
HAL Id: hal-01526083
https://hal.science/hal-01526083v2

Preprint submitted on 19 Feb 2018 (v2), last revised 15 May 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stable recovery of deep linear networks under sparsity
constraints

François Malgouyres, Joseph Landsberg

To cite this version:
François Malgouyres, Joseph Landsberg. Stable recovery of deep linear networks under sparsity con-
straints. 2017. �hal-01526083v2�

https://hal.science/hal-01526083v2
https://hal.archives-ouvertes.fr


Proceedings of Machine Learning Research vol 75:1–15, 2018

Stable recovery of deep linear networks under sparsity constraints

François Malgouyres MALGOUYRES@MATH.UNIV-TOULOUSE.FR
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Abstract

We study a deep linear network expressed under the form of a matrix factorization problem. It

takes as input a matrix X obtained by multiplying K matrices (called factors and corresponding

to the action of a layer). Each factor is obtained by applying a fixed linear operator to a vector of

parameters satisfying a sparsity constraint. In machine learning, the error between the product of

the estimated factors and X (i.e. the reconstruction error) relates to the statistical risk. The stable

recovery of the parameters defining the factors is required in order to interpret the factors and the

intermediate layers of the network.

In this paper, we provide sharp conditions on the network topology under which the error on the

parameters defining the factors (i.e. the stability of the recovered parameters) scales linearly with

the reconstruction error (i.e. the risk). Therefore, under these conditions on the network topology,

any successful learning tasks leads to robust and therefore interpretable layers.

The analysis is based on the recently proposed Tensorial Lifting. The particularity of this

paper is to consider a sparse prior. As an illustration, we detail the analysis and provide sharp

guarantees for the stable recovery of convolutional linear network under sparsity prior. As expected,

the condition are rather strong.

Keywords: Stable recovery, deep linear networks, convolutional linear networks, feature robustess.

1. Introduction

Let K ∈ N
∗, m1 . . . mK+1 ∈ N, write m1 = m, mK+1 = n. We impose the factors to be structured

matrices defined by a number S of unknown parameters. More precisely, for k = 1 . . . K, let

Mk : RS −→ R
mk×mk+1 ,

h 7−→ Mk(h)

be a linear map. We assume that we know the matrix X ∈ R
m×n which is provided by

X = M1(h1) · · ·MK(hK) + e, (1)

for an unknown error term e, such that ‖e‖ ≤ δ, and parameters h = (hk)k=1..K ∈ R
S×K .

Moreover, considering a family of possible supports M (e.g., all the supports of size S′, for a
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given S′ ≤ S), we assume that the h satisfy a sparsity constraint of the form : there exists S =
(Sk)k=1..K ∈ M such that supp

(

h
)

⊂ S (i.e.: ∀k, supp
(

hk

)

⊂ Sk).

This work investigates necessary and sufficient conditions imposed on the constituents of (1) for

which we can (up to obvious scale rearrangement) stably recover the parameters h from X. Beside

these conditions, we assume that we have a way to find S∗ ∈ M and h∗ ∈ R
S×K
S∗ such that

η = ‖M1(h
∗
1) . . .MK(h∗

K)−X‖ , is small. (2)

As we will discuss later, at the writing, the success of algorithms for constructing h∗ is mostly

supported by empirical evidence and lack theoretical justifications. These aspects of the problem

are out of the scope of the present paper. However, in machine learning problems, the reconstruction

error η represents the risk. There is therefore no point in analyzing the properties of h∗, if η is large.

The established upper-bound on the recovery error of the parameters linearly depends on δ+ η.

Therefore, when the learning algorithm is successful (i.e. the sum of the risk η and noise δ is

sufficiently small), if the deep linear network satisfies the conditions established in this paper the

estimation of the parameters is stable. The latter property is required if one wants to interpret the

features provided by the machine learning algorithm. That is the main interest of the proposed

analysis. Notice that we also establish that the conditions are sharp.

Also, the study considers deep linear networks instead of deep neural networks. As can be

deduced from Eldan and Shamir (2016), this significantly diminishes the expressiveness of the net-

work. The main argument for studying deep linear networks (as is done in the present paper)

comes from a remark in Safran and Shamir (2016). For the rectified linear unit activation function

(ReLU)1, between each layer every entry is multiplied by an element of the discrete set {0, 1}. As a

consequence, the parameter space R
S×K can be partitioned into subsets such that, on every subset,

the action of the non-linear network is the same deep linear network (i.e. the activation function has

a constant action when h varies in the subset). Therefore, the objective function optimized in deep

learning is made of pieces and on every piece it is the objective function of a deep linear network.

