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Abstract

We study a deep matrix factorization problem. It takes as input a matrix X ob-
tained by multiplying K matrices (called factors). Each factor is obtained by
applying a fixed linear operator to a vector of parameters satisfying a sparsity con-
straint. We provide sharp conditions on the structure of the model that guarantee
the stable recovery of the factors from the knowledge of X and the model for the
factors. This is crucial in order to interpret the factors and the intermediate features
obtained when applying a few factors to a datum. When K = 1: the paper pro-
vides compressed sensing statements; K = 2 covers (for instance) Non-negative
Matrix Factorization, Dictionary learning, low rank approximation, phase recov-
ery. The particularity of this paper is to extend the study to deep problems. As an
illustration, we detail the analysis and provide (entirely computable) guarantees
for the stable recovery of a (non-neural) sparse convolutional network.

1 Introduction

Let K ∈ N∗, m1 . . .mK+1 ∈ N, write m1 = m, mK+1 = n. We impose the factors to be
structured matrices defined by a (typically small) number S of unknown parameters. More precisely,
for k = 1 . . .K , let

Mk : RS −→ R
mk×mk+1 ,

h 7−→ Mk(h)

be a linear map. We assume that we know the matrix X ∈ Rm×n which is provided by

X = M1(h1) · · ·MK(hK) + e, (1)

for an unknown error term e and parameters h = (hk)1≤k≤K ∈ RS×K . Moreover, considering a
family of possible supports M (e.g., all the supports of size S′, for a given S′ ≤ S). We assume
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that the h satisfy a sparsity constraint of the form : there exists S = (Sk)1≤k≤K ∈ M such that

supp
(

h
)

⊂ S (i.e.: ∀k, supp
(

hk

)

⊂ Sk)

This work investigates conditions imposed on (1) for which we can (up to obvious scale rearrange-

ment) stably recover the parametersh fromX . When K = 1, the statements are compressed sensing

statements [15]. When K = 2 and when extended to other constraints on the parameters h, the state-
ments apply to already studied problems such as: low rank approximation [4], Non-negative matrix
factorization [11, 8, 10, 2], dictionary learning [9], phase retrieval [4], blind deconvolution [1, 7, 12].
Most of these papers use the same lifting property we are using. They further propose to convexify
the problem. A more general bilinear framework is considered in [7]. The main existing statements
when K ≥ 3 is very recent [13]. It is also applied to (non-neural) convolutional networks.

The present work describes an alternative analysis, specialized to sparsity constraints, of the results
exposed in [13]. Doing so, we obtain better bounds (defined with an analogue of the lower-RIP) and
weaker constraints on the model. Its application to (non-neural) sparse convolutional networks lead
to simple necessary and sufficient conditions of stable recovery, for a large class of solvers. The
stability inequality (see Theorem 3) only involves explicit and simple ingredients of the problem.

2 Notations and preliminaries on tensors

Set NK = {1, . . . ,K} and RS×K
∗ = {h ∈ RS×K , ∀k ∈ NK , ‖hk‖ 6= 0}. Define an equivalence

relation in RS×K
∗ : for any h, g ∈ RS×K , h ∼ g if and only if there exists (λk)k∈NK

∈ RK such
that

K
∏

k=1

λk = 1 and ∀k ∈ NK ,hk = λkgk.

Denote the equivalence class of h ∈ RS×K
∗ by [h]. For any p ∈ [1,∞], we denote the usual ℓp norm

by ‖.‖p and define the mapping dp : (RS×K
∗ / ∼ ×RS×K

∗ / ∼) → R by

dp([h], [g]) = inf
h′∈[h]∩R

S×K

diag

g′∈[g]∩R
S×K

diag

‖h′ − g′‖p , ∀h, g ∈ R
S×K
∗ , (2)

where
R

S×K
diag = {h ∈ R

S×K
∗ , ∀k ∈ NK , ‖hk‖∞ = ‖h1‖∞}.

It is proved in [13] that dp is a metric on R
S×K
∗ / ∼.

The real valued tensors of order K whose axes are of size S are denoted by T ∈ RS×...×S . The

space of tensors is abbreviated RSK

. We say that a tensor T ∈ RSK

is of rank 1 if and only if
there exists a collection of vectors h ∈ RS×K such that T is the outer product of the vectors hk, for
k ∈ NK , that is, for any i = (i1, . . . , iK) ∈ NK

S ,

Ti = h1,i1 . . .hK,iK .

