansion of rational functions presented
in [3, Algorithm 5.6], which relies on the Bronstein-Salvy algorithm. Otherwise,
our solution consists in a generic fixed-point validation method for quotient of
Chebyshev models.

Figure 5(a) summarizes the obtained error bound ε (for the Ч1-norm) in
function of the approximation degree p for different values of ζ, with l0 = 1
fixed.

Next, we create and bound the contracting Newton-like operator T. Fig-
ure 5(b) shows the corresponding values of p (degree of the approximant of
t 7→ 1/(1 + ζt)) and n (truncation order for the integral operator) we use for
Algorithm 7, and the values of h′ + d′, expressing the advantage of taking an
almost-banded A instead of a dense one.

We first observe that n grows when |ζ| gets close to 1, which is due to the
growth of the Ч1-norm of t 7→ 1/(1+ζt). However, the situation is very different
depending on the sign of ζ. When ζ gets close to −1, n grows exponentially
fast. The quantity h′ + d′ grows slowlier, so that the almost-banded approach
helps a little. As for the Airy function, this exponential behavior is due to

39

the large negative coefficient in front of y′ in equation (25). This difficult case
corresponds to a decrease in the rope’s length, resulting in increasing oscillations
of the pendulum (see Figure 5(d)). On the contrary, the case ζ → 1 is easier to
treat, since it corresponds to an increase of the rope’s length, producing damped
oscillations of the pendulum (see Figure 5(c)).

The two numerical solutions plotted on Figures 5(c) and 5(d) were certified
using Algorithm 8. For the damped case (l0 = 0.1 and ζ = 0.9), we obtained
a Chebyshev model of degree 50 with a Ч1-error equal to 1.40 · 10−4. The
diverging case (`0 = 0.1 and ζ = −0.9) used a Chebyshev model of degree 65
with an error of 1.15 · 10−4.

 1e-50

 1e-45

 1e-40

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 0 10 20 30 40 50 60 70 80 90 100

e
rr

o
r
ε

p

ζ = 0.1
ζ = 0.5

ζ = 0.75
ζ = 0.9

ζ = 0.99

(a) Approximation error ε of the coefficient
t 7→ 1/(1 + ζt) in function of approximation
degree d

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

-0.999 -0.99 -0.9 0 0.9 0.99 0.999

p
,

n
,

h
'+

d
'

ζ

p
n

h'+d'

(b) Parameters p, n and h′+d′ chosen during
the validation, for l0 = 1 fixed and in function
of ζ

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0.01

-1 -0.5 0 0.5 1

θ
 (

ra
d

)

t (s)

θ(t)

(c) Damped oscillations of the pendulum ob-
tained for l0 = 0.1 and ζ = 0.9

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

-1 -0.5 0 0.5 1

θ
 (

ra
d

)

t (s)

θ(t)

(d) Diverging oscillations of the pendulum ob-
tained for l0 = 0.1 and ζ = −0.9

Figure 5: Validation process for the parametric pendulum

7.3 Boundary layer problem
We take from [33] the example of the boundary layer problem, modeled by the
following BVP problem, with ε > 0:

u′′(x)− 3x

ε

(
cosx− 8

10

)
u′(x) +

(
cosx− 8

10

)
u(x) = 0,

x ∈ [−1, 1], u(−1) = 1, u(1) = 1.

(26)

The solution of this BVP is plotted in Figure 6(a) for three different values
of ε. Figure 6(b) shows the basis (u1, u2) of the solution space of LODE (26)
associated to the canonical initial conditions {u1(−1) = 1, u′1(−1) = 0} and

40

{u2(−1) = 0, u′2(−1) = 1}, for ε = 0.00001. Thus, the exact solution u of the
BVP is given by:

u(x) = u1(x) + λu2(x), with λ =
1− u1(1)

u2(1)
. (27)

Since u1(1) and u2(1) tend to be very large when ε gets close to zero, obtaining
u from u1 and u2 is an ill-conditioned problem. With ε = 0.00001, the obtained
approximation using the binary64 (double) format is completely inaccurate (see
Figure 6(c)). To prevent this, we can for example extend the computing preci-
sion or use another method. In any case, validating the obtained approximate
solution is useful.