As a consequence, properties of the objective function for deep neural networks generalize proper-

ties of the objective function for deep linear networks. Restricting the analysis to linear networks is

legitimate as a step towards the study of deep neural networks.

Notice, that the authors of Choromanska et al. (2015a,b); Kawaguchi (2016) use a different

argument but also end-up studying deep linear networks. The simplifying assumption assumes the

independence of the activation to the input. Taking the expectation then leads to linear networks

that the authors analyse. As explained by the same authors in Choromanska et al. (2015b), this is

however a moderatly convincing argument. We prefer to say clearly that we consider deep linear

networks.

Finally, S∗ and h∗ are typically found by an algorithm (most often a heuristic) that tries to lower

‖M1(h1) . . .MK(hK)−X‖2 (3)

while avoiding overfit. A classical strategy is the dropout of Srivastava et al. (2014). This is per-

fectly compatible with the assumption (2). However, even if we ignore the overfit issue and restrict

the analysis to the minimization of (3), we see that it is non-convex. Again, we do not address this

minimization issue but there is significant empirical evidence suggesting that (3) can be minimized

efficiently in a surprisingly large number of situations. Despite an increasing theoretical activity

1. ReLU is the most common activation function.
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STABLE RECOVERY OF DEEP LINEAR NETWORKS UNDER SPARSITY CONSTRAINTS

related to that question the theory explaining this phenomenon is still far from satisfactory when

K ≥ 3 (see Livni et al. (2014); Haeffele and Vidal (2015); Kawaguchi (2016); Choromanska et al.

(2015a,b); Safran and Shamir (2016) ).

The approach developed in this paper extends to K ≥ 3 existing results for K ≤ 2. In particular,

when K = 1, the considered problems boils down to a compressed sensing problem Elad (2010).

When K = 2 and when extended to other constraints on the parameters h, the statements apply

to already studied problems such as: low rank approximation Candes et al. (2013), Non-negative

matrix factorization Lee and Seung (1999); Donoho and Stodden (2003); Laurberg et al. (2008);

Arora et al. (2012), dictionary learning Jenatton et al. (2012), phase retrieval Candes et al. (2013),

blind deconvolution Ahmed et al. (2014); Choudhary and Mitra (2014); Li et al. (2016). Most of

these papers use the same lifting property we are using. They further propose to convexify the prob-

lem. A more general bilinear framework is considered in Choudhary and Mitra (2014). The only

existing statements when K ≥ 3 are very recent Malgouyres and Landsberg (2017). They are also

applied to deep linear networks but do not include sparsity constraint.

The present work describes an alternative analysis, specialized to sparsity constraints, of the

results exposed in Malgouyres and Landsberg (2017). Doing so, we obtain better bounds (defined

with an analogue of the lower-RIP) and weaker constraints on the model. Its application to sparse

convolutional linear networks leads to simple necessary and sufficient conditions of stable recovery,

for a large class of solvers. The stability inequality (see Theorem 5) only involves explicit and

simple ingredients of the problem. The condition on the network topology is rather strong but

takes an simple format. Implementing a test checking if the condition is met is easy and the test

only requires to apply the networks as many times as the network has leaves, for every couple of

supports.

2. Notations and preliminaries on Tensorial Lifting

Set NK = {1, . . . ,K} and R
S×K
∗ = {h ∈ R

S×K ,∀k = 1..K, ‖hk‖ 6= 0}. Define an equivalence

relation in R
S×K
∗ : for any h, g ∈ R

S×K , h ∼ g if and only if there exists (λk)k=1..K ∈ R
K such

that
K
∏

k=1

λk = 1 and ∀k = 1..K,hk = λkgk.

Denote the equivalence class of h ∈ R
S×K
∗ by [h]. For any p ∈ [1,∞], we denote the usual ℓp norm

by ‖.‖p and define the mapping dp :
(

(RS×K
∗ / ∼)× (RS×K

∗ / ∼)
)

→ R by

dp([h], [g]) = inf
h′∈[h]∩RS×K

diag

g′∈[g]∩RS×K
diag

‖h′ − g′‖p ,∀h, g ∈ R
S×K
∗ , (4)

where

R
S×K
diag

= {h ∈ R
S×K
∗ ,∀k = 1..K, ‖hk‖∞ = ‖h1‖∞}.

It is proved in Malgouyres and Landsberg (2017) that dp is a metric on R
S×K
∗ / ∼.