The set of all the tensors of rank 1 is denoted by Σ1. Moreover, we parametrize Σ1 ⊂ RSK

using
the Segre embedding

P : RS×K −→ Σ1 ⊂ RSK

h 7−→ (h1,i1h2,i2 . . .hK,iK )i∈NK
S

(3)

Theorem 1. Stability of [h] from P (h), see [13]

Let h and g ∈ RS×K
∗ be such that ‖P (g) − P (h)‖∞ ≤ 1

2 max (‖P (h)‖∞, ‖P (g)‖∞). For all
p, q ∈ [1,∞],

dp([h], [g]) ≤ 7(KS)
1
p min

(

‖P (h)‖
1
K

−1
∞ , ‖P (g)‖

1
K

−1
∞

)

‖P (h)− P (g)‖q. (4)

It is also explained in [13] that we can lift the problem and show that the map

(h1, . . . ,hK) 7−→ M1(h1)M2(h2) . . .MK(hK),

uniquely determines a linear map

A : RSK −→ R
m×n,

such that for all h ∈ RS×K

M1(h1)M2(h2) . . .MK(hK) = AP (h). (5)

2



3 General conditions for the stable recovery under sparsity constraint

From now on, the analysis differs from the one presented in [13]. It is dedicated to models that
enforce sparsity. In this particular situation, we can indeed have a different view of the geometry of
the problem. In order to describe it, we first establish some notation.

We define a support by S = (Sk)1≤k≤K , with Sk ⊂ NS , and denote the set of all supports by S. We
have M ⊂ S. For a given support S ∈ S, we denote

R
S×K
S = {h ∈ R

S×K | hk,i = 0, for all k ∈ NK and i 6∈ Sk}
(i.e., for all k, supp (hk) ⊂ Sk) and

R
SK

S = {T ∈ R
SK | Ti = 0, for all i 6∈ S}.

We also denote by PS the orthogonal projection from RSK

onto RSK

S . We trivially have for all

T ∈ RSK

and all i ∈ NK
S

(PST )i =

{

Ti , if i ∈ S,
0 , otherwise.

As explained in the introduction, we assume that there exists a known family of admissible supports

M ⊂ S, an unknown support S ∈ M and unknown parameters h ∈ R
S×K

S
that we would like to

estimate from the noisy matrix product

X = M1(h1) . . .MK(hK) + e. (6)

We assume that there exists δ ≥ 0 such that the error satisfies

‖e‖ ≤ δ. (7)

Also, we consider an inexact minimization context and assume that we have a way to find S∗ ∈ M
and h∗ ∈ R

S×K
S∗ such that

‖M1(h
∗
1) . . .MK(h∗

K)−X‖ ≤ η, (8)

for some η > 0. Typically, S∗ and h∗ are found by an algorithm (most often a heuristic) that tries
to solve

argminS∈M,h∈R
S×K
S

‖M1(h1) . . .MK(hK)−X‖2.
However, what matters is not to truly solve the above problem (which might be impossible to truly
minimize or might only be accessible up to a generalization error). What matters is to find an input
for which its objective function is reasonably small. Notice that, if the minimization is proved to be
accurate, we can assume in the bounds that will be presented latter in the paper that η ≤ δ.

In the geometrical view described in the sequel, we consider different linear operators AS , with

S ∈ S, such that for all h ∈ R
S×K
S

ASP (h) = M1(h1) . . .MK(hK).

In order to achieve that, considering (5), we simply define for any S ∈ S

AS = APS . (9)

Definition 1. Deep-M-Null Space Property

Let γ > 0, we say that A satisfies the deep-M-Null Space Property (deep-M-NSP ) with constant

γ if there exists ε > 0 such that for all S and S ′ ∈ M, any T ∈ P (RS×K
S ) − P (RS×K

S′ ) satisfying
‖AS∪S′T ‖ ≤ ε and any T ′ ∈ Ker (AS∪S′), we have

‖T ‖ ≤ γ‖T − PS∪S′T ′‖. (10)

An interesting property of the deep-M-NSP is that, as stated in the next proposition, it can be a
consequence of simple tests.
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Proposition 1. Sufficient condition for deep-M-NSP

If Ker (A) ∩ RSK

S∪S′ = {0}, for all S and S ′ ∈ M, then A satisfies the deep-M-NSP with constant
γ = 1 (and any ε).