The first task consists in rigorously approximating the cosine function over
[−1, 1]. This can be done by a recursive call to our validation method on the
differential equation ξ′′ + ξ = 0 with ξ(−1) = cos(−1) and ξ′(−1) = − sin(−1).
For this application, a degree 10 Chebyshev model for cos is sufficient.

Then, we run Algorithm 7 to get a contracting Newton-like operator. Fig-
ure 6(d) illustrates the growth of the validation parameters in function of ε.
When ε > 0 gets small, the coefficient in front of y′ takes large negative values,
yielding an exponential growth of ‖(I+K)−1‖Ч1 and hence of the minimal trun-
cation order n we can choose. Since h′+ d′ remain small compared to n, we get
here a typical example where the exponential bound prevents us from validating
a solution of LODE (26) with very small ε, but where however the choice of an
almost-banded A allows us to treat intermediate cases: ε ∈ [0.01, 0.005].

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

u
(x

)

x

ε = 0.1
ε = 0.001

ε = 0.00001

(a) Solution of BVP Problem (26) for different
values of ε

-500000

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

-1 -0.5 0 0.5 1

u1(x)
u2(x)

(b) Basis (u1, u2) of the solution space for ε =
0.00001

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

-1 -0.5 0 0.5 1

x

u~ (x)

(c) Inaccurate numerical solution ũ obtained
with ε = 0.00001

 1

 10

 100

 1000

 10000

 0.01 0.1 1

n
,

h
'+

d
'

ε

n
h'+d'

(d) Parameters n and h′ + d′ chosen during
the validation, in function of ε

Figure 6: Validation process for the boundary layer problem

41

Next, we compute high-degree Chebyshev models u1 and u2 for the basis
(u1, u2). This requires Algorithms 2 and 3 to obtain a numerical approximation,
and using the previously obtained Newton-like operator T to certify them with
Algorithm 8. Hence, this step has a linear complexity with respect to the
approximation degree we use. Computing the value of λ in Equation (27) in
interval arithmetics gives a Chebyshev model u for the exact solution u using u1

and u2. Finally, the error associated to the candidate numerical approximate
solution ũ is obtained by adding the certified error of u with the Ч1-distance
between ũ and the polynomial of u.

7.4 Spacecraft trajectories using linearized equations for
Keplerian motion

We consider the case of Tschauner-Hempel equations [42], which model the
linearized relative motion of an active spacecraft around a passive target (like
the International Space Station) in eliptic orbit around the Earth, provided
that their relative distance is small with respect to their distance to the Earth.
These equations are very used in robust rendezvous space missions, where the
accuracy of their computed solutions is at stake.

Call e ∈ [0, 1) the eccentricity of the fixed orbit of the target, and let ν be the
true anomaly (an angular parameter that defines the position of a body moving
along a Keplerian orbit) associated to the target, which is the independent
variable in our problem. The in-plane motion of the spacecraft relatively to the
target (that is, the component of the motion inside the plane supported by the
elliptic orbit of the chaser) is defined using two position variables x(ν) and z(ν),
satisfying the following linearized system over the interval [ν0, νf]:

z′′(ν) +

(
4− 3

1 + e cos ν

)
z(ν) = c,

x(ν) = x(ν0) + (x′(ν0)− 2z(ν0))(ν − ν0) + 2

∫ ν

ν0

z(s)ds,

c = 4z(ν0)− 2x′(ν0) and ν ∈ [ν0, νf].