The real valued tensors of order K whose axes are of size S are denoted by T ∈ R
S×...×S . The

space of tensors is abbreviated R
SK

. We say that a tensor T ∈ R
SK

is of rank 1 if and only if there

exists a collection of vectors h ∈ R
S×K such that, for any i = (i1, . . . , iK) ∈ N

K
S ,

Ti = h1,i1 . . .hK,iK .
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The set of all the tensors of rank 1 is denoted by Σ1. Moreover, we parametrize Σ1 ⊂ R
SK

using

the Segre embedding

P : RS×K −→ Σ1 ⊂ R
SK

h 7−→ (h1,i1h2,i2 . . .hK,iK )i∈NK
S

(5)

As stated in the two next theorems, we can control the distortion of the distance induced by P
and its inverse.

Theorem 1 Stability of [h] from P (h), see Malgouyres and Landsberg (2017)

Let h and g ∈ R
S×K
∗ be such that ‖P (g)− P (h)‖∞ ≤ 1

2 max (‖P (h)‖∞, ‖P (g)‖∞). For all

p, q ∈ [1,∞],

dp([h], [g]) ≤ 7(KS)
1

p min

(

‖P (h)‖
1

K
−1

∞ , ‖P (g)‖
1

K
−1

∞

)

‖P (h) − P (g)‖q. (6)

Theorem 2 Lipschitz continuity of P , see Malgouyres and Landsberg (2017)

We have for any q ∈ [1,∞] and any h and g ∈ R
S×K
∗ ,

‖P (h)− P (g)‖q ≤ S
K−1

q K1− 1

q max

(

‖P (h)‖1−
1

K
∞ , ‖P (g)‖1−

1

K
∞

)

dq([h], [g]). (7)

The Tensorial Lifting (see Malgouyres and Landsberg (2017)) states that there exists a unique

linear map

A : RSK −→ R
m×n,

such that for all h ∈ R
S×K

M1(h1)M2(h2) . . .MK(hK) = AP (h). (8)

The intuition leading to this equality is that every entry in M1(h1)M2(h2) . . .MK(hK) is a mul-

tivariate polynomial whose variables are in h. Moreover, every monomial of the polynomials is

of the form aiP (h)i for i ∈ N
K
S , where ai is a coefficient depending on M1, . . . , MK . The great

property of the Tensorial Lifting is to express any deep linear network using the Segre Embedding

and a linear operator A. The Segre embedding is non-linear and might seem difficult to deal with at

the first sight, but it is always the same whatever the network topology, the sparsity pattern, the ac-

tion of the ReLU activation function. . . These constituents of the problem only influence the lifting

linear operator A.

In the next section, we study what properties of A are required to obtain the stable recovery. In

Section 4, we study these properties when A corresponds to a sparse convolutional linear network.

3. General conditions for the stable recovery under sparsity constraint

From now on, the analysis differs from the one presented in Malgouyres and Landsberg (2017). It is

dedicated to models that enforce sparsity. In this particular situation, we can indeed have a different

view of the geometry of the problem. In order to describe it, we first establish some notation.
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STABLE RECOVERY OF DEEP LINEAR NETWORKS UNDER SPARSITY CONSTRAINTS

We define a support by S = (Sk)k=1..K , with Sk ⊂ NS , and denote the set of all supports by

P(NK
S ) (the parts of NK

S ). For a given support S ∈ P(NK
S ), we denote

R
S×K
S = {h ∈ R

S×K | hk,i = 0, for all k = 1..K and i 6∈ Sk}

(i.e., for all k, supp (hk) ⊂ Sk) and

R
SK

S = {T ∈ R
SK | Ti = 0, if ∃k = 1..K , such that ik 6∈ Sk}.

We also denote by PS the orthogonal projection from R
SK

onto R
SK

S . We trivially have for all

T ∈ R
SK

and all i ∈ N
K
S

(PST )i =

{

Ti , if i ∈ S,
0 , otherwise.

As explained in the introduction, we assume that there exists a known family of admissible

supports M ⊂ P(NK
S ), an unknown support S ∈ M and unknown parameters h ∈ R

S×K

S
that we

would like to estimate from the noisy matrix product

X = M1(h1) . . .MK(hK) + e. (9)

We assume that there exists δ ≥ 0 such that the error satisfies

‖e‖ ≤ δ. (10)

Also, we consider an inexact minimization and assume that we have a way to find S∗ ∈ M and

h∗ ∈ R
S×K
S∗

η = ‖M1(h
∗
1) . . .MK(h∗

K)−X‖ is small.

We remind that, in machine learning problems, η represents the risk.

In the geometrical view described in the sequel, we consider different linear operators AS , with

S ∈ P(NK
S ), such that for all h ∈ R

S×K
S

ASP (h) = M1(h1) . . .MK(hK).