As a consequence, almost every A such that

rk (A) ≥ max
S,S′∈M

(dim(RSK

S∪S′))

A satisfies the deep-M-NSP with constant γ = 1 (and any ε).

Proof. In order to prove the first statement of the proposition, let us consider S and S ′ ∈ M,
T ′ ∈ Ker (AS∪S′). We have APS∪S′T ′ = 0 and therefore PS∪S′T ′ ∈ Ker (A). Moreover, by

definition, PS∪S′T ′ ∈ RSK

S∪S′ . Therefore, applying the hypothesis of the proposition, we obtain
PS∪S′T ′ = 0 and (10) always holds when γ = 1.

The second assertion is a straightforward consequence of the first one.

For instance, for any given S′ ≤ S
2 , if M contains all the supports S such that, for all k ∈ NK ,

|Sk| = S′, we have maxS,S′∈M(dim(RSK

S∪S′)) = (2S′)K . The proposition guarantees that almost

every A such that rk (A) ≥ (2S′)K satisfies the deep-M-NSP with constant γ = 1 (and any ε).

Interestingly, in the compressed sensing framework when K = 1 and A is a sampling matrix, the
first statement of the above proposition says that any sampling matrix with column rank larger than
twice the maximal sparsity allowed by the model satisfies the deep-M-NSP with constant γ = 1
(and any ε). To the best of our knowledge, this leads, even in the case K = 1 to a new stability
condition.

Definition 2. Deep-lower-RIP constant

There exists a constant σM > 0 such that for any S and S ′ ∈ M and any T in the orthogonal
complement of Ker (AS∪S′)

σM‖PS∪S′T ‖ ≤ ‖AS∪S′T ‖. (11)

We call σM Deep-lower-RIP constant of A with regard to M.

The existence of σM is a straightforward consequence of the fact that the restriction of AS∪S′ on
the orthogonal complement of Ker (AS∪S′) is injective. We even have for all T in the orthogonal
complement of Ker (AS∪S′)

‖AS∪S′T ‖ ≥ σS∪S′‖T ‖ ≥ σS∪S′‖PS∪S′T ‖,
where σS∪S′ > 0 is the smallest non-zero singular value of AS∪S′ . We obtain the existence of σM

by taking the infimum of the constants σS∪S′ over the finite family of S and S ′ ∈ M.

Theorem 2. Sufficient condition for stable recovery

Assume A satisfies the deep-M-NSP with the constant γ > 0. For any S∗ ∈ M and h∗ ∈ R
S×K
S∗

as in (8) with η and δ sufficiently small, we have

‖P (h∗)− P (h)‖ ≤ γ

σM
(δ + η),

where σM is the Deep-lower-RIP constant of A with regard to M. Moreover, if h ∈ RS×K
∗

dp([h
∗], [h]) ≤ 7(KS)

1
p min

(

‖P (h)‖
1
K

−1
∞ , ‖P (h∗)‖

1
K

−1
∞

) γ

σM
(δ + η).

Proof. We have

‖AS∗∪S(P (h∗)− P (h))‖ = ‖AS∗P (h∗)−ASP (h)‖
≤ ‖AS∗P (h∗)−X‖+ ‖ASP (h)−X‖
≤ δ + η
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Figure 1: Example of the considered convolutional network. To every edge is attached a convolution
kernel. The network does not involve non-linearities or sampling.

If we further decompose (the decomposition is unique)

P (h∗)− P (h) = T + T ′,

where T ′ ∈ Ker (AS∗∪S) and T is orthogonal to Ker (AS∗∪S), we have

‖AS∗∪S(P (h∗)− P (h))‖ = ‖AS∗∪ST ‖ ≥ σM‖PS∗∪ST ‖,
where σM is the Deep-lower-RIP constant of A with regard to M. We finally obtain, since

PS∗∪SP (h∗) = P (h∗) and PS∗∪SP (h) = P (h),

‖P (h∗)− P (h)− PS∗∪ST
′‖ = ‖PS∗∪ST ‖ ≤ δ + η

σM
.

Since A satisfies the deep-M-NSP with constant γ, when δ + η ≤ ε, the first inequality of the
theorem holds:

‖P (h∗)− P (h)‖ ≤ γ
δ + η

σM
.