As an example, fix the eccentricity e = 0.5, the interval [ν0, νf] = [0, 6π] (cor-
responding to 3 periods) and the initial conditions (x(ν0), z(ν0), x′(ν0), z′(ν0)) =
(−3 · 104 m, 5 · 103 m, 9 · 103 m · rad−1, 4 · 103 m · rad−1). The corresponding
functions x(ν) and z(ν) are plotted in Figure 7(a). Figure 7(b) represents an
approximation of degree n = 18 of z′′(ν) (radial acceleration), together with the
rigorous error bound obtained by our method. The dashed curve corresponds
to the exact solution, which as expected lies inside the tube defined by our rig-
orous approximation. One notice that we obtain a tight error bound, even for
the ‖ · ‖∞ norm.

8 Conclusion and future directions
In this article, we proposed a generic efficient algorithm for computing rigorous
polynomial approximations for LODEs. We focused on both its theoretical and
practical complexity analysis. For this, firstly, we studied theoretical properties

42

-450000

-400000

-350000

-300000

-250000

-200000

-150000

-100000

-50000

 0

 50000

 100000

0 π 2π 3π 4π 5π 6π

x
,

z
(m

)

ν (rad)

x(ν)
z(ν)

(a) Exact representation of x(ν) and z(ν) for
ν ∈ [ν0, νf]

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

0 π 2π 3π 4π 5π 6π

m
.r

a
d

-2

ν (rad)

error bound ε
φ~ (ν)

z''(ν)

(b) Rigorous approximation ϕ̃ of degree n =
18 of z′′

Figure 7: Validation process for the Keplerian motion of a satellite, with e = 0.5
and νf − ν0 = 6π

like compactness, convergence, invertibility of associated linear integral opera-
tors and their truncations over Ч1, the coefficient space of Chebyshev series.
Then, we focused on the almost-banded matrix structure of these operators,
which allowed for very efficient numerical algorithms for both the numerical
solutions of LODEs and the rigorous computation of the approximation error.
More specifically, the proposed a posteriori validation algorithm is based on
a quasi-Newton method, which benefits from the almost-banded structure of
intervening operators. Finally, several representative examples showed the ad-
vantages of our algorithms as well as their theoretical and practical limits.

Several extensions of this work are possible:

• One of the easiest generalizations, which is work in progress, is the multi-
dimensional case, where we have a system of linear ordinary differential
equations. In fact, extending the Ч1 space to the multi-dimensional case,
where functions are of type [−1, 1]→ Rp, is sufficient to that purpose: we
still get an almost-banded integral operator in the coefficient space.

• Another work in progress is to rewrite the Picard iterations based vali-
dation method presented in [3] as a quasi-Newton validation technique.
Then, using on our current almost-banded operator based algorithms, we
will be able to generalize the method in [3] to the non-homogeneous and
non-polynomial LODE case with a better complexity bound, by allowing
a more involved analysis of the iterated kernels.

• We also consider the generalization to other classes of orthogonal polyno-
mials, like Legendre polynomials, or Hermite and Laguerre polynomials
over unbounded intervals. In fact, orthogonal polynomials always satisfy
a three-term-recurrence, so that the multiplication and integration formu-
las remain similar, which should produce similar almost-banded integral
operators.

• The propagation of uncertain initial conditions via LODEs may also be
explored based on our current techniques.

• The existing C implementation will be made available as open source code.
Moreover, we also intend to provide a Coq implementation to guarantee

43

both the theoretical correctness of that method and the soundness of its
current C implementation.

• More involved generalizations are non-linear ODEs and (linear) PDEs.
In both cases however, we have to rely on a multivariate approximation
theory with orthogonal polynomials (such theories exist but are not unique
and depend on the domain of approximation) and the theory for such
differential equations are far less structured than the easy linear univariate
case. In particular, the time complexity of such extensions may be huge
compared to the present case.

Acknowledgments
We thank Denis Arzelier and Marc Mezzarobba for many useful discussions
and/or comments regarding this work.