In order to achieve that, considering (8), we simply define for any S ∈ P(NK
S )

AS = APS . (11)

The following property will turn out to be necessary and sufficient to guarantee the stable re-

covery property.

Definition 1 Deep-M-Null Space Property

Let γ ≥ 1 and ρ > 0, we say that A satisfies the deep-M-Null Space Property (deep-M-NSP )

with constants (γ, ρ) if and only if for all S and S ′ ∈ M, any T ∈ P (RS×K
S )+P (RS×K

S′ ) satisfying

‖AS∪S′T‖ ≤ ρ and any T ′ ∈ Ker (AS∪S′), we have

‖T‖ ≤ γ‖T −PS∪S′T ′‖. (12)
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Geometrically, the deep-M-NSP does not hold when PS∪S′ Ker (AS∪S′) intersects P (RS×K
S ) +

P (RS×K
S′ ) away from the origin or tangentially at 0. It holds when the two sets intersect ”transver-

sally” at 0. Despite an apparent abstract nature, we will be able to characterize precisely when

the lifting operator corresponding to a convolutional linear network satisfies the deep-M-NSP (see

Section 4). We will also be able to calculate the constants (γ, ρ).

Proposition 1 Sufficient condition for deep-M-NSP

If Ker (A) ∩ R
SK

S∪S′ = {0}, for all S and S ′ ∈ M, then A satisfies the deep-M-NSP with

constants (γ, ρ) = (1,+∞).

Proof In order to prove the proposition, let us consider S and S ′ ∈ M, T ′ ∈ Ker (AS∪S′). We have

APS∪S′T ′ = 0 and therefore PS∪S′T ′ ∈ Ker (A). Moreover, by definition, PS∪S′T ′ ∈ R
SK

S∪S′.

Therefore, applying the hypothesis of the proposition, we obtain PS∪S′T ′ = 0 and (12) holds for

any T , when γ = 1. Therefore, A satisfies the deep-M-NSP with constants (γ, ρ) = (1,+∞).

If NK
S ∈ M, the condition becomes Ker (A) = {0}, which is sufficient but obviously not necessary

for the deep-M-NSP to hold. However, when M truly imposes sparsity, the condition Ker (A) ∩
R
SK

S∪S′ = {0} says that the elements of Ker (A) shall not be sparse in some (tensorial) way. This

nicely generalizes the case K = 1.

Definition 2 Deep-lower-RIP constant

There exists a constant σM > 0 such that for any S and S ′ ∈ M and any T in the orthogonal

complement of Ker (AS∪S′)
σM‖PS∪S′T‖ ≤ ‖AS∪S′T‖. (13)

We call σM Deep-lower-RIP constant of A with regard to M.

Proof The existence of σM is a straightforward consequence of the fact that the restriction of AS∪S′

on the orthogonal complement of Ker (AS∪S′) is injective. We therefore have for all T in the

orthogonal complement of Ker (AS∪S′)

‖AS∪S′T‖ ≥ σS∪S′‖T‖ ≥ σS∪S′‖PS∪S′T‖,

where σS∪S′ > 0 is the smallest non-zero singular value of AS∪S′. We obtain the existence of σM
by taking the minimum of the constants σS∪S′ over the finite family of S and S ′ ∈ M.

Theorem 3 Sufficient condition for stable recovery

Assume A satisfies the deep-M-NSP with the constants γ ≥ 1, ρ > 0. For any S∗ ∈ M and

h∗ ∈ R
S×K
S∗ as in (2) with η + δ ≤ ρ, we have

‖P (h∗)− P (h)‖ ≤ γ

σM
(δ + η),

where σM is the Deep-lower-RIP constant of A with regard to M.

Moreover, if
γ

σM
(δ + η) ≤ 1

2 max
(

‖P (h∗)‖∞, ‖P (h)‖∞
)

, then

dp([h
∗], [h]) ≤ 7(KS)

1

p min

(

‖P (h)‖
1

K
−1

∞ , ‖P (h∗)‖
1

K
−1

∞

)

γ

σM
(δ + η).
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STABLE RECOVERY OF DEEP LINEAR NETWORKS UNDER SPARSITY CONSTRAINTS

Proof We have

‖AS∗∪S(P (h∗)− P (h))‖ = ‖AS∗∪SP (h∗)−AS∗∪SP (h)‖
= ‖AP (h∗)−AP (h)‖
≤ ‖AP (h∗)−X‖+ ‖AP (h)−X‖
≤ δ + η

If we further decompose (the decomposition is unique)

P (h∗)− P (h) = T + T ′,

where T ′ ∈ Ker
(

AS∗∪S

)

and T is orthogonal to Ker
(

AS∗∪S

)

, we have

‖AS∗∪S(P (h∗)− P (h))‖ = ‖AS∗∪ST‖ ≥ σM‖PS∗∪ST‖,
where σM is the Deep-lower-RIP constant of A with regard to M. We finally obtain, since

PS∗∪SP (h∗) = P (h∗) and PS∗∪SP (h) = P (h),

‖P (h∗)− P (h)−PS∗∪ST
′‖ = ‖PS∗∪ST‖ ≤ δ + η

σM
.