When h ∈ RS×K
∗ , for δ + η small, we can apply Theorem 1 and obtain the second inequality.

Theorem 2 differ from its analogue in [13]. In particular, it is dedicated to sparsity constraint with
much weaker hypotheses on A. The constant of the upper bound is also different.

4 Application to (non neural) sparse convolutional network

We consider a (non neural) sparse convolutional network as depicted in Figure 1. The network
typically aims at performing a linear analysis or synthesis of a signal living in RN . The considered
convolutional network is defined from a rooted directed acyclic graph G(E ,N ) composed of nodes
N and edges E . Each edge connects two nodes. The root of the graph is denoted by r and the set
containing all its leaves is denoted by F . We denote by P the set of all paths connecting the leaves
and the root. We assume, without loss of generality, that the length of any path between any leaf and
the root is independent of the considered leaf and equal to some constant K ≥ 0. We also assume
that, for any edge e ∈ E , the number of edges separating e and the root is the same for all paths
between e and r. This length is called the depth of e. For any k ∈ NK , we denote the set containing
all the edges of depth k, by E(k). For e ∈ E(k), we also say that e belongs to the layer k.

Moreover, to any edge e is attached a convolution kernel of maximal support Se ⊂ NN . We assume
(without loss of generality) that

∑

e∈E(k) |Se| is independent of k (|Se| denotes the cardinality of

Se). We take

S =
∑

e∈E(1)

|Se|.
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For any edge e, we consider the mapping Te : RS −→ RN that maps any h ∈ RS into the convolu-
tion kernel he, attached to the edge e, whose support is Se. It simply writes at the right location (i.e.
those in Se) the entries of h defining the kernel on the edge e. As in the previous section, we assume
a sparsity constraint and will only consider a family M of possible supports S ⊂ NK

S .

At each layer k, the convolutional network computes, for all e ∈ E(k), the convolution between the
signal at the origin of e; then, it attaches to any ending node the sum of all the convolutions arriving
at that node. Examples of such convolutional networks includes wavelets, wavelet packets [14] or
the fast transforms optimized in [5, 6]. It is similar to the usual convolutional neural network except
that the network does not involve any non-linearity and the supports are not fixed. It is clear that
the operation performed at any layer depends linearly on the parameters h ∈ RS and that its results
serves as inputs for the next layer. The (non neural) convolutional network therefore depends on
parameters h ∈ RS×K and takes the form

X = M1(h1) . . .MK(hK),

where the operators Mk satisfy the hypothesis of the present paper.

This section applies the results of the preceding section in order to identify conditions such that

any unknown parameters h ∈ RS×K satisfying supp
(

h
)

⊂ S , for a given S ∈ M, can be stably

recovered from X = M1(h1) . . .MK(hK) (possibly corrupted by an error).

In order to do so, let us define a few notations. Notice first that, we apply the convolutional network

to an input x ∈ RN |F|, where x is the concatenation of the signals xf ∈ RN for f ∈ F . Therefore,
X is the (horizontal) concatenation of |F| matrices Xf ∈ RN×N such that

Xx =
∑

f∈F

Xfxf , for all x ∈ R
N |F|.

Let us consider the convolutional network defined by h ∈ RS×K as well as f ∈ F and n ∈ NN .
The column of X corresponding to the entry n in the leaf f is the translation by n of

∑

p∈P(f)

T p(h) (12)

where P(f) contains all the paths of P starting from the leaf f and

T p(h) = Te1(h1) ∗ . . . ∗ TeK (hK) , where p = (e1, . . . , eK).

Moreover, we define for any k ∈ NK the mapping ek : NS −→ E(k) which provides for any i ∈ NS

the unique edge of E(k) such that the ith entry of h ∈ RS contributes to Tek(i)(h). Also, for any

i ∈ NK
S , we denote pi = (e1(i1), . . . , eK(iK)) and, for any S ∈ M,

IS =
{

i ∈ N
K
S |i ∈ S and pi ∈ P

}

.

