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We describe the both post-and pre-Lie algebra g SISO associated to the affine SISO feedback transformation group. We show that it is a member of a family of post-Lie algebras associated to representations of a particular solvable Lie algebra. We first construct the extension of the magmatic product of a post-Lie algebra to its enveloping algebra, which allows to describe free post-Lie algebras and is widely used to obtain the enveloping of g SISO and its dual.

Introduction

The affine SISO feedback transformation group G SISO [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF], which appears in Control Theory, can be seen as the character group of a Hopf algebra H SISO ; let us start by a short presentation of this object (we slightly modify the notations of [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF]).

1. First, let us recall some algebraic structures on noncommutative polynomials.

(a) Let x 1 , x 2 be two indeterminates. We consider the algebra of noncommutative polynomials K x 1 , x 2 . As a vector space, it is generated by words in letters x 1 , x 2 ; its product is the concatenation of words; its unit, the empty word, is denoted by ∅.

(b) K x 1 , x 2 is a Hopf algebra with the concatenation product and the deshuffling coproduct ∆ ¡ , defined by ∆ ¡ (x i ) = x i ⊗ ∅ + ∅ ⊗ x i , for i ∈ {1, 2}. (c) K x 1 , x 2 is also a commutative, associative algebra with the shuffle product ¡: for example, if i, j, k, l ∈ {1, 2},

x i ¡ x j = x i x j + x j x i , x i x j ¡ x k = x i x j x k + x i x k x j + x k x i x j , x i ¡ x j x k = x i x j x k + x j x i x k + x j x k x i , x i x j ¡ x k x l = x i x j x k x l + x i x k x j x l + x i x k x l x j + x k x i x j x l + x k x i x l x j + x k x l x i x j .
2. The vector space K x 1 , x 2 2 is generated by words x i 1 . . . x i k ǫ j , where k ≥ 0, i 1 , . . . , i k , j ∈ {1, 2}, and (ǫ 1 , ǫ 2 ) denotes the canonical basis of K 2 .

3. As an algebra, H SISO is equal to the symmetric algebra S(K x 1 , x 2

2 ); its product is denoted by µ and its unit by 1. Two coproducts ∆ * and ∆ • are defined on H SISO . For all h ∈ H SISO , we put ∆ * (h) = ∆ * (h) -1 ⊗ h and ∆ • (h) = ∆ • (h) -1 ⊗ h. Then:

• For all i ∈ {1, 2}, ∆ * (∅ǫ i ) = ∅ǫ i ⊗ 1.

• For all g ∈ K x 1 , x 2 , for all i ∈ {1, 2}: ∆ * • θ x 1 (gǫ i ) = (θ x 1 ⊗ Id) • ∆ * (gǫ i ) + (θ x 2 ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)ǫ i ⊗ ǫ 2 ), ∆ * • θ x 2 (gǫ i ) = (θ x 2 ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)ǫ i ⊗ ǫ 1 ), where θ x (hǫ i ) = xhǫ i for all x ∈ {x 1 , x 2 }, h ∈ K x 1 , x 2 , i ∈ {1, 2}. These are formulas of Lemma 4.1 of [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF], with the notations a w = wǫ 2 , b w = wǫ 1 , θ 0 = θ x 1 , θ 1 = θ x 2 and ∆ = ∆ * .

• for all g ∈ K x 1 , x 2 :

∆ • (gǫ 1 ) = (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ 1 ⊗ ǫ 1 )), ∆ • (gǫ 2 ) = ∆ * (gǫ 2 ) + (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ 2 ⊗ ǫ 1 )).
This coproduct ∆ • makes H SISO a Hopf algebra, and ∆ * is a right coaction on this coproduct, that is to say:

(∆ • ⊗ Id) • ∆ • = (Id ⊗ ∆ • ) • ∆ • , (∆ * ⊗ Id) • ∆ * = (Id ⊗ ∆ • ) • ∆ * .
4. After the identification of ∅ǫ 1 with the unit of H SISO , we obtain a commutative, graded and connected Hopf algebra, in other words the dual of an enveloping algebra U (g SISO ).

Our aim is to give a description of the underlying Lie algebra g SISO . It turns out that it is both a pre-Lie algebra (or a Vinberg algebra [START_REF] Cartier | Lie groups and combinatorics[END_REF], see [START_REF] Manchon | A short survey on pre-Lie algebras[END_REF] for a survey on these objects) and a post-Lie algebra [START_REF] Hans | On post-Lie algebras, Lie-Butcher series and moving frames[END_REF][START_REF] Vallette | Homology of generalized partition posets[END_REF]: it has a Lie bracket a [-, -] and two nonassociative products * and •, such that for all x, y, z ∈ g SISO :

x * a [y, z] = (x * y) * zx * (y * z) -(x * z) * y + x * (z * y), a [x, y] * z = a [x * z, y] + a [x, y * z];

(x • y) • z -x • (y • z) = (x • z) • y -x • (z • y).
The Lie bracket on g SISO corresponding to G SISO is a [-, -] * :

∀x, y ∈ g SISO , a [x, y] * = a [x, y] + x * yy * x = x • yy • x.

Let us be more precise on these structures. As a vector space, g SISO = K x 1 , x 2 2 , and:

∀f, g ∈ K x 1 , x 2 , ∀i, j ∈ {1, 2}, a [f ǫ i , gǫ j ] =      0 if i = j, -f ¡ gǫ 2 if i = 2 and j = 1, f ¡ gǫ 2 if i = 1 and j = 2.
The magmatic product * is inductively defined. If f, g ∈ K x 1 , x 2 and i, j ∈ {1, 2}:

∅ǫ i * gǫ j = 0,
x 2 f ǫ i * gǫ 1 = x 2 (f ǫ i * gǫ 1 ) + x 2 (f ¡ g)ǫ i ,

x 1 f ǫ i * gǫ j = x 1 (f ǫ i * gǫ j ),

x 2 f ǫ i * gǫ 2 = x 2 (f ǫ i * gǫ 2 ) + x 1 (f ¡ g)ǫ i .
The pre-Lie product •, first determined in [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF], is given by: ∀f, g ∈ K x 1 , x 2 , ∀i, j ∈ {1, 2}, f ǫ i • gǫ j = (f ¡ g)δ i,1 ǫ j + f ǫ i * gǫ j .

We shall show here that this is a special case of a family of post-Lie algebras, associated to modules over certain solvable Lie algebras.

We start with general preliminary results on post-Lie algebras. We extend the now classical Oudom-Guin construction on prelie algebras [START_REF] Oudom | Sur l'algèbre enveloppante d'une algèbre pré-Lie[END_REF][START_REF]On the Lie enveloping algebra of a pre-Lie algebra[END_REF] to the post-Lie context in the first section: this is a result of [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF] (Proposition 3.1), which we prove here in a different, less direct way; our proof allows also to obtain a description of free post-Lie algebras. Recall that if (V, * ) is a pre-Lie algebra, the pre-Lie product * can be extended to S(V ) in such a way that the product defined by: ∀f, g ∈ S(V ), f ⊛ g = f * g (1) g (2) is associative, and makes S(V ) a Hopf algebra, isomorphic to U (V ). For any magmatic algebra (V, * ), we construct in a similar way an extension of * to T (V ) in Proposition 1. We prove in Theorem 1 that the product ⊛ defined by: ∀f, g ∈ T (V ), f ⊛ g = f * g (1) g (2) makes T (V ) a Hopf algebra. The Lie algebra of its primitive elements, which is the free Lie algebra Lie(V ) generated by V , is stable under * and turns out to be a post-Lie algebra (Proposition 2) satisfying a universal property (Theorem 2). In particular, if V is, as a magmatic algebra, freely generated by a subspace W , Lie(V ) is the free post-Lie algebra generated by W (Corollary 1). Moreover, if V = ([-, -], * ) is a post-Lie algebra, this construction goes through the quotient defining U (V, [-, -]), defining a new product ⊛ on it, making it isomorphic to the enveloping algebra of V with the Lie bracket defined by: ∀x, y ∈ V, [x, y] * = [x, y] + x * yy * x.

For example, if x 1 , x 2 , x 3 ∈ V :

x 1 ⊛ x 2 = x 1 x 2 + x 1 * x 2 x 1 ⊛ x 2 x 3 = x 1 x 2 x 3 + (x 1 * x 2 )x 3 + (x 1 * x 3 )x 2 + (x 1 * x 2 ) * x 3 -x 1 * (x 2 * x 3 )
x 1 x 2 ⊛ x 3 = x 1 x 2 x 3 + (x 1 * x 3 )x 2 + x 1 (x 2 * x 3 ).

In the particular case where [-, -] = 0, we recover the Oudom-Guin construction.

The second section is devoted to the study of a particular solvable Lie algebra g a associated to an element a ∈ K N . As the Lie bracket of g a comes from an associative product, the construction of the first section holds, with many simplifications: we obtain an explicit description of U (g a ) with the help of a product ◭ on S(g a ) (Proposition 6). A short study of g a -modules when a = (1, 0, . . . , 0) (which is a generic case) is done in Proposition 8, considering g a as an associative algebra, and in Proposition 9, considering it as a Lie algebra. In particular, if K is algebraically closed, any g a modules inherits a natural decomposition in characteristic subspaces.

Our family of post-Lie algebras is introduced in the third section; it is reminescent of the construction of [START_REF] Foissy | A pre-Lie algebra associated to a linear endomorphism and related algebraic structures[END_REF]. Let us fix a vector space V , (a 1 , . . . , a N ) ∈ K N and a family F 1 , . . . , F N of endomorphisms of V . We define a product * on T (V ) N , such that for all f, g ∈ T (V ), x ∈ V , i, j ∈ {1, . . . , N }:

∅ǫ i * gǫ j = 0, xf ǫ i * gǫ j = x(f ǫ i * gǫ j ) + F j (x)(f ¡ g)ǫ i ,
where (ǫ 1 , . . . , ǫ N ) is the canonical basis of K N and ¡ is the shuffle product of T (V ). The Lie bracket of T (V ) N that we shall use here is:

∀f, g ∈ T (V ), ∀i, j ∈ {1, . . . , N }, a [f ǫ i , gǫ j ] = (f ¡ g)(a i ǫ j -a j ǫ i ).
This Lie bracket comes from an associative product a ¡ defined by: ∀f, g ∈ T (V ), ∀i, j ∈ {1, . . . , N }, f ǫ i a ¡ gǫ j = a i (f ¡ g)ǫ j . We put • = * + a ¡. We prove in Theorem 3 the equivalence of the three following conditions:

• (T (V ) N , •) is a pre-Lie algebra. • (T (V ) N , a [-, -], * ) is a post-Lie algebra.
• F 1 , . . . , F N defines a structure of g a -module on V .

If this holds, the construction of the first section allows to obtain two descriptions of the enveloping algebra of U (T (V ) N ), respectively coming from the post-Lie product * and from the pre-Lie product •: the extensions of * and of • are respectively described in Propositions 15 and 16. It is shown in Proposition 17 that the two associated descriptions of U (T (V ) N ) are equal. For g SISO , we take a = (1, 0), V = V ect(x 1 , x 2 ) and:

F 1 = 0 0 0 1 , F 2 = 0 1 0 0 ,
which indeed define a g (1,0) -module. In order to relate this to the Hopf algebra H SISO of [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF], we need to consider the dual of the enveloping of T (V ) N . First, if a = (1, 0, . . . , 0), we observe that the decomposition of V as a g a -module of the second section induces a graduation of the post-Lie algebra T (V ) N (Proposition 18), unfortunately not connected: the component of degree 0 is 1-dimensional, generated by ∅ǫ 1 . Forgetting this element, that is, considering the augmentation ideal of the graded post-Lie algebra T (V ) N , we can dualize the product ⊛ of S(T (V ) N ) in order to obtain the coproduct of the dual Hopf algebra in an inductive way. For g SISO , we indeed obtain the inductive formulas of H SISO , finally proving that the dual Lie algebra of this Hopf algebra, which in some sense can be exponentiated to G SISO , is indeed post-Lie and pre-Lie.
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Notations.

1. Let K be a commutative field. The canonical basis of K n is denoted by (ǫ 1 , . . . , ǫ n ).

2. For all n ≥ 1, we denote by [n] the set {1, . . . , n}.

3. We shall use Sweeder's notations: if C is a coalgebra and x ∈ C,

∆ (1) (x) = ∆(x) =
x (1) ⊗ x (2) ,

∆ (2) (x) = (∆ ⊗ Id) • ∆(x) = x (1) ⊗ x (2) ⊗ x (3) , ∆ (3) (x) = (∆ ⊗ Id ⊗ Id) • (∆ ⊗ Id) • ∆(x) = x (1) ⊗ x (2) ⊗ x (3) ⊗ x (4) , . . .