Since A satisfies the deep-M-NSP with constants (γ, ρ) and δ + η ≤ ρ, we have

‖P (h∗)− P (h)‖ ≤ γ‖P (h∗)− P (h)−PS∗∪ST
′‖

≤ γ
δ + η

σM

When δ + η satisfy the condition in the theorem, we can apply Theorem 1 and obtain the last in-

equality.

Theorem 3 differs from the analogous theorem in Malgouyres and Landsberg (2017). In partic-

ular, it is dedicated to sparsity constraint with much weaker hypotheses on A. The constant of the

upper bound is also different.

One might again ask whether the condition “A satisfies the deep-M-NSP ” is sharp or not. As

stated in the following proposition, the answer is affirmative.

Theorem 4 Necessary condition for stable recovery

Assume the stable recovery property holds: There exists M, C and δ > 0 such that for any

S ∈ M and any h ∈ R
S×K
S , any X = AP (h) + e, with ‖e‖ ≤ δ, and any S∗ ∈ M and

h∗ ∈ R
S×K
S∗ such that

‖AP (h∗)−X‖ ≤ ‖e‖
we have

d2([h
∗], [h]) ≤ C min

(

‖P (h)‖
1

K
−1

∞ , ‖P (h∗)‖
1

K
−1

∞

)

‖e‖.

Then, A satisfies the deep-M-NSP with constants

γ = CS
K−1

2

√
K σmax and ρ = δ,

where σmax is the spectral radius of A.

The proof is very similar to the proof of the Theorem 6, in Malgouyres and Landsberg (2017) and

the proof of the analogous converse statement in Cohen et al. (2009). It is provided in Appendix A.
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Figure 1: Example of the considered convolutional linear network. To every edge/neuron is at-

tached a convolution kernel. The network does not involve non-linearities or sampling.

4. Application to convolutional linear network under sparsity prior

We consider a sparse convolutional linear network as depicted in Figure 1. The network typically

aims at performing a linear analysis or synthesis of a signal living in R
N . The considered convolu-

tional linear network is defined from a rooted directed acyclic graph G(E ,N ) composed of nodes

N and edges E . Each edge connects two nodes. The root of the graph is denoted by r and the set

containing all its leaves is denoted by F . We denote by Pa the set of all paths connecting the leaves

and the root. We assume, without loss of generality, that the length of any path between any leaf

and the root is independent of the considered leaf and equal to some constant K ≥ 0. We also

assume that, for any edge e ∈ E , the number of edges separating e and the root is the same for all

paths between e and r. This length is called the depth of e. For any k = 1..K , we denote the set

containing all the edges of depth k, by E(k). For e ∈ E(k), we also say that e belongs to the layer

k.

Moreover, to any edge e is attached a convolution kernel of maximal support Se ⊂ NN . We as-

sume (without loss of generality) that
∑

e∈E(k) |Se| is independent of k (|Se| denotes the cardinality

of Se). We take

S =
∑

e∈E(1)

|Se|.

For any edge e, we consider the mapping Te : RS −→ R
N that maps any h ∈ R

S into the convo-

lution kernel he, attached to the edge e, whose support is Se. It simply writes at the right location

(i.e. those in Se) the entries of h defining the kernel on the edge e. As in the previous section, we

assume a sparsity constraint and will only consider a family M of possible supports S ⊂ N
K
S .

At each layer k, the convolutional linear network computes, for all e ∈ E(k), the convolution

between the signal at the origin of e; then, it attaches to any ending node the sum of all the con-

volutions arriving at that node. Examples of such convolutional linear networks includes wavelets,

wavelet packets Mallat (1998) or the fast transforms optimized in Chabiron et al. (2014, 2016). It

is similar to the usual convolutional neural network except that the linear network does not involve

any non-linearity and the supports are not fixed. It is clear that the operation performed at any layer

depends linearly on the parameters h ∈ R
S and that its results serves as inputs for the next layer.
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STABLE RECOVERY OF DEEP LINEAR NETWORKS UNDER SPARSITY CONSTRAINTS

The convolutional linear network therefore depends on parameters h ∈ R
S×K and takes the form

X = M1(h1) . . .MK(hK),

where the operators Mk satisfy the hypothesis of the present paper.