The latter contains all the indices of S corresponding to a valid path in the network. For any set of
parameters h ∈ RS×K and any path p ∈ P , we also denote by hp the restriction of h to its indices
contributing to the kernels on the path p. We also define, for any i ∈ NK

S , hi ∈ RS×K (beware not
to confuse the notations) by

hi
k,j =

{

1 , if j = ik
0 otherwise

, for all k ∈ NK and j ∈ NS . (13)

We can deduce from (12) that AP (hi) simply convolves the entries at one leaf with a dirac delta

function. Thefore, all the entries of AP (hi) are in {0, 1} and we denote Di = {(i, j) ∈ NN ×
NN |F||AP (hi)i,j = 1}.

We also denote 1 ∈ RS a vector of size S with all its entries equal to 1. For any edge e ∈ E , 1e ∈ RS

consists of zeroes except for the entries corresponding to the edge e which are equal to 1. For any
S ⊂ NS , we define 1S ∈ RS which consists of zeroes except for the entries corresponding to the
indexes in S. For any p = (e1, . . . , eK) ∈ P , the support of M1(1e1) . . .MK(1eK ) is denoted by
Dp.
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Finally, we remind that because of (5), there exists a unique mapping

A : RSK −→ R
N×N |F|

such that
AP (h) = M1(h1) . . .MK(hK) , for all h ∈ R

S×K ,

where P is the Segre embedding defined in (3).

Proposition 2. Necessary condition of identifiability of a sparse network

Either RS×K is not identifiable or, for any S and S ′ ∈ M, all the entries of

M1(1S∪S′

) . . .MK(1S∪S′

) belong to {0, 1}. When the latter holds :

1. For any distinct p and p′ ∈ P , we have Dp ∩ Dp′

= ∅.

2. Ker (AS∪S′) = {T ∈ RSK |∀i ∈ IS∪S′ , Ti = 0}.

Proof. Let us assume that: There exist S and S ′ ∈ M and an entry of M1(1S∪S′

) . . .MK(1S∪S′

)
that does not belong to {0, 1}.

Using (12), we know that there is f ∈ F and n ∈ NN such that
∑

p∈P(f)

T p(1) n ≥ 2.

As a consequence, there is i and j ∈ S ∪ S ′ with i 6= j and

T pi(hi) n = T pj(hj) n = 1.

Therefore,
AP (hi) = AP (hj)

and the network is not identifiable. This proves the first statement.

Let us assume that: For any S and S ′ ∈ M, all the entries of M1(1S∪S′

) . . .MK(1S∪S′

) belong
to {0, 1}.

We immediately observe that (12) leads to the item 1 of the Proposition.

To prove the second item, we can easily check that (P (hi))i6∈IS∪S′ forms a basis of {T ∈ RSK |∀i ∈
IS∪S′ , Ti = 0}. We can also easily check using (12) and (9) that, for any i 6∈ IS∪S′ ,

AS∪S′P (hi) =

{

0 , if i 6∈ S ∪ S ′

M1(h
i
1) . . .MK(hi

K) = 0 , if i ∈ S ∪ S ′ and pi 6∈ P

As a consequence, {T ∈ R
SK |∀i ∈ IS∪S′ , Ti = 0} ⊂ Ker (AS∪S′).

To prove the converse inclusion, we observe that for any distinct i and j ∈ IS∪S′ , we have Di∩Dj =
∅. This implies that

rk (AS∪S′) ≥ |IS∪S′ | = SK − dim({T ∈ R
SK |∀i ∈ IS∪S′ , Ti = 0}).

Finally, we deduce that dim(Ker (AS∪S′)) ≤ dim({T ∈ RSK |∀i ∈ IS∪S′ , Ti = 0}) and therefore

Ker (AS∪S′) = {T ∈ R
SK |∀i ∈ IS∪S′ , Ti = 0}.

Proposition 2 extends Proposition 8 (of [13]) by considering several possible supports. Said differ-
ently, the latter proposition corresponds to Proposition 2 when M = {NK

S }.

The interest of the condition in Proposition 2 is that it can easily be computed by applying the net-
work to dirac delta functions, when |M| is not too large. Notice that, beside the known examples
in blind-deconvolution (i.e. when K = 2 and |P| = 1) [1, 3], there are known (truly deep) convo-
lutional networks that satisfy the condition of the first statement of Proposition 2. For instance, the
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convolutional network corresponding to the un-decimated Haar (wavelet)1 transform is a tree and
for any of its leaves f ∈ F , |P(f)| = 1. Moreover, the support of the kernel living on the edge e, of

depth k, on this path is {0, 2k}. The first condition of Proposition 2 therefore holds. However, it is
clear that the necessary condition will be rarely satisfied.