References
[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions

with formulas, graphs, and mathematical tables, vol. 55 of National Bureau
of Standards Applied Mathematics Series, 1964.

[2] G. Baszenski and M. Tasche, Fast polynomial multiplication and convo-
lutions related to the discrete cosine transform, Linear Algebra Appl., 252
(1997), pp. 1–25, https://doi.org/10.1016/0024-3795(95)00696-6,
http://dx.doi.org/10.1016/0024-3795(95)00696-6.

[3] A. Benoit, M. Joldes, and M. Mezzarobba, Rigorous uniform approx-
imation of D-finite functions using Chebyshev expansions, Mathematics of
Computation, (2016), https://doi.org/10.1090/mcom/3135.

[4] V. Berinde, Iterative approximation of fixed points, vol. 1912 of Lecture
Notes in Mathematics, Springer, Berlin, 2007.

[5] J. P. Boyd, Chebyshev and Fourier spectral methods, Dover Publications,
2001.

[6] H. Brezis, Functional analysis, Sobolev spaces and partial differential
equations, Springer Science & Business Media, 2010.

[7] N. Brisebarre and M. Joldeş, Chebyshev interpolation polynomial-
based tools for rigorous computing, in Proceedings of the 2010 International
Symposium on Symbolic and Algebraic Computation, ACM, 2010, pp. 147–
154.

[8] E. W. Cheney, Introduction to approximation theory, AMS Chelsea Pub-
lishing, Providence, RI, 1998. Reprint of the second (1982) edition.

[9] S. Chevillard, J. Harrison, M. Joldeş, and C. Lauter, Efficient
and accurate computation of upper bounds of approximation errors, Theo-
retical Computer Science, 412 (2011), pp. 1523–1543.

44

https://doi.org/10.1016/0024-3795(95)00696-6
http://dx.doi.org/10.1016/0024-3795(95)00696-6
https://doi.org/10.1090/mcom/3135

[10] T. A. Driscoll, F. Bornemann, and L. N. Trefethen, The chebop
system for automatic solution of differential equations, BIT Numerical
Mathematics, 48 (2008), pp. 701–723.

[11] K. Du, On well-conditioned spectral collocation and spectral methods by the
integral reformulation, SIAM J. Sci. Comput., 38 (2016), pp. A3247–A3263,
https://doi.org/10.1137/15M1046629, http://dx.doi.org/10.1137/
15M1046629.

[12] C. Epstein, W. Miranker, and T. Rivlin, Ultra-arithmetic I: function
data types, Mathematics and Computers in Simulation, 24 (1982), pp. 1–18.

[13] C. Epstein, W. Miranker, and T. Rivlin, Ultra-arithmetic II: inter-
vals of polynomials, Mathematics and Computers in Simulation, 24 (1982),
pp. 19–29.

[14] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zim-
mermann, MPFR: A Multiple-Precision Binary Floating-Point Library
with Correct Rounding, ACM Transactions on Mathematical Software,
33 (2007), https://doi.org/http://doi.acm.org/10.1145/1236463.
1236468. Available at http://www.mpfr.org/.

[15] L. Fox and I. B. Parker, Chebyshev polynomials in numerical analysis,
Oxford University Press, London-New York-Toronto, Ont., 1968.

[16] P. Giorgi, On polynomial multiplication in Chebyshev basis, IEEE Trans.
Comput., 61 (2012), pp. 780–789, https://doi.org/10.1109/TC.2011.
110, http://dx.doi.org/10.1109/TC.2011.110.

[17] I. Gohberg, S. Goldberg, and M. A. Kaashoek, Basic
classes of linear operators, Birkhäuser Verlag, Basel, 2003, https://
doi.org/10.1007/978-3-0348-7980-4, http://dx.doi.org/10.1007/
978-3-0348-7980-4.

[18] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods:
Theory and Applications, vol. 26, Siam, 1977.