This section applies the results of the preceding section in order to identify conditions such that

any unknown parameters h ∈ R
S×K satisfying supp

(

h
)

⊂ S , for a given S ∈ M, can be stably

recovered from X = M1(h1) . . .MK(hK) (possibly corrupted by an error).

In order to do so, let us define a few notations. Notice first that, we apply the convolutional

linear network to an input x ∈ R
N |F|, where x is the concatenation of the signals xf ∈ R

N for

f ∈ F . Therefore, X is the (horizontal) concatenation of |F| matrices Xf ∈ R
N×N such that

Xx =
∑

f∈F

Xfxf , for all x ∈ R
N |F|.

Let us consider the convolutional linear network defined by h ∈ R
S×K as well as f ∈ F and

n = 1..N . The column of X corresponding to the entry n in the leaf f is the translation by n of

∑

p∈Pa(f)

T p(h) (14)

where Pa(f) contains all the paths of Pa starting from the leaf f and

T p(h) = Te1(h1) ∗ . . . ∗ TeK (hK) , where p = (e1, . . . , eK).

Moreover, we define for any k = 1..K the mapping ek : NS −→ E(k) which provides for any

i = 1..S the unique edge of E(k) such that the ith entry of h ∈ R
S contributes to Tek(i)(h). Also,

for any i ∈ N
K
S , we denote pi = (e1(i1), . . . , eK(iK)) and, for any S ∈ M,

IS =
{

i ∈ N
K
S |i ∈ S and pi ∈ Pa

}

.

The latter contains all the indices of S corresponding to a valid path in the network. For any set of

parameters h ∈ R
S×K and any path p ∈ Pa, we also denote by hp the restriction of h to its indices

contributing to the kernels on the path p. We also define, for any i ∈ N
K
S , hi ∈ R

S×K by

hi
k,j =

{

1 , if j = ik
0 otherwise

, for all k = 1..K and j = 1..S. (15)

We can deduce from (14) that, when i ∈ IS , AP (hi) simply convolves the entries at one leaf with a

dirac delta function. Thefore, all the entries of AP (hi) are in {0, 1} and we denote Di = {(i, j) ∈
NN × NN |F||AP (hi)i,j = 1}.

We also denote 1 ∈ R
S a vector of size S with all its entries equal to 1. For any edge e ∈ E ,

1

e ∈ R
S consists of zeroes except for the entries corresponding to the edge e which are equal to 1.

For any S ⊂ NS , we define 1S ∈ R
S which consists of zeroes except for the entries corresponding

to the indexes in S . For any p = (e1, . . . , eK) ∈ Pa, the support of M1(1
e1) . . .MK(1eK ) is

denoted by Dp.

Finally, we remind that because of (8), there exists a unique mapping

A : RSK −→ R
N×N |F|

9



such that

AP (h) = M1(h1) . . .MK(hK) , for all h ∈ R
S×K,

where P is the Segre embedding defined in (5).

Proposition 2 Necessary condition of identifiability of a sparse network

Either RS×K is not identifiable or, for any S and S ′ ∈ M, all the entries of M1(1
S∪S′

) . . .MK(1S∪S
′

)
belong to {0, 1}. When the latter holds :

1. For any distinct p and p′ ∈ Pa, we have Dp ∩ Dp′

= ∅.

2. Ker (AS∪S′) = {T ∈ R
SK |∀i ∈ IS∪S′, Ti = 0}.

Proof

Let us assume that: There exist S and S ′ ∈ M and an entry of M1(1
S∪S′

) . . .MK(1S∪S
′

)
that does not belong to {0, 1}.

Using (14), we know that there is f ∈ F and n = 1..N such that

∑

p∈Pa(f)

T p(1) n ≥ 2.

As a consequence, there is i and j ∈ S ∪ S ′ with i 6= j and

T pi(hi) n = T pj(hj) n = 1.

Therefore,

AP (hi) = AP (hj)

and the network is not identifiable. This proves the first statement.

Let us assume that: For any S and S ′ ∈ M, all the entries of M1(1
S∪S′

) . . .MK(1S∪S
′

)
belong to {0, 1}.

We immediately observe that (14) leads to the item 1 of the Proposition.