Extension of a post-Lie product

We first generalize the Oudom-Guin extension of a pre-Lie product in a post-Lie algebraic context, as done in [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF]. Let us first recall what a post-Lie algebra is.

Definition 1 1. A (right) post-Lie algebra is a family (g, {-, -}, * )
, where g is a vector space, {-, -} and * are bilinear products on g such that:

• (g, {-, -}) is a Lie algebra.
• For all x, y, z ∈ g:

x * {y, z} = (x * y) * z -x * (y * z) -(x * z) * y + x * (z * y),
(1) {x, y} * z = {x * z, y} + {x, y * z}.

(2)

2. If (g, {-, -}, * ) is post-Lie, we define a second Lie bracket on g:

∀x, y ∈ g, {x, y} * = {x, y} + x * y -y * x.
Note that if {-, -} is 0, then (g, * ) is a (right) pre-Lie algebra, that is to say:

∀x, y, z ∈ g, (x * y) * z -x * (y * z) = (x * z) * y -x * (z * y). (3) 

Extension of a magmatic product

Let V be a vector space. We here use the tensor Hopf algebra T (V ). In this section, we shall denote the unit of T (V ) by 1. Its product is the concatenation of words, and its coproduct ∆ ¡ is the cocommutative deshuffling coproduct. For example, if

x 1 , x 2 , x 3 ∈ V : ∆ ¡ (x 1 ) = x 1 ⊗ 1 + 1 ⊗ x 1 , ∆ ¡ (x 1 x 2 ) = x 1 x 2 ⊗ 1 + x 1 ⊗ x 2 + x 2 ⊗ x 1 + 1 ⊗ x 1 x 2 , ∆ ¡ (x 1 x 2 ) = x 1 x 2 x 3 ⊗ 1 + x 1 x 2 ⊗ x 3 + x 1 x 3 ⊗ x 2 + x 2 x 3 ⊗ x 1 + x 1 ⊗ x 2 x 3 + x 2 ⊗ x 1 x 3 + x 3 ⊗ x 1 x 2 + 1 ⊗ x 1 x 2 x 3 .

Its counit is denoted by

ε: ε(1) = 1 and if k ≥ 1 and x 1 , . . . , x k ∈ V , ε(x 1 . . . x k ) = 0.
Proposition 1 Let V be a vector space and * : V ⊗ V -→ V be a magmatic product on V . Then * can be uniquely extended as a map from T (V ) ⊗ T (V ) to T (V ) such that for all f, g, h ∈ T (V ), x, y ∈ V : 1) g * h (2) .

• f * 1 = f . • 1 * f = ε(f )1. • x * (f y) = (x * f ) * y -x * (f * y). • (f g) * h = f * h (
Proof. Existence. We first inductively extend * from V ⊗T (V ) to V . If n ≥ 0, x, y 1 , . . . , y n ∈ V , we put:

x * y 1 . . . y n =                  x if n = 0, x * y 1 if n = 1, (x * (y 1 . . . y n-1 ) ∈V * y n ∈V ∈V - n-1 i=1 x * (y 1 . . . (y i * y n ) . . . y n-1 ) ∈V ⊗(n-1) ∈V if n ≥ 2.
This product is then extended from T (V ) ⊗ T (V ) to T (V ) in the following way:

• For all f ∈ T (V ), 1 * f = ε(f )1. • For all n ≥ 1, for all x 1 , . . . , x n ∈ V , f ∈ T (V ): (x 1 . . . x n ) * f = (x 1 * f (1) ∈V ) . . . (x n * f (n) ∈V ) ∈ V ⊗n .
Note that for all n ≥ 0, V ⊗n * T (V ) ⊆ V ⊗n , which induces the second point. Let us prove the first point with f = x 1 . . .

x n ∈ V ⊗n . If n = 0, f * 1 = 1 * 1 = ε(1)1 = 1 = f . If n = 1, f ∈ V , so f * 1 = f by definition of the extension of * on V ⊗ T (V ). If n ≥ 2: f * 1 = (x 1 . . . x n ) * 1 = (x 1 * 1) . . . (x n * 1) = x 1 . . . x n = f.
Let us prove the third point for f = y 1 . . . y n . Then:

x * (f y) = (x * f ) * y - x * (y 1 . . . (y i * y) . . . y n ).
Moreover, as ∆ ¡ (y) = y ⊗ 1 + 1 ⊗ y:

f * y = n i=1 (y 1 * 1) . . . (y i * y) . . . (y n * 1) = n i=1 y 1 . . . (y i * y) . . . y n . So x * (f y) = (x * f ) * y -x * (f * y).
Let us finally prove the last point for f = x 1 . . . x k and g = x k+1 . . . x k+l . Then:

(f g) * h = x 1 * h (1) . . . x k+l * h (k+l) = x 1 * (h (1)
) (1) . . . x 1 * (h (1) ) (k) x k+1 * (h (2) ) (1) . . . x k+l * (h (2) 

) (l) = (x 1 . . . x k ) * h (1) (x k+1 . . . x k+l ) * h (2)
= f * h (1) g * h (2) .

We used the coassociativity of ∆ ¡ for the second equality.

Unicity. The first and third points uniquely determine x * (x 1 . . . x n ) for x, x 1 , . . . , x n ∈ V , by induction on n; the second and fourth points then uniquely determine f * (x 1 . . . x n ) for all f ∈ T (V ) by induction on the length of f . 2

Examples. If x 1 , x 2 , x 3 , x 4 ∈ V :

(x 1 x 2 ) * x 3 = (x 1 * x 3 )x 2 + x 1 (x 2 * x 3 ), x 1 * (x 2 x 3 ) = (x 1 * x 2 ) * x 3 -x 1 * (x 2 * x 3 ), (x 1 x 2 x 3 ) * x 4 = (x 1 * x 4 )x 2 x 3 + x 1 (x 2 * x 4 )x 3 + x 1 x 2 (x 3 * x 4 ), (x 1 x 2 ) * (x 3 x 4 ) = ((x 1 * x 3 ) * x 4 )x 2 -(x 1 * (x 3 * x 4 ))x 2 + x 1 ((x 2 * x 3 ) * x 4 ), -x 1 (x 2 * (x 3 * x 4 )) + (x 1 * x 3 )(x 2 * x 4 ) + (x 1 * x 4 )(x 2 * x 3 ), x 1 * (x 2 x 3 x 4 ) = ((x 1 * x 2 ) * x 3 ) * x 4 -(x 1 * (x 2 * x 3 )) * x 4 -(x 1 * (x 2 * x 4 )) * x 3 + x 1 * ((x 2 * x 4 ) * x 3 ) -(x 1 * x 2 ) * (x 3 * x 4 ) + x 1 * (x 2 * (x 3 * x 4 )). Lemma 1 1. For all k ∈ N, V ⊗k * T (V ) ⊆ V ⊗k . 2. For all f, g ∈ T (V ), ε(f * g) = ε(f )ε(g). 3. For all f, g ∈ T (V ), ∆ ¡ (f * g) = ∆ ¡ (f ) * ∆ ¡ (g).
4. For all f, g ∈ T (V ), y ∈ V , f * (gy) = (f * g) * yf * (g * y).

5. For all f, g, h ∈ T (V ), (f * g) * h = f * g * h (1) h (2) .

Proof. 1. This was observed in the proof of Proposition 1.

2. From the first point,

Ker(ε) * T (V ) + T (V ) * Ker(ε) ⊆ Ker(ε), so if ε(f ) = 0 or ε(g) = 0, then ε(f * g) = 0. As ε(1 * 1) = 1,
the second point holds for all f, g.

3.

We prove it for f = x 1 . . . x n , by induction on n. If n = 0, then f = 1. Moreover, ∆ ¡ (1 * g) = ε(g)∆ ¡ (1) = ε(g)1 ⊗ 1, and:

∆ ¡ (f ) * ∆ ¡ (g) = 1 * g (1) ⊗ 1 * g (2) = ε g (1) ε g (2) 1 ⊗ 1 = ε(g)1 ⊗ 1. If n = 1, then f ∈ V . In this case, from the second point, f * g ∈ V , so ∆ ¡ (f * g) = f * g ⊗ 1 + 1 ⊗ f * g. Moreover: ∆ ¡ (f ) * ∆ ¡ (g) = (f ⊗ 1 + 1 ⊗ f ) * ∆ ¡ (g) = f * g (1) ⊗ 1 * g (2) + 1 * g (1) ⊗ f * g (2) = f * g (1) ⊗ ε g (2) 1 + ε g (1) 1 ⊗ f * g (2) = f * g ⊗ 1 + 1 ⊗ f * g.
If n ≥ 2, we put f 1 = x 1 . . . x n-1 and f 2 = x n . By the induction hypothesis applied to f 1 :

∆ ¡ (f * g) = ∆ ¡ f 1 * g (1) f 2 * g (2) = ∆ ¡ f 1 * g (1) ∆ ¡ f 2 * g (2)
= f

(1)

1 * (g (1) ) (1) f

(1) 2 * (g (2) ) (1) ⊗ f (2) 1 * (g (1) ) (2) f (2) 2 * (g (2) ) (2) = (f 1 f 2 ) (1) * g (1) ⊗ (f 1 f 2 ) (2) * g (2) = ∆ ¡ (f ) * ∆ ¡ (g).
We used the cocommutativity of ∆ ¡ for the fourth equality.

4. We prove it for f = x 1 . . . x n , by induction on n. If n = 0, then f = 1 and:

1 * (gy) = (1 * g) * y -1 * (g * y) = ε(g)ε(y) -ε(g * y) = 0.
For n = 1, this comes immediately from Proposition 1-3. If n ≥ 2, we put f 1 = x 1 . . . x n-1 and f 2 = x n . The induction hypothesis holds for f 1 . Moreover:

f * (gy) = f 1 * g (1) f 2 * g (2) y + f 1 * g (1) y f 2 * g (2)
= f 1 * g (1) f 2 * g (2) * yf 1 * g (1) f 2 * g (2) * y

+ f 1 * g (1) * y f 2 * g (2)
f 1 * g (1) * y f 2 * g (2) ,

(f * g) * y = f 1 * g (1) f 2 * g (2) * y = f 1 * g (1) * y f 2 * g (2) + f 1 * g (1) f 2 * g (2) * y , f * (g * y) = f 1 * (g * y) (1) f 2 * (g * y) (2) = f 1 * g (1) * y f 2 * g (2) + f 1 * g (1) f 2 * g (2) * y .
We use the third point for the third computation. So the result holds for all f . 5. We prove this for h = z 1 . . . z n and we proceed by induction on n.

If n = 0, then h = 1 and (f * g) * 1 = f * g. Moreover, f * g * h (1) h (2) = f * ((g * 1)1) = (f * g)1 = f * g. If n = 1, then h ∈ V , so ∆ ¡ (h) = h ⊗ 1 + 1 ⊗ h. So: f * g * h (1) h (2) = f * ((g * h)1) + f * ((g * 1)h) = f * (g * h) + f * (gh) = f * (g * h) + (f * g) * h -f * (g * h) = (f * g) * h.
We use Proposition 1-3 for the third equality. If n ≥ 2, we put h 1 = z 1 . . . z n-1 and h 2 = z n .