[19] L. Greengard, Spectral integration and two-point boundary value prob-
lems, SIAM Journal on Numerical Analysis, 28 (1991), pp. 1071–1080.

[20] A. Hungria, J.-P. Lessard, and J. D. Mireles James, Rigorous nu-
merics for analytic solutions of differential equations: the radii polynomial
approach, Mathematics of Computation, 85 (2016), pp. 1427–1459.

[21] A. Iserles, A first course in the numerical analysis of differential equa-
tions, no. 44, Cambridge university press, 2009.

[22] Y. Katznelson, An introduction to harmonic analysis, Cambridge Uni-
versity Press, 2004.

[23] E. Kaucher and W. Miranker, Self-validating numerics for function
space problems, Acad. Press, 1984.

45

https://doi.org/10.1137/15M1046629
http://dx.doi.org/10.1137/15M1046629
http://dx.doi.org/10.1137/15M1046629
https://doi.org/http://doi.acm.org/10.1145/1236463.1236468
https://doi.org/http://doi.acm.org/10.1145/1236463.1236468
http://www.mpfr.org/
https://doi.org/10.1109/TC.2011.110
https://doi.org/10.1109/TC.2011.110
http://dx.doi.org/10.1109/TC.2011.110
https://doi.org/10.1007/978-3-0348-7980-4
https://doi.org/10.1007/978-3-0348-7980-4
http://dx.doi.org/10.1007/978-3-0348-7980-4
http://dx.doi.org/10.1007/978-3-0348-7980-4

[24] T. Lalescu, Introduction à la théorie des équations intégrales (Introduc-
tion to the Theory of Integral Equations), Librairie Scientifique A. Her-
mann, 1911.

[25] J.-P. Lessard and C. Reinhardt, Rigorous numerics for nonlinear dif-
ferential equations using chebyshev series, SIAM Journal on Numerical
Analysis, 52 (2014), pp. 1–22.

[26] P. D. Lizia, Robust Space Trajectory and Space System Design using Dif-
ferential Algebra, Ph.D. thesis, Politecnico di Milano, Milano, Italy, 2008.

[27] K. Makino and M. Berz, Taylor models and other validated functional
inclusion methods, International Journal of Pure and Applied Mathematics,
4 (2003), pp. 379–456, http://bt.pa.msu.edu/pub/papers/TMIJPAM03/
TMIJPAM03.pdf.

[28] J. C. Mason and D. C. Handscomb, Chebyshev polynomials, CRC
Press, 2002.

[29] R. E. Moore, Interval Analysis, Prentice-Hall, 1966.

[30] R. E. Moore and F. Bierbaum, Methods and applications of interval
analysis, vol. 2, SIAM, 1979.

[31] M. Neher, K. R. Jackson, and N. S. Nedialkov, On Taylor model
based integration of ODEs, SIAM Journal on Numerical Analysis, 45 (2007),
pp. 236–262, https://doi.org/10.1137/050638448, http://link.aip.
org/link/?SNA/45/236/1.

[32] A. Neumaier, Taylor forms – Use and limits, Reliable Computing, 9
(2003), pp. 43–79.

[33] S. Olver and A. Townsend, A fast and well-conditioned spectral method,
SIAM Review, 55 (2013), pp. 462–489.

[34] M. J. D. Powell, Approximation theory and methods, Cambridge Uni-
versity Press, 1981.

[35] L. B. Rall, Computational solution of nonlinear operator equations, Wiley
New York, 1969.

[36] N. Revol and F. Rouillier, Motivations for an arbitrary precision in-
terval arithmetic and the MPFI library, Reliable Computing, 11 (2005),
pp. 1–16. Available at http://mpfi.gforge.inria.fr/.

[37] T. J. Rivlin, The Chebyshev Polynomials, Wiley, 1974.

[38] B. Salvy, D-finiteness: Algorithms and applications, in ISSAC 2005: Pro-
ceedings of the 18th International Symposium on Symbolic and Algebraic
Computation, Beijing, China, July 24-27, 2005, M. Kauers, ed., ACM,
2005, pp. 2–3. Abstract for an invited talk.