To prove the second item, we can easily check that (P (hi))i 6∈I
S∪S′

forms a basis of {T ∈
R
SK |∀i ∈ IS∪S′, Ti = 0}. We can also easily check using (14) and (11) that, for any i 6∈ IS∪S′ ,

AS∪S′P (hi) =

{

0 , if i 6∈ S ∪ S ′

M1(h
i
1) . . .MK(hi

K) = 0 , if i ∈ S ∪ S ′ and pi 6∈ Pa

As a consequence, {T ∈ R
SK |∀i ∈ IS∪S′, Ti = 0} ⊂ Ker (AS∪S′).

To prove the converse inclusion, we observe that for any distinct i and j ∈ IS∪S′, we have

Di ∩ Dj = ∅. This implies that

rk (AS∪S′) ≥ |IS∪S′ | = SK − dim({T ∈ R
SK |∀i ∈ IS∪S′, Ti = 0}).

Finally, we deduce that dim(Ker (AS∪S′)) ≤ dim({T ∈ R
SK |∀i ∈ IS∪S′, Ti = 0}) and therefore

Ker (AS∪S′) = {T ∈ R
SK |∀i ∈ IS∪S′ , Ti = 0}.

10
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Proposition 2 extends Proposition 8 of Malgouyres and Landsberg (2017) by considering several

possible supports. Said differently, Proposition 8 of Malgouyres and Landsberg (2017) corresponds

to Proposition 2 when M = {NK
S }.

The interest of the condition in Proposition 2 is that it can easily be computed by apply-

ing the network to dirac delta functions, when |M| is not too large. Notice that, beside the

known examples in blind-deconvolution (i.e. when K = 2 and |Pa| = 1) Ahmed et al. (2014);

Bahmani and Romberg (2015), there are known convolutional linear networks (with K ≥ 2) that

satisfy the condition of the first statement of Proposition 2. For instance, the convolutional linear

network corresponding to the un-decimated Haar wavelet2 transform is a tree and for any of its

leaves f ∈ F , |Pa(f)| = 1. Moreover, the support of the kernel living on the edge e, of depth

k, on this path is {0, 2k}. It is not difficult to check that the first condition of Proposition 2 holds.

Otherwise, it is clear that the necessary condition will be rarely satisfied.

Proposition 3 If |Pa| = 1 and if, for any S and S ′ ∈ M, all the entries of M1(1
S∪S′

) . . .MK(1S∪S
′

)

belong to {0, 1}, then Ker (AS∪S′) is the orthogonal complement of RSK

S∪S′ and A satisfies the deep-

M-NSP with constants (γ, ρ) = (1,+∞). Moreover, the deep-lower-RIP of A with regard to M is

σM =
√
N .

Proof The fact that, Ker (AS∪S′) is the orthogonal complement of RSK

S∪S′ is a direct consequence

of Proposition 2 and the fact that, when |Pa| = 1, IS∪S′ = S ∪ S ′. We then trivialy deduce that,

for any T ′ ∈ Ker (AS∪S′), PS∪S′T ′ = 0. A straightforward consequence is that A satisfies the

deep-M-NSP with constants (γ, ρ) = (1,+∞).
To calculate σM, let us consider S , S ′ ∈ M and T in the orthogonal complement of Ker (AS∪S′).

We express T under the form T =
∑

i∈I
S∪S′

TiP (hi), where hi is defined (15). Let us also remind

that, applying Proposition 2, the supports of AP (hi) and AP (hj) are disjoint, when i 6= j. Let us

finally add that, since AP (hj) is the matrix of a convolution with a Dirac mass, we have |Dj| = N .

We finally have

‖AT‖2 = ‖
∑

i∈I

TiAP (hi)‖2,

= N
∑

i∈I

T 2
i = N‖T‖2,

from which we deduce the value of σM.

In the sequel, we establish stability results for a convolutional linear network estimator. In order

to do so, we consider a convolutional linear network of known structure G(E ,N ), (Se)e∈E and

M. The convolutional linear network is defined by unknown parameters h ∈ R
S×K satisfying a

constraint supp
(

h
)

⊂ S for an unknown support S ∈ M. We consider the noisy situation where

X = M1(h1) . . .MK(hK) + e,

2. Un-decimated means computed with the ”Algorithme à trous”, Mallat (1998), Section 5.5.2 and 6.3.2. The Haar

wavelet is described in Mallat (1998), Section 7.2.2, p. 247 and Example 7.7, p. 235
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with ‖e‖ ≤ δ and an estimate h∗ ∈ R
S×K such that

‖M1(h
∗
1) . . .MK(h∗

K)−X‖ ≤ η.