From the fourth point:

(f * g) * h = ((f * g) * h 1 ) * h 2 -(f * g) * (h 1 * h 2 ) = f * g * h (1) 1 h (2) 1 * h 2 - f * g * (h 1 * h 2 ) (1) (h 1 * h 2 ) (2) = f * g * h (1) 1 h (2) 1 * h 2 + f * g * h (1) 1 h (2) 1 h 2 - f * g * h (1) 1 * h (1) 2 h (2) 1 * h (2) 2 = f * g * h (1) 1 * h 2 h (2) 1 + f * g * h (1) 1 h (2) 1 * h 2 + f * g * h (1) 1 h (2) 1 h 2 - f * g * h (1) 1 * h 2 h (2) 1 - f * g * h (1) 1 h (2) 1 * h 2 = f * g * h (1) 1 * h 2 h (2) 1 + f * g * h (1) 1 h 2 h (2) 1 + f * g * h (1) 1 h (2) 1 * h 2 + f * g * h (1) 1 h (2) 1 h 2 - f * g * h (1) 1 * h 2 h (2) 1 - f * g * h (1) 1 h (2) 1 * h 2 = f * g * h (1) 1 h 2 h (2) 1 + f * g * h (1) 1 h (2) 1 h 2 .
For the second equality, we used the induction hypothesis on h 1 and h 1 * h 2 ∈ V ⊗(k-1) by the first point; we used the third point for the third equality. As

∆ ¡ (h 2 ) = h 2 ⊗ 1 + 1 ⊗ h 2 , ∆ ¡ (h) = h (1) 1 h 2 ⊗ h (2) 1 + h (1) 1 ⊗ h (2)
1 h 2 , so the result holds for h. 2

Associated Hopf algebra and post-Lie algebra

Theorem 1 Let * be a magmatic product on V . This product is extended to T (V ) by Proposition 1. We define a product ⊛ on T (V ) by:

∀f, g ∈ T (V ), f ⊛ g = f * g (1)
g (2) .

Then (T (V ), ⊛, ∆ ¡ ) is a Hopf algebra.
Proof. For all f ∈ T (V ):

1 ⊛ f 1 * f (1) f (2) = ε f (1) f (2) = f ; ⊛1 = (f * 1)1 = f.
For all f, g, h ∈ T (V ), by Lemma 1-5:

(f ⊛ g) ⊛ h = f * g (1) g (2) ⊛ h = f * g (1) g (2) * h (1) h (2) = f * g (1) * h (1) g (2) * h (2) h (3) = f * g (1) * h (1) h (2) g (2) * h (3) h (4) ; f ⊛ (g ⊛ h) = f ⊛ g * h (1) h (2) = f * g (1) * h (1) h (3)
g (2) * h (2) h (4) .

As ∆ ¡ is cocommutative, (f ⊛ g) ⊛ h = f ⊛ (g ⊛ h)
, so (T (V ), ⊛) is a unitary, associative algebra.

For all f, g ∈ T (V ), by Lemma 1-3: 2) .

∆ ¡ (f ⊛ g) = ∆ ¡ f * g (1) g (2) = f (1) * g (1) (1) g (2) (1) ⊗ f (2) * g (1) (2) g (2) (2) = f (1) * g (1) (1) g (1) (2) ⊗ f (2) * g (2) (1) g (2) (2) = f (1) ⊛ g (1) ⊗ f (2) ⊛ g (
Note that we used the cocommutativity of ∆ ¡ for the third equality. Hence, (T (V ), ⊛, ∆ ¡ ) is a Hopf algebra. 2

Remark. By Lemma 1:

• For all f, g, h ∈ T (V ), (f * g) * h = f * (g ⊛ h): (T (V ), * ) is a right (T (V ), ⊛)-module.
• By restriction, for all n ≥ 0, (V ⊗n , * ) is a right (T (V ), ⊛)-module. Moreover, for all n ≥ 0, (V ⊗n , * ) = (V, * ) ⊗n as a right module over the Hopf algebra (T (V ), ⊛, ∆ ¡ ).

Examples. Let x 1 , x 2 , x 3 ∈ V .

x 1 ⊛ x 2 = x 1 x 2 + x 1 * x 2 x 1 ⊛ x 2 x 3 = x 1 x 2 x 3 + (x 1 * x 2 )x 3 + (x 1 * x 3 )x 2 + (x 1 * x 2 ) * x 3 -x 1 * (x 2 * x 3 ) x 1 x 2 ⊛ x 3 = x 1 x 2 x 3 + (x 1 * x 3 )x 2 + x 1 (x 2 * x 3 ).
The vector space of primitive elements of (T (V ), ⊛, ∆ ¡ ) is Lie(V ). Let us now describe the Lie bracket induced on Lie(V ) by ⊛.

Proposition 2

1. Let * be a magmatic product on V . The Hopf algebras (T (V ), ⊛, ∆ ¡ ) and (T (V ), ., ∆ ¡ ) are isomorphic, via the following algebra morphism:

φ * : (T (V ), ., ∆ ¡ ) -→ (T (V ), ⊛, ∆ ¡ ) x 1 . . . x k ∈ V ⊗k -→ x 1 ⊛ . . . ⊛ x k . 2. Lie(V ) * T (V ) ⊆ Lie(V ). Moreover, (Lie(V ), [-, -], * ) is a post-Lie algebra. The induced Lie bracket on Lie(V ) is denoted by {-, -} * : ∀f, g ∈ Lie(V ), {f, g} * = [f, g] + f * g -g * f = f g -gf + f * g -g * f.
The Lie algebra (Lie(V ), {-, -} * ) is isomorphic to Lie(V ).

Proof. 1. There exists a unique algebra morphism φ * : (T (V ), .) -→ (T (V ), ⊛), sending any x ∈ V on itself. As the elements of V are primitive in both Hopf algebras, φ * is a Hopf algebra morphism. As V ⊗k * T (V ) ⊆ V ⊗k for all k ≥ 0, we deduce that for all x 1 , . . . , x k+l ∈ V :

x 1 . . . x k ⊛ x k+1 . . . x k+l = x 1 . . . x k+l + a sum of words of length < k + l. Hence, if x 1 , . . . , x k ∈ V : φ * (x 1 . . . x k ) = x 1 ⊛ . . . ⊛ x k = x 1 . . . x k + a sum of words of length < k.
Consequently:

• If k ≥ 0 and x 1 , . . . , x k ∈ V , an induction on k proves that x 1 . . . x k ∈ φ * (T (V )), so φ * is surjective. • If f is a nonzero element of T (V ), let us write f = f 0 + . . . + f k , with f i ∈ V ⊗i for all i and f k = 0. Then: φ * (f ) = f k + terms in K ⊕ . . . ⊕ V ⊗(k-1) , so φ * (f ) = 0: φ * is injective.
Hence, φ * is an isomorphism.

We consider

A = {f ∈ Lie(V ) | f * T (V ) ⊆ Lie(V )}. By Lemma 1-3, V ⊆ A. Let f, g ∈ A. For all h ∈ T (V ): [f, g] * h = (f g) * h -(gf ) * h = f * h (1) g * h (2) - g * h (1) f * h (2) = f * h (1) g * h (2) - g * h (2) )(f * h (1)
= f * h (1) , g * h (2) .

We used the cocommutativity for the third equality. By hypothesis, f * h (1) ,

g * h (2) ∈ Lie(V ), so [f, g] ∈ A. As A is a Lie subalgebra of Lie(V ) containing V , it is equal to Lie(V ). Let f, g, h ∈ Lie(V ). Then g⊛h = g * h (1) h (2) = gh+g * h. Similarly, h * g (1) g (2) = hg + h * g, so, by Lemma 1-5: f * [g, h] = f * (gh) -f * (hg) = f * g * h (1) h (2) -f * (g * h) - f * h * g (1) g (2) + f * (h * g) = (f * g) * h -f * (g * h) -(f * h) * g + f * (g * h).
Moreover:

[f, g] * h = (f g) * h -(gf ) * h = (f * h)g + f (g * h) -(g * h)f -g(f * h) = [f * h, g] + [f, g * h]. So Lie(V ) is a post-Lie algebra.
Consequently, {-, -} * is a second Lie bracket on Lie(V ). In (T (V ), ⊛), if f and g are primitive:

f ⊛ g -g ⊛ f = f g + f * g -gf -g * f = {f, g} * .
So, by the Cartier-Quillen-Milnor-Moore's theorem, (T (V ), ⊛, ∆ ¡ ) is the enveloping algebra of (Lie(V ), {-, -} * ). As it is isomorphic to the enveloping algebra of Lie(V ), namely (T (V ), ., ∆ ¡ ), these two Lie algebras are isomorphic. 2

Let us give a combinatorial description of φ * .

Proposition 3 Let (V, * ) be a magmatic algebra, and x 1 , . . . , x k ∈ V .

• Let I = {i 1 , . . . , i p } ⊆ [k], with i 1 < . . . < i p .
We put:

x * I = (. . . ((x i 1 * x i 2 ) * x i 3 ) * . . .) * x ip ∈ V.
• Let P be a partition of [p]. We denote it by P = {P 1 , . . . , P p }, with the convention min(P 1 ) < . . . < min(P p ). We put:

x * P = x * P 1 . . . x * Pp ∈ V ⊗p .
Then:

φ * (x 1 . . . x k ) = P partition of [k]
x * P .

Proof. By induction on k. As φ * (x) = x for all x ∈ V , it is obvious if k = 1. Let us assume the result at rank k.

φ * (x 1 . . . x k+1 ) = φ * (x 1 . . . x k ) ⊛ x k+1 = φ * (x 1 . . . x k )x k+1 + φ * (x 1 . . . x k ) * x k+1 = P partition of [k] x * P x k+1 + P = {P 1 , . . . , Pp} partition of [k] p i=1 x * P 1 . . . (x * P i * x k+1 ) . . . x * pp = P = {P 1 , . . . , Pp} partition of [k]
x * {P 1 ,...,Pp,{k+1}}

+ P = {P 1 , . . . , Pp} partition of [k] p i=1
x * {P 1 ,...,P i ∪{k+1},...,Pp}

= P partition of [k + 1]
x * P .

So the result holds for all k.

2

Examples. Let x 1 , x 2 , x 3 ∈ V . φ * (x 1 ) = x 1 , φ * (x 1 x 2 ) = x 1 x 2 + x 1 * x 2 , φ * (x 1 x 2 x 3 ) = x 1 x 2 x 3 + (x 1 * x 2 )x 3 + (x 1 * x 3 )x 2 + x 1 (x 2 * x 3 ) + (x 1 * x 2 ) * x 3 .
Theorem 2 Let (V, * ) be a magmatic algebra and let (L, {-, -}, ⋆) be a post-Lie algebra. Let φ : (V, * ) -→ (L, ⋆) be a morphism of magmatic algebras. There exists a unique morphism of post-Lie algebras φ : Lie(V ) -→ L extending φ.

Proof. Let ψ : Lie(V ) -→ L be the unique Lie algebra morphism extending φ. Let us fix h ∈ Lie(V ). We consider:

A h = {h ∈ Lie(V ) | ∀f ∈ Lie(V ), ψ(f * h) = ψ(f ) ⋆ ψ(h)}. If f, g ∈ A h , then: ψ([f, g] * h) = ψ([f * h, b] + [f, g * h]) = {ψ(f * h), ψ(g)} + {ψ(f ), ψ(g * h)} = {ψ(f ) ⋆ ψ(h), ψ(g)} + {ψ(f ), ψ(g) ⋆ ψ(h)} = {ψ(f ), ψ(g)} ⋆ ψ(h) = ψ([f, g]) ⋆ ψ(h). So [f, g] ∈ A h : for all h ∈ Lie(V ), A h is a Lie subalgebra of Lie(V ). Moreover, if h ∈ V , as ψ |V = φ is a morphism of magmatic algebras, V ⊆ A h ; as a consequence, if h ∈ V , A h = Lie(V ). Let A = {h ∈ Lie(V ) | A h = Lie(V )}. We put Lie(V ) n = Lie(V ) ∩ V ⊗n ; let us prove inductively that Lie(V ) n ⊆ A for all n.
We already proved that V ⊆ A, so this is true for n = 1.

Let us assume the result at all rank

k < n. Let h ∈ Lie(V ) n . We can assume that h = [h 1 , h 2 ], with h 1 ∈ Lie(V ) k , h 2 ∈ Lie(V ) n-k , 1 ≤ k ≤ n -1.
From Lemma 1 and Proposition 2,

1 f * h 2 ∈ Lie(V ) k and h 2 * h 1 ∈ Lie(V ) n-k ,
so the induction hypothesis holds for h 1 , h 2 , h 1 * h 2 and h 2 * h 1 . Hence, for all f ∈ T (V ):

ψ(f * h) = ψ(f * [h 1 , h 2 ]) = ψ((f * h 1 ) * h 2 -f * (h 1 * h 2 ) -(f * h 2 ) * h 1 + f * (h 2 * h 1 )) = (ψ(f ) ⋆ ψ(h 1 )) ⋆ ψ(h 2 ) -ψ(f ) ⋆ (ψ(h 1 ) ⋆ ψ(h 2 )) -(ψ(f ) ⋆ ψ(h 2 )) ⋆ ψ(h 1 ) + ψ(f ) ⋆ (ψ(h 2 ) ⋆ ψ(h 1 )) = ψ(f ) ⋆ {ψ(h 1 ), ψ(h 2 )} = ψ(f ) ⋆ ψ(h). As a consequence, Lie(V ) n ⊆ A. Finally, A = Lie(V ), so for all f, g ∈ Lie(V ), ψ(f * g) = ψ(f ) * ψ(g). 2 
Corollary 1 Let V be a vector space. The free magmatic algebra generated by V is denoted by Mag(V ). Then Lie(Mag(V )) is the free post-Lie algebra generated by V .