[39] R. P. Stanley, Differentiably finite power series, European Journal of
Combinatorics, 1 (1980), pp. 175–188.

46

http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
http://bt.pa.msu.edu/pub/papers/TMIJPAM03/TMIJPAM03.pdf
https://doi.org/10.1137/050638448
http://link.aip.org/link/?SNA/45/236/1
http://link.aip.org/link/?SNA/45/236/1
http://mpfi.gforge.inria.fr/

[40] L. N. Trefethen, Computing Numerically with Functions Instead of
Numbers, Mathematics in Computer Science, 1 (2007), pp. 9–19, http:
//dx.doi.org/10.1007/s11786-007-0001-y.

[41] L. N. Trefethen, Approximation theory and approximation practice,
SIAM, 2013.

[42] J. Tschauner and P. Hempel, Optimale beschleunigungsprogramme fur
das rendezvous-manover, Astronautica Acta, 10 (1964), pp. 296–+.

[43] W. Tucker, Validated numerics: a short introduction to rigorous compu-
tations, Princeton University Press, 2011.

[44] J. B. van den Berg and J.-P. Lessard, Rigorous numerics in dynamics,
Notices of the AMS, 62 (2015).

[45] A.-M. Wazwaz, Linear and nonlinear integral equations: methods and
applications, Springer Science & Business Media, 2011.

[46] N. Yamamoto, A numerical verification method for solutions of boundary
value problems with local uniqueness by Banach’s fixed-point theorem, SIAM
Journal on Numerical Analysis, 35 (1998), pp. 2004–2013.

[47] D. Zeilberger, A holonomic systems approach to special functions iden-
tities, Journal of Computational and Applied Mathematics, 32 (1990),
pp. 321–368.

[48] A. Zygmund, Trigonometric series. Vol. I, II, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, third ed., 2002.

47

http://dx.doi.org/10.1007/s11786-007-0001-y
http://dx.doi.org/10.1007/s11786-007-0001-y

	Introduction
	Previous works
	General setting for quasi-Newton validation
	Computation and complexity model
	Overview of our approach and main results

	Function approximation by Chebyshev series
	Chebyshev polynomials and Chebyshev series
	The Banach space (1,69645069 86422285 1)
	Matrix representation

	Definition of Chebyshev models and elementary operations

	Integral operator and its truncations
	Inverse of bold0mu mumu IIIIII + bold0mu mumu KKKKKK in (C0([-1,1]),69645069 86422285)
	Inverse of bold0mu mumu IIIIII + bold0mu mumu KKKKKK in (1,69645069 86422285 1)
	Matrix representation of bold0mu mumu IIIIII+bold0mu mumu KKKKKK in 1
	Iterations of bold0mu mumu KKKKKK in 1 and almost-banded approximations of (bold0mu mumu IIIIII+bold0mu mumu KKKKKK)-1

	Approximate solutions via truncations bold0mu mumu KKKKKK[n] of bold0mu mumu KKKKKK

	Algorithms involving almost-banded matrices
	A reminder on Olver and Townsend's algorithm for almost-banded linear systems
	First step: QR decomposition
	Second step: back-substitution

	An algorithm for almost-banded approximation of inverse of almost-banded matrix

	A quasi-Newton validation method
	Bounding the truncation error
	Complete validation method and complexity
	Complexity in function of the chosen parameters
	Choosing and estimating parameters n, h' and d'

	Extensions to non-polynomial LODEs
	Extension to non-polynomial IVP
	The case of other boundary conditions

	Experimental results
	Airy equation
	Validation over the negative axis
	Validation over the positive axis

	Undamped pendulum with variable length
	Boundary layer problem
	Spacecraft trajectories using linearized equations for Keplerian motion

	Conclusion and future directions