The equivalence relationship ∼ does not suffise to group parameters leading to the same network

action. Indeed, with networks, we can rescale the kernels on different path differently. Therefore,

we say that two networks sharing the same topology and defined by the parameters h and g ∈ R
S×K

are equivalent if and only if

∀p ∈ Pa,∃(λe)e∈p ∈ R
p, such that

∏

e∈p

λe = 1 and ∀e ∈ p,Te(g) = λeTe(h).

We trivially observe that applying the networks defined by equivalent parameters lead to the same

result. The equivalence class of h ∈ R
S×K is denoted by {h}. For any p ∈ [1,+∞], we define

δp({h}, {g}) =





∑

p∈Pa

dp([h
p], [gp])p





1

p

,

where we remind that hp (resp gp) denotes the restriction of h (resp g) to the path p and dp is

defined in (4). Since dp is a metric, we easily prove that δp is a metric between network classes.

Theorem 5 If for any S and S ′ ∈ M, all the entries of M1(1
S∪S′

) . . .MK(1S∪S
′

) belong to

{0, 1} and if there exists ε > 0 such that for all e ∈ E , ‖Te(h)‖∞ ≥ ε then

δp({h∗}, {h}) ≤ 7
(KS)

1

p

√
NεK−1

(δ + η).

Proof Let us consider a path p ∈ Pa, using (14), since all the entries of M1(1
S∪S′

) . . .MK(1S∪S
′

)
belong to {0, 1}, the restriction of the network to p satisfy the same property. Therefore, we can

apply Proposition 3 and Theorem 3 to the restriction of the convolutional linear network to p and

obtain for any p ∈ [1,∞]

dp([(h
∗)p], [h

p
]) ≤ 7

(KS)
1

p

√
N

ε1−K(δp + ηp),

where δp and ηp are the restrictions of the errors on Dp. Finally, using item 1 of Proposition 2

δp({h∗}, {h}) ≤ 7
(KS)

1

p

√
N

ε1−K





∑

p∈Pa

(δp + ηp)p





1

p

,

≤ 7
(KS)

1

p

√
NεK−1

(δ + η).
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Appendix A. Proof of Theorem 4

Proof Let S and S ′ ∈ M. Let h ∈ R
S×K
S and h

′ ∈ R
S×K
S′ be such that ‖A

(

P (h)− P (h
′
)
)

‖ ≤
δ. Throughout the proof, we also consider T ′ ∈ Ker (AS∪S′). We assume that ‖P (h)‖∞ ≤
‖P (h

′
)‖∞. If it is not the case, we simply switch the role of h and h

′
in the definition of X and e,

below. We denote

X = AP (h) and e = AP (h)−AP (h
′
).

We have X = AP (h
′
) + e with ‖e‖ ≤ δ. Moreover, when S and h play the role of S∗ and h∗ in

the hypothesis, since h ∈ R
S×K
S and ‖e‖ ≤ δ, we have

d2([h
′
], [h]) ≤ C‖P (h

′
)‖

1

K
−1

∞ ‖e‖.
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Using the fact that e = AS∪S′(P (h)− P (h
′
)), for any T ′ ∈ Ker (AS∪S′)

‖e‖ = ‖AS∪S′(P (h)− P (h
′
)− T ′)‖,

≤ σmax‖PS∪S′(P (h)− P (h
′
)− T ′)‖,

= σmax‖P (h)− P (h
′
)−PS∪S′T ′‖,

where σmax is the spectral radius of A. Therefore,

d2([h
′
], [h]) ≤ C‖P (h

′
)‖

1

K
−1

∞ σmax ‖P (h)− P (h
′
)−PS∪S′T ′‖,

Finally, using Theorem 2 and the fact that ‖P (h)‖∞ ≤ ‖P (h
′
)‖∞, we obtain

‖P (h
′
)− P (h)‖ ≤ S

K−1

2 K1− 1

2 ‖P (h
′
)‖1−

1

K
∞ d2([h

′
], [h])

≤ CS
K−1

2

√
K σmax ‖P (h)− P (h

′
)−PS∪S′T ′‖

= γ‖P (h)− P (h
′
)−PS∪S′T ′‖

for γ = CS
K−1

2

√
K σmax .

Summarizing, we conclude that under the hypothesis of the theorem: For any S and S ′ ∈ M
and any T ∈ P (RS×K

S ) + P (RS×K
S′ ) such that ‖AT‖ = ‖AS∪S′T‖ ≤ δ, we have for any T ′ ∈

Ker (AS∪S′)
‖T‖ ≤ γ‖T −PS∪S′T ′‖.

In words, A satisfies the deep-M-NSP with the constants of Theorem 4.
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