Proof. Let L be a post-Lie algebra and let φ be a linear map from V to L. From the universal property of Mag(V ), there exists a unique morphism of magmatic algebras from Mag(V ) to L extending φ; from the universal property of Lie(Mag(V )), this morphism can be uniquely extended as a morphism of post-Lie algebras from Lie(Mag(V )) to V . So Lie(Mag(V )) satisfies the required universal property to be a post-Lie algebra generated by V . 2

Remark. Describing the free magmatic algebra generated by V is terms of planar rooted trees with a grafting operation, we get back the construction of free post-Lie algebras of [START_REF] Hans | On post-Lie algebras, Lie-Butcher series and moving frames[END_REF].

Enveloping algebra of a post-Lie algebra

Let (V, {-, -}, * ) be a post-Lie algebra. We extend * onto T (V ) as previously in Proposition 1. The usual bracket of Lie(V ) ⊆ T (V ) is denoted by [f, g] = f ggf , and should not be confused with the bracket {-, -} of the post-Lie algebra V .

Lemma 2 Let I be the two-sided ideal of T (V ) generated by the elements xyyx -{x, y}, x, y ∈ V . Then I * T (V ) ⊆ I and T (V ) * I = (0).

Proof. First step. Let us prove that for all x, y ∈ V , for all h ∈ T (V ):

{x, y} * h =
x * h (1) , y * h (2) .

Note that the second member of this formula makes sense, as V * T (V ) ⊆ V by Lemma 1.

We assume that h = z 1 . . . z n and we work by induction on n. If n = 0, then h = 1 and

{x, y} * 1 = {x, y} = {x * 1, y * 1}. If n = 1, then h ∈ V , so ∆ ¡ (h) = h ⊗ 1 + 1 ⊗ h. {x, y} * h = {x * h, y} + {x, y * h} = {x * h, y * 1} + {x * 1, y * h} = {x * h (1) , y * h (2) }.
If n ≥ 2, we put h 1 = z 1 . . . z n-1 and h 2 = z n . The induction hypothesis holds for h 1 , h 2 and

h 1 * h 2 : {x, y} * h = ({x, y} * h 1 ) * h 2 -{x, y} * (h 1 * h 2 ) = x * h (1) 1 , y * h (2) 1 * h 2 - x * (h 1 * h 2 ) (1) , y * (h 1 * h 2 ) (2) = x * h (1) 1 * h (1) 2 , y * h (2) 1 * h (2) 2 - x * h (1) 1 * h (1) 2 
, y * h

(2) 1 * h (2) 2 = x * h (1) 1 * h 2 , y * h (2) 1 + x * h (1) 1 , y * h (2) 1 * h 2 - x * h (1) 1 * h 2 , y * h (2) 1 - x * h (1) 1 , y * h (2) 1 * h 2 = x * h (1) 1 * h 2 -x * h (1) 1 * h 2 , y * h (2) 1 + x * h (1) 1 , y * h (2) 1 * h 2 -y * h (2) 1 * h 2 = x * h (1) 1 h 2 , y * h (2) 1 + x * h (1) 1 , y * h (2) 1 h 2 =
x * h (1) , y * h (2) .

Consequently, the result holds for all h ∈ T (V ).

Second step. Let J = V ect(xy -yx -{x, y} | x, y ∈ V ).
For all x, y ∈ V , for all h ∈ T (V ), by the first step:

(xy -yx -{x, y}) * h = x * h (1) y * h (2) -y * h (1) y * h (2) -x * h (1) , y * h (2) ∈ J. So J * T (V ) ⊆ J. If g ∈ J, f 1 , f 2 , h ∈ T (V ): (f 1 gf 2 ) * h = f 1 * d (1) g * h (2) ∈J f 2 * h (3) ∈ I. So I * T (V ) ⊆ I.
Let us prove that T (V ) * (T (V )JV ⊗n ) = (0) for all n ≥ 0. We start with n = 0. First, 1 * (T (V )J) = ε(T (V )J) = (0). Let x, y, z ∈ V , g ∈ T (V ). Then:

x * (gyzgzy -g{y, z})

= (x * (gy)) * z -x * ((gy) * z) -(x * (gz)) * y + x * ((gz) * y) -(x * g) * {y, z} + x * (g * {y, z}) = ((x * g) * y) * z -(x * (g * y) * z -x * ((g * z)y) -x * (g(y * z)) -((x * g) * z) * y -(x * (g * z)) * y + x * ((g * y)z) + x * (g(z * y)) -(x * g) * {y, z} + x * (g * {y, z}) = ((x * g) * y) * z -(x * (g * y)) * z -(x * (g * z)) * y + x * ((g * z) * y) -(x * g) * (y * z) + x * (g * (y * z)) -((x * g) * z) * y + (x * (g * z)) * y (x * (g * y)) * z -x * ((g * y) * z) + (x * g) * (z * y) -x * (g * (z * y)) -(x * g) * {y, z} + x * (g * {y, z}) = x * ((g * z) * y) + x * (g * (y * z)) -x * ((g * y) * z) -x * (g * (z * y)) + x * (g * {y, z}) + ((x * g) * y) * z -(x * g) * (y * z) -((x * g) * z) * y + (x * g) * (z * y) -(x * g) * {y, z} = 0 + 0. So V * (T (V )J) = (0). As the elements of J are primitive, T (V )J is a coideal. If n ≥ 1, x 1 , . . . , x n ∈ V and g ∈ T (V )J, we put ∆ (n-1) ¡ (g) = g (1) ⊗ . . . ⊗ g (n)
, with at least one 1) and y ∈ V . We put g = g 1 g 2 g 3 , with 1) . Then:

g i ∈ T (V )J. Then (x 1 . . . x n ) * g = (x 1 * g (1) ) . . . (x n * g (n) ) = 0, so T (V ) * (T (V )J) = (0). If n ≥ 1, we take f ∈ T (V ), g ∈ T (V )JV ⊗(n-
g 1 ∈ T (V ), g 2 ∈ J, g 3 ∈ V ⊗(n-
g * y = (g 1 * y)g 2 g 3 + g 1 (g 2 * y) ∈J * T (V )⊆J g 3 + g 1 g 2 (g 3 * y) ∈V ⊗n ∈ T (V )JV ⊗n .
So the induction hypothesis holds for g and for g * y.

Then f * (gy) = (f * g) * y -f * (g * y) = 0. So T (V ) * I = (0). 2 
As a consequence, the quotient T (V )/I inherits a magmatic product * . Moreover, I is a Hopf ideal, and this implies that it is also a two-sided ideal for ⊛. As T (V )/I is the enveloping algebra U (V, {-, -}), we obtain Proposition 3.1 of [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF]: Proposition 4 Let (g, {-, -}, * ) be a post-Lie algebra. Its magmatic product can be uniquely extended to U (g) such that for all f, g, h ∈ U (g), x, y ∈ g:

• f * 1 = f . • 1 * f = ε(f )1. • f * (gy) = (f * g) * y -f * (g * y). • (f g) * h = f * h (1)
g * h (2) , where ∆(h) = h (1) ⊗ h (2) is the usual coproduct of U (g).

We define a product ⊛ on U (g) by f * g = f * g (1) g (2) . Then (U (g), ⊛, ∆) is a Hopf algebra, isomorphic to U (g, {-, -} * ).

Proof. By Cartier-Quillen-Milnor-Moore's theorem, (U (g), ⊛, ∆) is an enveloping algebra; the underlying Lie algebra is P rim(U (g)) = g, with the Lie bracket defined by:

{x, y} ⊛ = x ⊛ y -y ⊛ x = xy + x * y -yx -y * x.
This is the bracket {-, -} * .

2

Remarks.

1. If g is a post-Lie algebra with {-, -} = 0, it is a pre-Lie algebra, and U (g) = S(g). We obtain again the Oudom-Guin construction [START_REF] Oudom | Sur l'algèbre enveloppante d'une algèbre pré-Lie[END_REF][START_REF]On the Lie enveloping algebra of a pre-Lie algebra[END_REF].

2. By Lemma 1, (U (g), * ) is a right (U (g), ⊛)-module. By restriction, (g, * ) is also a right (U (g), ⊛)-module.

The particular case of associative algebras

Let (V, ⊳) be an associative algebra. The associated Lie bracket is denoted by [-, -] ⊳ . As (V, 0, ⊳) is post-Lie, the construction of the enveloping algebra of (V, [-, -] ⊳ ) can be done: we obtain a product ⊳ defined on S(V ) and an associative product ◭ making (S(V ), ◭, ∆) a Hopf algebra, isomorphic to the enveloping algebra of (V, [-, -] ⊳ ).

Lemma 3 If x 1 , . . . , x k , y 1 , . . . , y l ∈ V :

x 1 . . . x k ⊳ y 1 . . . y l = θ:[l]֒→[k]   i / ∈Im(θ) x i   k i=1 x θ(i) ⊳ y i , x 1 . . . x k ◭ y 1 . . . y l = I⊆[l] θ:I֒→[k]   i / ∈Im(θ) x i     j / ∈I y j   i∈I x θ(i) ⊳ y i .
Proof. We first prove that for all k ≥ 2, x, y 1 , . . . , y k ∈ V , x ⊳ y 1 . . . y k = 0. We proceed by induction on k. For k = 2, x ⊳ y 1 y 2 = (x ⊳ y 1 ) ⊳ y 2x ⊳ (y 1 ⊳ y 2 ) = 0, as ⊳ is associative. Let us assume the result at rank k. Then:

x ⊳ y 1 . . . y k+1 = (x ⊳ y 1 . . . y k ) ⊳ y k+1 - k i=1 x ⊳ (y 1 . . . (y i ⊳ y k+1 ) . . . y k ) = 0.
Let us now prove the formula for ⊳.

x 1 . . . x k ⊳ y 1 . . . y l = [l]=I 1 ⊔...⊔I k   x 1 ⊳ i∈I 1 y i   . . .   x k ⊳ i∈I k y i   .
Moreover, for all j:

x j ⊳ i∈I j y i =      x j if I j = ∅, x j ⊳ y p if I j = {p}, 0 otherwise. Hence: x 1 . . . x k ⊳ y 1 . . . y l = [l]=I 1 ⊔...⊔I k ∀p, |Ip|≤1   x 1 ⊳ i∈I 1 y i   . . .   x k ⊳ i∈I k y i   = θ:[l]֒→[k]   i / ∈Im(θ) x i   k i=1
x θ(i) ⊳ y i .

Finally:

x 1 . . . x k ◭ y 1 . . . y l = I⊆[l] i / ∈I y i x 1 . . . x k ⊳ i∈I y i , as announced. 2 
Examples. Let x 1 , x 2 , y 2 , y 2 ∈ V .

x 1 ◭ y 1 = x 1 y 1 + x 1 ⊳ y 1 , x 1 x 2 ◭ y 1 = x 1 x 2 y 1 + (x 1 ⊳ y 1 )x 2 + x 1 (x 2 ⊳ y 1 ), x 1 ◭ y 1 y 2 = x 1 y 1 y 2 + (x 1 ⊳ y 1 )y 2 + (x 1 ⊳ y 2 )y 1 , x 1 x 2 ◭ y 1 y 2 = x 1 x 2 y 1 y 2 + (x 1 ⊳ y 1 )x 2 y 2 + (x 1 ⊳ y 2 )x 2 y 1 + x 1 (x 2 ⊳ y 1 )y 2 + x 1 (x 2 ⊳ y 2 )y 1 + (x 1 ⊳ y 1 )(x 2 ⊳ y 2 ) + (x 1 ⊳ y 2 )(x 2 ⊳ y 1 ).
Remark. The number of terms in x 1 . . . x k ⊳ y 1 . . . y l is:

min(k,l) i=0 l i k i i!,
see sequences A086885 and A176120 of [START_REF] Sloane | On-line encyclopedia of integer sequences[END_REF].