Proposition 3. If |P| = 1 and, for any S and S ′ ∈ M, all the entries of M1(1S∪S′

) . . .MK(1S∪S′

)

belong to {0, 1}, then Ker (AS∪S′) is the orthogonal complement of RSK

S∪S′ and A satisfies the deep-
M-NSP with constant γ = 1 (and any ε). Moreover, the deep-lower-RIP of A with regard to M is

σM =
√
N .

Proof. The fact that, Ker (AS∪S′) is the orthogonal complement of RSK

S∪S′ is a direct consequence
of Proposition 2 and the fact that, when |P| = 1, IS∪S′ = S ∪ S ′. We then trivialy deduce that,
for any T ′ ∈ Ker (AS∪S′), PS∪S′T ′ = 0. A straightforward consequence is that A satisfies the
deep-M-NSP with constant γ = 1 (and any ε).

To calculate σM, let us consider S, S ′ ∈ M and T in the orthogonal complement of Ker (AS∪S′).
We express T under the form T =

∑

i∈IS∪S′
TiP (hi), where hi is defined (13). Let us also remind

that, applying Proposition 2, the supports of AP (hi) and AP (hj) are disjoint, when i 6= j. Let us

finally add that, since AP (hj) is the matrix of a convolution with a Dirac mass, we have |Dj| = N .
We finally have

‖AT ‖2 = ‖
∑

i∈I

TiAP (hi)‖2,

= N
∑

i∈I

T 2
i = N‖T ‖2,

from which we deduce the value of σM.

In the sequel, we establish stability results for a convolutional network estimator. In order to do so,
we consider a convolutional network of known structure G(E ,N ), (Se)e∈E and M. The convolu-

tional network is defined by unknown parameters h ∈ R
S×K satisfying a constraint supp

(

h
)

⊂ S
for an unknown support S ∈ M. We consider the noisy situation where

X = M1(h1) . . .MK(hK) + e,

with ‖e‖ ≤ δ and an estimate h∗ ∈ RS×K such that

‖M1(h
∗
1) . . .MK(h∗

K)−X‖ ≤ η.

We say that two networks sharing the same structure and defined by h and g ∈ RS×K are equivalent
if and only if

∀p ∈ P , ∃(λe)e∈p ∈ R
p, such that

∏

e∈p

λe = 1 and ∀e ∈ p, Te(g) = λeTe(h).

We trivially observe that applying the networks defind by equivalent parameters lead to the same
result. The equivalence class of h ∈ RS×K is denoted by {h}. For any p ∈ [1,+∞], we define

δp({h}, {g}) =





∑

p∈P

dp([h
p], [gp])p





1
p

,

where we remind that hp (resp gp) denotes the restriction of h (resp g) to the path p and dp is
defined in (2). Since dp is a metric, we easily prove that δp is a metric between network classes.

Theorem 3. If for any S and S ′ ∈ M, all the entries of M1(1S∪S′

) . . .MK(1S∪S′

) belong to

{0, 1} and if there exists ε > 0 such that for all e ∈ E , ‖Te(h)‖∞ ≥ ε then

δp({h∗}, {h}) ≤ 7
(KS)

1
p

√
N

ε1−K (δ + η).

1Un-decimated means computed with the "Algorithme à trous", [14], Section 5.5.2 and 6.3.2. The Haar
wavelet is described in [14], Section 7.2.2, p. 247 and Example 7.7, p. 235
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Proof. Let us consider a path p ∈ P , using (12), since all the entries of M1(1S∪S′

) . . .MK(1S∪S′

)
belong to {0, 1}, the restriction of the network to p satisfy the same property. Therefore, we can
apply Proposition 3 and Theorem 2 to the restriction of the convolutional network to p and obtain
for any p ∈ [1,∞]

dp([(h
∗)p], [h

p
]) ≤ 7

(KS)
1
p

√
N

ε1−K(δp + ηp),

where δp and ηp are the restrictions of the errors on Dp. Finally, using item 1 of Proposition 2

δp({h∗}, {h}) ≤ 7
(KS)

1
p

√
N

ε1−K





∑

p∈P

(δp + ηp)p





1
p

,

≤ 7
(KS)

1
p

√
N

ε1−K (δ + η).
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