2 A family of solvable Lie algebras

Definition

Definition 2 Let us fix a = (a 1 , . . . , a N ) ∈ K N . We define an associative product ⊳ on

K N : ∀i, j ∈ [N ], ǫ i ⊳ ǫ j = a j ǫ i .
The associated Lie bracket is denoted by

[-, -] a : ∀i, j ∈ [N ], [ǫ i , ǫ j ] a = a j ǫ i -a i ǫ j .
This Lie algebra is denoted by g a .

Remarks.

1. Let A ∈ M N,M (K), and a ∈ K N . The following map is a Lie algebra morphism:

g a. t A -→ g a x -→ Ax.
Consequently, if a = (0, . . . , 0), g a is isomorphic to g (1,0,...,0) .

2. These Lie algebras g a are characterized by the following property: if g is a n-dimensional Lie algebra such that any 2-dimensional subspace of g is a Lie subalgebra, there exists a ∈ K n such that g and g a are isomorphic.

Definition 3 Let A = T (V ) N .
The elements of A will be denoted by:

f =    f 1 . . . f N    = f 1 ǫ 1 + . . . + f N ǫ N .
For all i, j ∈ [N ], we define bilinear products i ¡ and ¡ j :

∀f, g ∈ T (V ) N , f i ¡ g =    f i ¡ g 1 . . . f i ¡ g N    , f ¡ j g =    f 1 ¡ g j . . . f N ¡ g j    .
In other words, if f, g ∈ T (V ), for all k, l ∈ [N ]:

f ǫ k i ¡ gǫ l = δ i,k (f ¡ g)ǫ l , f ǫ k ¡ j gǫ l = δ j,l (f ¡ g)ǫ k . If a = (a 1 , . . . , a N ) ∈ K N , we put a ¡ = a 1 1 ¡ + . . . + a N N ¡ and ¡ a = a 1 ¡ 1 + . . . + a N ¡ N .
Proposition 5 Let f, g ∈ K N . For all f, g, h ∈ A:

(f ¡ a g) ¡ b h = f ¡ a (g ¡ b h), (f ¡ a g) b ¡ h = f ¡ a (g b ¡ h), (f a ¡ g) ¡ b h = f a ¡ (g ¡ b h), (f a ¡ g) b ¡ h = f a ¡ (g b ¡ h), f ¡ a g = g a ¡ f.
Proof. Direct verifications, using the associativity and the commutativity of ¡.

2 Definition 4 Let a ∈ K N . We define a Lie bracket on A:

∀f, g ∈ A, a [f, g] = f a ¡ g -g a ¡ f = g ¡ a f -f ¡ a g.
This Lie algebra is denoted by g ′ a .

Remark. If A is an associative commutative algebra and g is a Lie algebra, then A ⊗ g is a Lie algebra, with the following Lie bracket:

∀f, g ∈ A, x, y ∈ g, [f ⊗ x, g ⊗ y] = f g ⊗ [x, y].
Then, as a Lie algebra, g ′ a is isomorphic to the tensor product of the associative commutative algebra (T (V ), ¡), and of the Lie algebra g -a . Consequently, if a = (0, . . . , 0), g ′ a is isomorphic to g ′ (1,0,...,0) .

Enveloping algebra of g a

Let us apply Lemma 3 to the Lie algebra g a :

Proposition 6 The symmetric algebra S(g a ) is given an associative product ◭ such that for all i 1 , . . . , i k , j 1 , . . . , j l ∈ [N ]:

ǫ i 1 . . . ǫ i k ◭ ǫ j 1 . . . ǫ j l = I⊆[l] k(k -1) . . . (k -|I| + 1)   q∈I a jq     p / ∈I ǫ jp   ǫ i 1 . . . ǫ i k .
The Hopf algebra (S(g a ), ◭, ∆) is isomorphic to the enveloping algebra of g a .

The enveloping algebra of g a has two distinguished bases, the Poincaré-Birkhoff-Witt basis and the monomial basis:

(ǫ i 1 ◭ . . . ◭ ǫ i k ) k≥0, 1≤i 1 ≤...≤i k ≤N , (ǫ i 1 . . . ǫ i k ) k≥0, 1≤i 1 ≤...≤i k ≤N .
Here is the passage between them.

Proposition 7 Let us fix n ≥ 1. For all I = {i 1 < . . . < i k } ⊆ [n], we put:

λ(I) = (i 1 -1) . . . (i k -k), µ(I) = (-1) k (i 1 -1)i 2 (i 3 + 1) . . . (i k + k -2).
We use the following notation: if [n] \ I = {q 1 < . . . < q l }, ◭ q / ∈I ǫ iq = ǫ iq 1 ◭ . . . ◭ ǫ iq l . Then:

ǫ i 1 ◭ . . . ◭ ǫ in = I⊆[n] λ(I)   p∈I a ip     q / ∈I ǫ iq   , ǫ i 1 . . . ǫ in = I⊆[n] µ(I)   p∈I a ip     ◭ q / ∈I ǫ iq   .
Proof. First step. Let us prove the first formula by induction on n. It is obvious if n = 1, as λ(∅) = 1 and λ({1}) = 0. Let us assume the result at rank n.

ǫ i 1 ◭ . . . ◭ ǫ i n+1 = I⊆[n] λ(I)   p∈I a ip     q / ∈I ǫ iq   ◭ ǫ i n+1 = I⊆[n] λ(I)   p∈I a ip     q / ∈I ǫ iq ǫ i n+1 + (k -|I|)a i n+1 q / ∈I ǫ iq   = I⊆[n+1], n+1 / ∈I λ(I)   p∈I a ip     q / ∈I ǫ ip   + I⊆[n+1], n+1∈I λ(I)   p∈I a ip     q / ∈I ǫ ip   = I⊆[n+1] λ(I)   p∈I a ip     q / ∈I ǫ ip   .
Second step. Let us prove that for all I ⊆ [n],

J⊆I λ(J)µ(I \ J) = δ I,∅ .

We put I = {i 1 < . . . < i k } and we proceed by induction on k. As λ(∅) = µ(∅) = 1, the result is obvious at rank k = 0 and k = 1. Let us assume the result at rank k -1, with k ≥ 2.

J⊆I λ(J)µ(I \ J) = J⊆I, i k ∈J λ(J)µ(I \ J) + J⊆I, i k / ∈J λ(J)µ(I \ J) = J⊆I\{i k } λ(J ∪ {i k })µ(I \ {i k } \ J) + J⊆I\{i k } λ(J)µ(I \ J) = J⊆I\{i k } λ(J)(i k -|J|)µ(I \ {i k } \ J) - J⊆I\{i k } λ(J)µ(I \ {i k } \ J)(i k + |I \ {i k } \ J| + 1) = J⊆I\{i k } λ(J)µ(I \ {i k } \ J)(i k -|J| -i k -|I| + 1 + |J| -1) = -|I| J⊆I\{i k } λ(J)µ(I \ {i k } \ J) = 0.
Therefore:

I⊆[n] µ(I)   p∈I a ip     ◭ q / ∈I ǫ iq   = I⊆[n] J⊆[n]\I µ(I)λ(J)   p∈I a ip     p∈J a ip     q∈[n]\I\J ǫ iq   = A⊔B⊔C=[n] µ(A)λ(B)   p∈A⊔B a ip     q∈C ǫ iq   = I⊔J=[n]        I ′ ⊆I λ(I ′ )µ(I \ I ′ ) =δ I,∅          p∈I a ip     q∈J ǫ iq   = ǫ i 1 . . . ǫ in ,
which ends the proof. 2

2.3 Modules over g (1,0,...,0)

Proposition 8 1. Let V be a module over the associative (non unitary) algebra (g (1,0,...,0) , ⊳). Then V = V (0) ⊕ V (1) , with:

• ǫ 1 .v = v if v ∈ V (1) and ǫ 1 .v = 0 if v ∈ V (0) . • For all i ≥ 2, ǫ i .v ∈ V (0) if v ∈ V (1) and ǫ i .v = 0 if i ∈ V (0) .
2. Conversely, let V = V (1) ⊕V (0) be a vector space and let f i : V (1) -→ V (0) for all 2 ≤ i ≤ N .

One defines a structure of (g (1,0,...,0) , ⊳)-module over V :

ǫ 1 .v = v if v ∈ V (1) , 0 if v ∈ V (0) ; if i ≥ 2, ǫ i .v = f i (v) if v ∈ V (1) , 0 if v ∈ V (0) .
Shortly:

ǫ 1 : 0 0 0 Id , ∀i ≥ 2, ǫ i : 0 f i 0 0 .
Proof. Note that in g (1,0,...,0) , ǫ i ⊳ ǫ j = δ 1,j ǫ i .

1. In particular,

ǫ 1 ⊳ ǫ 1 = ǫ 1 . If F 1 : V -→ V is defined by F 1 (v) = ǫ 1 .v, then: F 1 • F 1 (v) = ǫ 1 .(ǫ 1 .v) = (ǫ 1 ⊳ ǫ 1 ).v = ǫ.v = F 1 (v),
so F 1 is a projection, which implies the decomposition of V as V (0) ⊕ V (1) . Let x ∈ V (1) and

i ≥ 2. Then F 1 (ǫ i .v) = ǫ 1 .(ǫ i .v) = (ǫ 1 ⊳ ǫ i ).v = 0, so ǫ i .v ∈ V (0) . Let x ∈ V (0) . Then ǫ i .v = (ǫ i ⊳ ǫ 1 ).v = ǫ i .F 1 (v) = 0, so ǫ i .v = 0. 2. Let i ≥ 2 and j ∈ [N ]. If v ∈ V (1) : ǫ 1 .(ǫ 1 .v) = v = ǫ 1 .v, ǫ i .(ǫ 1 .v) = f i (v) = ǫ i .v, ǫ j .(ǫ i .v) = ǫ j .f i (v) = 0.v. If v ∈ V (0) : ǫ 1 .(ǫ 1 .v) = 0 = ǫ 1 .v, ǫ i .(ǫ 1 .v) = 0 = ǫ i .v, ǫ j .(ǫ i .v) = 0 = 0.v.
So V is indeed a (g (1,0,...,0) , ⊳)-module. 2

Example. There are, up to an isomorphism, three indecomposable (g (1,0) , ⊳)-modules:

ǫ 1 (0) (1) 0 0 0 1 ǫ 2 (0) (0) 0 1 0 0
Proposition 9 (We assume K algebraically closed). Let V be an indecomposable finitedimensional module over the Lie algebra g (1,0,...,0) . There exists a scalar λ and a decomposition:

V = V (0) ⊕ . . . ⊕ V (k)
such that, for all 0 ≤ p ≤ k:

• ǫ 1 V (p) ⊆ V (p) and there exists n ≥ 1 such that (ǫ 1 -(λ + p)Id) n |V (p) = (0). 1) , with the convention V (-1) = (0).

• If i ≥ 2, ǫ i V (p) ⊆ V (p-
Proof. First, observe that in the enveloping algebra of g (1,0,...,0) , if i ≥ 2 and λ ∈ K:

ǫ i ◭ (ǫ 1 -λ) = ǫ i ǫ 1 + ǫ i -λǫ i = ǫ i ǫ 1 + (1 -λ)ǫ i = (ǫ 1 -λ + 1) ◭ ǫ i .
Therefore, for all i ≥ 2, for all n ∈ N, for all λ ∈ K:

ǫ i ◭ (ǫ 1 -λ) ◭n = (ǫ 1 -λ + 1) ◭n ◭ ǫ i .
Let V be a finite-dimensional module over the Lie algebra g (1,0,...,0) . We denote by E λ the characteristic subspace of eigenvalue λ for the action of ǫ 1 . Let us prove that for all

λ ∈ K, if i ≥ 2, ǫ i (E λ ) ⊆ E λ-1 . If x ∈ E λ , there exists n ≥ 1, such that (ǫ 1 -λId) ◭n .v = 0. Hence: 0 = ǫ i .((ǫ 1 -λId) n .v) = (ǫ 1 -(λ -1)Id) n .(ǫ i .v), so ǫ i ∈ E λ-1 .
Let us take now V an indecomposable module, and let Λ be the spectrum of the action of ǫ 1 . The group Z acts on K by translation. We consider Λ ′ = Λ + Z and let Λ ′′ be a system of representants of the orbits of Λ ′ . Then:

V = λ∈Λ ′′ n∈Z E λ+n V λ .
By the preceding remarks, V λ is a module. As V is indecomposable, Λ ′′ is reduced to a single element. As the spectrum of ǫ 1 is finite, it is included in a set of the form {λ, λ + 1, . . . , λ + k}. We then take V (p) = E λ+p for all p. 2

Example. Let us give the indecomposable modules of g (1,0) of dimension ≤ 3. For any λ ∈ K:

ǫ 1 ǫ 2 (λ) (0) λ 0 0 λ + 1 0 1 0 0 λ 1 0 λ 0 0 0 0   λ 0 0 0 λ + 1 0 0 0 λ + 2     0 1 0 0 0 1 0 0 0   ǫ 1 ǫ 2   λ 1 0 0 λ 0 0 0 λ + 1     0 0 1 0 0 0 0 0 0     λ 0 0 0 λ + 1 1 0 0 λ + 1     0 1 0 0 0 0 0 0 0     λ 1 0 0 λ 1 0 0 λ     0 0 0 0 0 0 0 0 0   Definition 5
Let V be a module over the Lie algebra g a . The associated algebra morphism is:

φ V :    U (g a ) = (S(g a ), ◭) -→ End(V ) ǫ i -→ V -→ V v -→ ǫ i .v.
For all i 1 , . . . , i k ∈ [N ], we put F i 1 ,...,i k = φ V (ǫ i 1 . . . ǫ i k ); this does not depend on the order on the indices i p .

By Proposition 7:

Proposition 10 For all i 1 , . . . , i n ∈ [N ]:

F i 1 • . . . • F in = I⊆[n], I\J={j 1 <...<j l } λ(I)   p∈I a ip   F i j 1 ,...,i j l , F i 1 ,...,in = I⊆[n], I\J={j 1 <...<j l } µ(I)   p∈I a ip   F i j 1 • . . . • F i j l .
When V is a module over the associative algebra (g A , ⊳), these morphisms are easy to describe: Proposition 11 Let V be a module over the associative algebra (g a , ⊳); it is also a module over the Lie algebra

(g a , [-, -] a ). For all k ≥ 2, i 1 , . . . , i k ∈ [N ], F i 1 ,...,i k = 0.
Proof. As V is a module over the associative algebra (g a , ⊳), for any i 1 , i 2 ∈ [N ]:

F i 1 • F i 2 = a i 2 F i 1 .
We proceed by induction on k.

If k = 2, ǫ i 1 ǫ i 2 = ǫ i 1 ◭ ǫ i 2 -a i 2 ǫ i 1 , so: F i 1 ,i 2 = F i 1 • F i 2 -a i 2 F i 1 = a i 2 F i 1 -a i 2 F i 1 = 0.
Let us assume the result at rank k. Then ǫ 1 . . .

ǫ i k+1 = ǫ i 1 . . . ǫ i k ◭ ǫ i k+1 -ka i k+1 ǫ i 1 . . . ǫ i k , and F i 1 ,...,i k+1 = F i 1 ,...,i k • F i k+1 -ka i k+1 F i 1 ,...,i k = 0. 2 
3 A family of post-Lie algebras

Reminders

We defined in [START_REF] Foissy | A pre-Lie algebra associated to a linear endomorphism and related algebraic structures[END_REF] a family of pre-Lie algebras, associated to endomorphisms. Let us briefly recall this construction.

Proposition 12 Let V be a vector space and F : V -→ V be an endomorphism. We define a product * on T (V ): for all f, g ∈ T (V ), for all x ∈ V ,

∅ * g = 0, xf * g = x(f * g) + F (x)(f ¡ g).
This product is pre-Lie. The pre-Lie algebra (T (V ), * ) is denoted by T (V, F ). Moreover, for all f, g, h ∈ T (V, F ):

(f ¡ g) * h = (f * h) ¡ g + f ¡ (g * h).
We also proved the following result:

Proposition 13 Let k, l ≥ 0.
• The set Sh(k, l) of (k, l)-shuffles is the set of permutation σ ∈ S k+l such that σ(1) < . . . < σ(k) and σ(k + 1) < . . . < σ(k + l).

• If σ ∈ Sh(k, l), we put m k (σ) = max{i ∈ [k] | σ(1) = 1, . . . , σ(i) = i}. In particular, if σ(1) = 1, m k (σ) = 0.
For all x 1 , . . . , x k , y 1 , . . . , y l ∈ V :

x 1 . . . x k * y 1 . . . y l = σ∈Sh(k,l) m k (σ) p=1 Id ⊗(p 1 ) ⊗ F ⊗ Id ⊗(k+l-p) σ.(x 1 . . . x k y 1 . . . y l ).

Construction

Let us fix a vector space V , a family of N endomorphisms (F 1 , . . . , F N ) of V and a = (a 1 , . . . , a N ) ∈ K N . We define inductively a product * on T (V ) N : for all f, g ∈ T

(V ) N , x ∈ V , i ∈ [N ], ∅ǫ i * g = 0, xf * g = x(f * g) + F 1 (x)(f ¡ 1 g) + . . . + F N (x)(f ¡ N g).
We define a second product

• on T (V ) N : ∀f, g ∈ T (V ) N , f • g = f * g + f a ¡ g. Examples. Let x, y, z ∈ V , g ∈ T (V ), i, j ∈ [N ]
. Then:

xǫ i * gǫ j = F j (x)gǫ j , xyǫ i * gǫ j = (xF j (y)g + F j (x)(y ¡ g))ǫ i , xyzǫ i * gǫ j = (xyF j (z)g + xF j (y)(z ¡ g) + F j (x)(yz ¡ g))ǫ i . Proposition 14 Let x 1 , . . . , x k , y 1 , . . . , y l ∈ V , i, j ∈ [N ]. x 1 . . . x k ǫ i * y 1 . . . y l ǫ j = σ∈Sh(k,l) m k (σ) p=1 Id ⊗(p 1 ) ⊗ F j ⊗ Id ⊗(k+l-p) σ.(x 1 . . . x k y 1 . . . y l )ǫ i .
Proof. By induction on k. It is immediate if k = 0, as both sides are equal to 0. Let us assume the result at rank k -1.

x 1 . . . x k ǫ i * y 1 . . . y l ǫ j = x 1 (x 2 . . . x k ǫ i * y 1 . . . y l ǫ j ) + F j (x 1 )(x 2 . . . x k ¡ y 1 . . . y l )ǫ i = σ∈Sh(k,l), σ(1)=1 m k (σ) p=2 (Id ⊗(p 1 ) ⊗ F j ⊗ Id ⊗(k+l-p) )σ.(x 1 . . . x k y 1 . . . y l )ǫ i + σ∈Sh(k,l), σ(1)=1 (F j ⊗ Id ⊗(k+l-1) )σ.(x 1 . . . x k y 1 . . . y l )ǫ i = σ∈Sh(k,l), σ(1)=1 m k (σ) p=1 (Id ⊗(p 1 ) ⊗ F j ⊗ Id ⊗(k+l-p) )σ.(x 1 . . . x k y 1 . . . y l )ǫ i = σ∈Sh(k,l) m k (σ) p=1 (Id ⊗(p 1 ) ⊗ F j ⊗ Id ⊗(k+l-p) )σ.(x 1 . . . x k y 1 . . . y l )ǫ i ,
so the result holds for all k. 2

Remark. Let * j be the pre-Lie product of T (V, F j ), described in [START_REF] Foissy | A pre-Lie algebra associated to a linear endomorphism and related algebraic structures[END_REF]. For all f, g ∈ T (V ), for all i, j ∈ [N ]:

f ǫ i * gǫ j = (f * j g)ǫ i .
Corollary 2 For all f, g, h ∈ T (V ) N , for all i ∈ [N ]:

(f i ¡ g) * h = (f * h) i ¡ g + f i ¡ (g * h), (f ¡ i g) * h = (f * h) ¡ i g + f ¡ i (g * h), (f ¡ g) * h = (f * h) ¡ g + f ¡ (g * h).
Proof. It is enough to prove these assertions for f = f ′ ǫ k , g = g ′ ǫ l and h = h ′ ǫ m , with f ′ , g ′ , h ′ ∈ T (V ). For the first assertion:

(f i ¡ g) * h = δ i,k (f ′ ¡ g ′ ǫ l ) * h ′ ǫ m = δ i,k (f ′ ¡ g ′ ) * m h ′ ǫ l = δ i,k ((f ′ * m h ′ ) ¡ g ′ + f ′ ¡ (g ′ * m h ′ ))ǫ l = (f * h) i ¡ g + f i ¡ (g * h).
The second point is deduced from the first one, as ¡ i = i ¡ op . Finally:

(f i ¡ g) * h = δ k,l (f ′ ¡ g ′ ǫ l ) * h ′ ǫ m = δ k,l (f ′ ¡ g ′ ) * m h ′ ǫ l = δ k,l ((f ′ * m h ′ ) ¡ g ′ + f ′ ¡ (g ′ * m h ′ ))ǫ l = (f * h) ¡ g + f ¡ (g * h).
So the last point holds. 2

Theorem 3 The following conditions are equivalent:

1. (T (V ) N , •) is a pre-Lie algebra. 2. g ′ a = (T (V ) N , a [-, -], * ) is a post-Lie algebra.
3. V is a module over the Lie algebra g a , with the action given by ǫ

i .v = F i (v). Proof. By Corollary 2, for all f, g, h ∈ g ′ a , a [f, g] * h = a [f * h, g] + a [f, g * h]. 1. ⇐⇒ 2. Let f, g, h ∈ g. (f • g) • h -f • (g • h) -(f • h) • g + f • (h • g) = (f * g) * h -f * (g * h) -(f * h) * g -f * (h * g) + (f a ¡ g) * h -f a ¡ (g * h) -(f a ¡ h) * g + f a ¡ (h * g) + (f * g) a ¡ h -f * (g a ¡ h) -(f * h) a ¡ g + f * (h a ¡ g) + (f a ¡ g) a ¡ h -f a ¡ (g a ¡ h) -(f a ¡ g) a ¡ h + f a ¡ (g a ¡ h) = (f * g) * h -f * (g * h) -(f * h) * g -f * (h * g) + f * (g a ¡ h) -f * (h a ¡ g) + [(f a ¡ g) * h -f a ¡ (g * h) -(f * h) a ¡ g] + [(f a ¡ h) * g -f a ¡ (h * g) -(f * g) a ¡ h] -[(f * h) a ¡ g -f a ¡ (h * g) -(f * g) a ¡ h] + [(f a ¡ g) a ¡ h -f a ¡ (g a ¡ h)] -[(f a ¡ g) a ¡ h -f a ¡ (g a ¡ h)] = (f * g) * h -f * (g * h) -(f * h) * g + f * (h * g) -f * a [g, h]. So (g ′ a , •) is pre-Lie if, and only if, (g ′ a , a [-, -], * ) is post-Lie. 2. =⇒ 3. Let x, y, v ∈ V and i, j, k ∈ [N ]
. Then:

xǫ i * yǫ j = F j (x)yǫ i , xyǫ i * zǫ k = xF k (y)zǫ i + F k (x)(y ¡ z)ǫ i . xǫ i * yzǫ k = F k (x)yzǫ i ,
Hence:

(xǫ i * yǫ j ) * zǫ k = F j (x)yǫ i * zǫ k = F j (x)F k (y)zǫ i + F k • F j (x)y ¡ zǫ i , xǫ i * (yǫ j * zǫ k ) = xǫ i * F k (y)zǫ j = F j (x)F k (y)zǫ i , xǫ i a [yǫ j , zǫ k ] = a j xǫ i * (y ¡ z)ǫ k -a k xǫ i * (y ¡ z)ǫ j = (a j F k (x)(y ¡ z) -a k F j (x)(y ¡ z))ǫ i .
The post-Lie relation [START_REF] Ebrahimi-Fard | On the Lie enveloping algebra of a post-Lie algebra[END_REF] gives:

(a j F k (x) -a k F j (x))(y ¡ z) = F j (x)F k (y)z + F k • F j (x)(y ¡ z) -F j (x)F k (y)z -F j • F k (x)(y ¡ z) = (F j • F k -F k • F j )(x)(y ¡ z).
Let y = z be a nonzero element of V . Then y ¡ z = 0, and we obtain that for all x ∈ V ,

a j F k (x) -a k F j (x) = (F j • F k -F k • F j )(x): V is a g a -module. 3. =⇒ 2. Let us prove the post-Lie relation (2) for f ǫ i , g and h, with f ∈ T (V ), i ∈ [N ], g, h ∈ g ′ a .
We assume that f is a word and we proceed by induction on the length n of f . If n = 0, then f = ∅ and every term is 0 in the relation. Let us assume the result at rank n -1. We put f = xf ′ , with x ∈ V , and f ′ a word of length n -1.

(f * g) * h = x((f ′ ǫ i * g) * h) + N p=1 F p (x)((f ′ ǫ i * g) ¡ p h) + N p=1 F p (x)((f ′ ǫ i ¡ p g) * h + N p,q=1 F q • F p (x)(f ′ ǫ i ¡ p g ¡ q h), f * (g * h) = x(f ′ ǫ i * (g * h)) + N p=1 F p (x)(f ′ ǫ i ¡ p (g * h)), N p=1 a p f * (g p ¡ h) = N p=1 a p x(f ′ ǫ i * (g p ¡ h)) + N p,q=1 a p F q (x)(f ′ ǫ i ¡ q (g p ¡ h)).
We put:

P (f, g, h) = f * (g * h) -(f * g) * h + N p=1 a p f * (g p ¡ h).
In order to prove the post-Lie relation (2), we have to prove that P (f, g, h) = P (f, h, g). First:

(f * g) * h = x((f ′ ǫ i * g) * h) + N p=1 F p (x)((f ′ ǫ i * g) ¡ p h) + N p=1 F p (x)((f ′ ǫ i ¡ p g) * h + N p,q=1 F q • F p (x)(f ′ ǫ i ¡ p g ¡ q h), f * (g * h) = x(f ′ ǫ i * (g * h)) + N p=1 F p (x)(f ′ ǫ i ¡ p (g * h)), N p=1 a p f * (g p ¡ h) = N p=1 a p x(f ′ ǫ i * (g p ¡ h)) + N p,q=1 a p F q (x)(f ′ ǫ i ¡ q (g p ¡ h)).
Consequently:

P (f, g, h) = xP (f ′ , g, h) + N p=1 F p (x)(-(f ′ ǫ i * g) ¡ p h -((f ′ ǫ i ¡ p g) * h + f ′ ǫ i ¡ p (g * h)) + N p,q=1 a p F q (x)(f ′ ǫ i ¡ q g p ¡ h) -F q • F p (x)(f ′ ǫ i ¡ p g ¡ q h) = xP (f ′ , g, h) - N p=1 F p (x)((f ′ ǫ i * g) ¡ p h + (f ′ ǫ i * h) ¡ p g) + N p,q=1 a p F q (x)(f ′ ǫ i ¡ q h ¡ p g) -F q • F p (x)(f ′ ǫ i ¡ p g ¡ q h) = xP (f ′ , g, h) - N p=1 F p (x)(f ′ ǫ i * g) ¡ p h + (f ′ ǫ i * h) ¡ p g) + N p,q=1 (a p F q (x) -F q • F p (x))(f ′ ǫ i ¡ p g ¡ q h).
By the induction hypothesis, P (f ′ , g, h) = P (f ′ , h, g), so the first row is symmetric in g, h. As V is a g a -module, a p F q -F q • F p = a q F p -F p • F q , so the second row is symmetric in g, h, and finally P (f, g, h) = P (f, h, g):

g ′ a is a post-Lie algebra. 2 
Example. The post-Lie algebra g SISO is associated to a = (1, 0), V = V ect(x 1 , x 2 ) and:

F 1 = 0 0 0 1 , F 2 = 0 1 0 0 .
As F 1 and F 2 define a module over the Lie algebra g (1,0) , even in fact over the associative algebra (g (1,0) , ⊳), we obtain indeed a post-Lie algebra. For all f, g ∈ T (V ), for all i, j ∈ {1, 2}:

∅ǫ i * gǫ j = 0, x 2 f ǫ i * gǫ 1 = x 2 (f ǫ i * gǫ 1 ) + x 2 (f ¡ g)ǫ i , x 1 f ǫ i * gǫ j = x 1 (f ǫ i * gǫ j ), x 2 f ǫ i * gǫ 2 = x 2 (f ǫ i * gǫ 2 ) + x 1 (f ¡ g)ǫ i .

Extension of the post-Lie product

We now extend the post-Lie product of g ′ a to the enveloping algebra U (g ′ a ). As this Lie bracket is obtained from an associative product ⊳ = a ¡ , we can see U (g ′ a ) as (S(g ′ a ), ◭, ∆). The post-Lie product * is extended to U (g ′ a ), and we obtain a Hopf algebra (U (g), ⊛, ∆), isomorphic to

U (g ′ a , a [-, -] * ), with: ∀f, g ∈ g, a [f, g] * = a [f, g] + f * g -g * f = f a ¡ g + f * g -g a ¡ f -g * f.
As • is a pre-Lie product, it can also be extended to S(g) and gives a product ⊙, making S(g ′ a ) a Hopf algebra isomorphic to

U (g ′ a , [-, -] • ). Remark. Let f, g ∈ g ′ a . [f, g] • = f • g -g • f = f a ¡ g + f * g -g a ¡ f -g * f = a [f, g] + f * g -g * f = a [f, g] * . So [-, -] • = a [-, -] * . Lemma 4 Let f 1 , . . . , f k , g ∈ g ′ a , k ≥ 1. (f 1 ◭ . . . ◭ f k ) * g = k p=1 f 1 ◭ . . . ◭ (f p * g) ◭ . . . ◭ f k , (f 1 . . . f k ) * g = k p=1 f 1 . . . (f p * g) . . . f k .
Proof. The first point comes by the very definition of * . For the second point, we proceed by induction on k. This is obvious if k = 1. Let us assume the result at rank k, k ≥ 1. Observe that:

f 1 . . . f k+1 = f 1 . . . f k ◭ f k+1 - k p=1 f 1 . . . (f p a ¡ f k+1 ) . . . f k , so: f 1 . . . f k+1 * g = (f 1 . . . f k * g) ◭ f k+1 + f 1 . . . f k ◭ (f k+1 * g) - k p=1 f 1 . . . (f p a ¡ f k+1 ) . . . f k * g = k p=1 f 1 . . . (f p * g) . . . f k ◭ f k+1 + f 1 . . . f k ◭ (f k+1 * g) - p =q f 1 . . . (f p a ¡ f k+1 ) . . . (f q * g) . . . f k - k p=1 f 1 . . . ((f p a ¡ f k+1 ) * g) . . . f k = k p=1 f 1 . . . (f p * g) . . . f k f k+1 + p =q f 1 . . . (f p a ¡ f k+1 ) . . . (f q * g) . . . f k + k p=1 f 1 . . . ((f p * g) a ¡ f k+1 ) . . . f k - p =q f 1 . . . (f p a ¡ f k+1 ) . . . (f q * g) . . . f k - k p=1 f 1 . . . ((f p * g) a ¡ f k+1 ) . . . f k - k p=1 f 1 . . . (f p a ¡ (f k+1 * g)) . . . f k + f 1 . . . f k (f k+1 * g) + k p=1 f 1 . . . (f p a ¡ (f k+1 * g)) . . . f k = k+1 p=1 f 1 . . . (f p * g) . . . f k+1 .
Finally, the result holds for all k ≥ 1.

2

The following result allows to compute f * g 1 . . . g k by induction on the length of f :

Proposition 15 Let x ∈ V , k ≥ 1, f, g 1 , . . . , g k ∈ T (V ) N , i ∈ [N ]. ∅ǫ i * (g 1 ◭ . . . ◭ g k ) = 0, xf * (g 1 ◭ . . . ◭ g k ) = I={i 1 <...<i l }⊆[k], j 1 ,...,j l ∈[N ] F j l • . . . • F j 1 (x) f * ◭ i / ∈I g i ¡ j 1 g i 1 .
. . ¡ j l g i l ;

∅ǫ i * (g 1 . . . g k ) = 0, xf * (g 1 . . . g k ) = I={i 1 <...<i l }⊆[k], j 1 ,...,j l ∈[N ] F j 1 ,...,j l (x) f * i / ∈I g i ¡ j 1 g i 1 .
. . ¡ j l g i l .

Proof. In order to ease the redaction, we put:

I k = {(I, j 1 , . . . , j l ) | I = {i 1 < . . . < i l } ⊆ [k], j 1 , . . . , j l ∈ [N ]}.
We proceed by induction on k. It is immediate if k = 1. Let us assume the result at rank k, k ≥ 1. Then:

∅ǫ i * (g 1 ◭ . . . ◭ g k+1 ) = (∅ǫ i * (g 1 ◭ . . . ◭ g k )) * g k+1 - k p=1 ∅ǫ i * (g 1 ◭ . . . ◭ (g p * g k+1 ) ◭ . . . ◭ g k ) = 0.
Moreover:

xf * (g 1 ◭ . . . ◭ g k+1 ) = (xf * (g 1 ◭ . . . ◭ g k )) * g k+1 - k p=1 xf * (g 1 ◭ . . . ◭ (g p * g k+1 ) ◭ . . . ◭ g k = I k F j l • . . . • F j 1 (x)     f * ◭ i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ j l g i l   * g k+1 - I k F j l • . . . • F j 1 (x)   f *     ◭ i / ∈J⊔{k+1} g i   * g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l   - k p=1 I k F j l • . . . • F j 1 (x)     f * ◭ i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ jp (g ip * g k+1 ) . . . ¡ j l g i l   = I k j l+1 ∈[N ] F j l • . . . • F j 1 (x)     f * ◭ i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ j l g i l ¡ j l+1 g k+1   + I k F j l • . . . • F j 1 (x)       f * ◭ i / ∈J⊔{k+1} g i   * g k+1 -f *     ◭ i / ∈J⊔{k+1} g i   * g k+1     ¡ j 1 g i 1 . . . ¡ j l g i l   = I k j l+1 ∈[N ] F j l • . . . • F j 1 (x)     f * ◭ i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ j l g i l ¡ j l+1 g k+1   + I k F j l • . . . • F j 1 (x)     f * ◭ i / ∈J⊔{k+1} g i ◭ g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l ¡ j l g k+1   = I k+1 , k+1∈I F j l • . . . • F j 1 (x) f * ◭ i / ∈I g i ¡ j 1 g i 1 . . . ¡ j l g i l + I k+1 , k+1 / ∈I F j l • . . . • F j 1 (x) f * ◭ i / ∈I g i ¡ j 1 g i 1 . . . ¡ j l g i l = I k+1 F j l • . . . • F j 1 (x) f * ◭ i / ∈I g i ¡ j 1 g i 1 . . . ¡ j l g i l .
So, for all F ∈ U (g) + , ∅ǫ i * F = 0. As g 1 . . . g k ∈ U (g) + , the first point holds. Let us prove the second point by induction on k. The result is immediate if k = 1. Let us assume the result at rank k ≥ 1.

xf * g 1 . . . g k+1 = xf * (g 1 . . . g k * g k+1 ) - k p=1 xf * (g 1 . . . (g p a ¡ g k+1 ) . . . g k ) = (xf * g 1 . . . g k ) * g k+1 k p=1 xf * (g 1 . . . (g p a ¡ g k+1 ) . . . g k ) - k p=1 xf * (g 1 . . . (g p * g k+1 ) . . . g k ) = I k F j 1 ,...,j l (x)       f * i / ∈J⊔{k+1} g i   * g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l   + I k k p=1 F j 1 ,...,j l (x)     f * i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ jp (g ip * g k+1 ) . . . ¡ j l g i l   + I k j l+1 ∈[N ] F j l+1 • F j 1 ,...,j l (x)     f * i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ j l g i l   - I k F j 1 ,...,j l (x)   f *     i / ∈J⊔{k+1} g i   * g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l   - I k k p=1 F j 1 ,...,j l (x)     f * i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ jp (g ip * g k+1 ) . . . ¡ j l g i l   - I k k p=1 F j 1 ,...,j l (x)     f * i / ∈J⊔{k+1} g i   ¡ j 1 g i 1 . . . ¡ jp (g ip a ¡ g k+1 ) . . . ¡ j l g i l   - I k F j 1 ,...,j l (x)   f *     i / ∈J⊔{k+1} g i   * g k+1 -   i / ∈J⊔{k+1} g i   g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l   = I k F j 1 ,...,j l (x)   f *     i / ∈J⊔{k+1} g i   g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l   + I k j l+1 ∈[N ] F j l+1 • F j 1 ,...,j l (x)     f *   i / ∈J⊔{k+1} g i     ¡ j 1 g i 1 . . . ¡ j l g i l ¡ j l+1 g i l+1   - I k k p=1 j∈[N ] a j F j 1 ,...,j l (x)     f *   i / ∈J⊔{k+1}     ) ¡ j 1 g i 1 . . . ¡ jp (g k+1 ¡ j g p ) . . . ¡ j l g i l   = I k F j 1 ,...,j l (x)   f *     i / ∈J⊔{k+1} g i   g k+1   ¡ j 1 g i 1 . . . ¡ j l g i l   + I k j l+1 ∈[N ]   F j l+1 • F j 1 ,...,j l - l p=1 a jp F j 1 ,..., jp,...,j k+1   (x)     f *   i / ∈J⊔{k+1} g i     ¡ j 1 g i 1 . . . ¡ j l g i l ¡ j l+1 g i l+1   = I k+1 , k+1 / ∈J F j 1 ,...,j l (x) f * i / ∈I g i ¡ j 1 g i 1 . . . ¡ j l g i l + I k+1 , k+1∈J F j 1 ,...,j l (x) f * i / ∈I g i ¡ j 1 g i 1 . . . ¡ j l g i l = I k+1 F j 1 ,...,j l (x) f * i / ∈I g i ¡ j 1 g i 1 . . . ¡ j l g i l .
Note that we used F j l+1 • F j 1 ,...,j l = F j 1 ,...,j l+1 + l p=1 a jp F j 1 ,..., jp,...,j k+1 . 2

Proposition 16 Let k ≥ 1, f, g 1 , . . . , g k ∈ T (V ) N . Then:

f • g 1 . . . g k = f * g 1 . . . g k + k p=1 (f * g 1 . . . g p-1 g p+1 . . . g k ) a ¡ g p .
Proof. We proceed by induction on k. This is obvious if k = 1. Let us assume the result at rank k, k ≥ 1.

f • g 1 . . . g k+1 = (f • g 1 . . . g k ) • g k+1 - k p=1 f • (g 1 . . . (g p • g k+1 ) . . . g k ) = (f * g 1 . . . g k ) * g k+1 + (f * g 1 . . . g k ) a ¡ g k+1 + k p=1 ((f * g 1 . . . g p-1 g p+1 . . . g k ) a ¡ g p ) * g k+1 + k p=1 (f * g 1 . . . g p-1 g p+1 . . . g k ) a ¡ g p a ¡ g k+1 - k p=1 f * (g 1 . . . (g p • g k+1 . . . g k ) - k p=1 (f * g 1 . . . g p-1 g p+1 . . . g k ) ¡ (g p • g k+1 ) - p =q f * (g 1 . . . (g p • g k+1 ) . . . g q . . . g k ) a ¡ g q = (f * g 1 . . . g k ) * g k+1 + (f * g 1 . . . g k ) a ¡ g k+1 + k p=1 ((f * g 1 . . . g p-1 g p+1 . . . g k ) * g k+1 ) a ¡ g p + k p=1 (f * g 1 . . . g p-1 g p+1 . . . g k ) a ¡ (g p * g k+1 -g p • g k+1 + g p a ¡ g k+1 ) - p =q f * (g 1 . . . (g p • g k+1 ) . . . g q . . . g k ) a ¡ g q - k p=1 f * (g 1 . . . (g p • g k+1 ) . . . g k ) = (f * g 1 . . . g k ) * g k+1 + (f * g 1 . . . g k ) a ¡ g k+1 + k p=1   (f * g 1 . . . g p-1 g p+1 . . . g k ) * g k+1 - q =p f * g 1 . . . g p-1 g p+1 . . . (g k • g k+1 ) . . . g k   a ¡ g p - k p=1 f * g 1 . . . (g p * g k+1 ) . . . g k - k p=1 f * g 1 . . . (g p a ¡ g k+1 ) . . . g k = f *   g 1 . . . g k ◭ g k+1 - k p=1 g 1 . . . (g p a ¡ g k+1 ) . . . g k   + k+1 p=1 (f * g 1 . . . g p-1 g p+1 . . . g k+1 ) a ¡ g p = f * g 1 . . . g k+1 + k+1 p=1 (f * g 1 . . . g p-1 g p+1 . . . g k+1 ) a ¡ g p .
So the result holds for all k ≥ 1.

2

Proposition 17 On S(g ′ a ), ⊛ = ⊙.

Proof. Let f, g ∈ S(g ′ a ); let us prove that f ⊛ g = f ⊙ g. We assume that f = f 1 . . . f k , g = g 1 , . . . , g l , with f 1 , . . . , f k , g 1 , . . . , g l ∈ g ′ a , and we proceed by induction on k. If k = 0, then f = 1 and f ⊛ g = f • g = g. Let us assume the result at all ranks < k. We proceed by induction on l. If l = 0, then g = 1 and f ⊛ g = f ⊙ g = f . Let us assume the result at all ranks < l. We put:

∆(f ) = f ⊗ 1 + 1 ⊗ f + f ′ ⊗ f ′′ , ∆(g) = g ⊗ 1 + 1 ⊗ g + g ′ ⊗ g ′′ .
The induction hypothesis on k holds for f ′ and f ′′ and the induction hypothesis on l holds for g ′ and g ′′ . From: 2) , these two induction hypotheses give:

∆(f ⊛ g -f ⊙ g) = f (1) ⊛ g (1) ⊗ f (2) ⊛ g (2) -f (1) ⊙ g (1) ⊗ f (2) ⊙ g ( 
∆(f ⊛ g -f ⊙ g) = (f ⊛ g -f ⊙ g) ⊗ 1 + 1 ⊗ (f ⊛ g -f ⊙ g). So f ⊛ g -f ⊙ g ∈ P rim(S(g ′ a )) = g ′ a .
Let π be the canonical projection on g ′ a in S(g ′ a ). We obtain:

π(f ⊛ g) = π   I⊆[l] f * i∈I g i ◭ j / ∈I g j   = π   [l]=I 0 ⊔...⊔I k   f 1 * i∈I 1 g i   . . .   f k * i∈I k g i   ◭ i∈I 0 g i   = π   [l]=J 1 ⊔...⊔J k k p=1   f p * i∈J k g i + jp∈Jp   f p * i∈Jp\{jp} g i   a ¡ g jp     = π   [l]=J 1 ⊔...⊔J k   k p=1 f p • i∈Jp g i     = π f 1 • g (1) . . . f k • g (k) = π(f • g) = π(f ⊙ g). As f ⊛ g -f ⊙ g ∈ g ′ a , f ⊛ g = f ⊙ g. 2 

Graduation

We assume in this whole paragraph that a = (1, 0, . . . , 0) and V is finite-dimensional. We decompose the g a -module V as a direct sum of indecomposables. By Proposition 9, decomposing each indecomposables, we obtain a decomposition of V of the form:

V = V (0) ⊕ . . . ⊕ V (k) , with F 1 V (p) ⊆ V (p) and F i V (p) ⊆ V (p-1) for all i ≥ 2, for all p ∈ [k]. We put V p = V (k+1-p) for all p ∈ [k + 1]
. This defines a graduation of V , which induces a connected graduation of T (V ). For this graduation of V , F 1 is homogeneous of degree 0 and F i is homogeneous of degree 1 for all i ≥ 2. We define a graduation of g ′ a = T (V ) N :

∀n ≥ 0, (g ′ a ) n = T (V ) n ǫ 1 ⊕ N i=2 T (V ) n-1 ǫ i .
Let v, w ∈ T (V ), homogeneous of respective degree k and l. Let i, j ≥ 2. Then:

• vǫ 1 is homogeneous of degree k.

• vǫ i is homogeneous of degree k + 1.

• wǫ 1 is homogeneous of degree l.

• wǫ j is homogeneous of degree l + 1.

As v ¡ w is homogeneous of degree k + l:

• vǫ 1 (1,0,...,0) ¡ wǫ 1 = v ¡ wǫ 1 is homogeneous of degree k + l.

• vǫ 1 (1,0,...,0) ¡ wǫ j = v ¡ wǫ j is homogeneous of degree k + l + 1.

• vǫ i (1,0,...,0) ¡ wǫ 1 = 0 is homogeneous of degree k + l + 1.

• vǫ i (1,0,...,0) ¡ wǫ j = 0 is homogeneous of degree k + l + 2. Consequently, the product (1,0,...,0) ¡ is homogeneous of degree 0. Proposition 14 implies that * is homogeneous of degree 0; summing, • is also homogeneous of degree 0. Hence: Proposition 18 The decomposition of V in indecomposable g (1,0,...,0) -modules induces a graduation of the post-Lie algebra g ′ (1,0,...,0) . We put:

P (X) = k+1 i=1 dim(V p )X p ∈ K[X].
the formal series of g ′ (1,0,...,0) is:

R(X) = ∞ p=1 dim((g ′ (1,0,...,0) ) p )X p = 1 1 -P (X) + (N -1) X 1 -P (X) = 1 + (N -1)X 1 -P (X) .
Note that R(0) = 1: indeed, (g ′ (1,0,...,0) ) 0 = V ect(∅ǫ 1 ). The augmentation ideal of g ′ (1,0,...,0) is:

(g ′ (1,0,...,0) ) + = T (V ) + × T (V ) N -1
. This is a graded, connected post-Lie algebra.

Example. For the SISO case, V 1 = V ect(x 2 ) and V 2 = V ect(x 1 ). The formal series of g SISO is:

R SISO [START_REF] Sloane | On-line encyclopedia of integer sequences[END_REF]. For example:

(X) = 1 + X 1 -X -X 2 = 1 + 2X + 3X 2 + 5X 3 + 8X 4 + 13X 5 + . . . Hence, (dim(g SISO ) n ) n≥0 is the Fibonacci sequence A000045
(g SISO ) 0 = V ect(∅ǫ 1 ), (g SISO ) 1 = V ect(x 2 ǫ 1 , ∅ǫ 2 ), (g SISO ) 2 = V ect(x 1 ǫ 1 , x 2 x 2 ǫ 1 , x 2 ǫ 2 ), (g SISO ) 3 = V ect(x 1 x 2 ǫ 1 , x 2 x 1 ǫ 1 , x 2 x 2 x 2 ǫ 1 , x 1 ǫ 2 , x 2 x 2 ǫ 2 ).

Graded dual

We assume in this section that a = (1, 0, . . . , 0). The augmentation ideal of g ′ a is denoted by (g ′ a ) + ; recall that (g ′ a ) 0 = V ect(∅ǫ 1 ).

• As (g ′ a ) + is a graded, connected Lie algebra, its enveloping algebra U ((g ′ a ) + ) is a graded, connected Hopf algebra, and its graded dual also is. We denote it by H V .

• As an algebra, H V is identified with S((g ′ a ) * )/ ∅ǫ 1 . We identify (g ′ a ) * with T (V * ) N via the pairing: f 1 . . . f k ǫ i , x 1 . . . x l ǫ j = δ i,j δ k,l f 1 (x 1 ) . . . f k (x k ).

• The coproduct dual of ⊙ = ⊛ is denoted by ∆ • .

• The dual of the product ¡ j defined on g ′ a is denoted by ∆ ¡ j , defined on (g ′ a ) * = T (V * ) N .

• We define a coproduct ∆ * on S((g ′ a ) * + ), dual of the right action * . Therefore, this is right coaction of (H V , ∆ • ) on itself:

(∆ * ⊗ Id) • ∆ * = (Id ⊗ ∆ • ) • ∆ * .
Notations.

1. For all y ∈ V * , we define θ y : (g ′ a ) * -→ (g ′ a ) * by θ y (f ) = yf .

2. For all x ∈ (H V ) + , we put ∆ • (x) = ∆ • (x) -1 ⊗ x and ∆ * (x) = ∆ * (x) -1 ⊗ x. For all g, f, f 1 , . . . , f k ∈ (g ′ a ) * + :

∆ * (g), f ⊗ f 1 . . . f k = g, f * f 1 . . . f k .

Deshuffling coproducts

Proposition 19 For all g ∈ T (V ), for all i ∈ [N ], ∆ ¡ j (gǫ k ) = ∆ ¡ (g)(ǫ k ⊗ ǫ j ).

Proof. Let f 1 , f 2 ∈ T (V ), i 1 , i 2 ∈ [N ]. ∆ ¡ j (gǫ k ), f 1 ǫ i 1 ⊗ f 2 ǫ i 2 = gǫ k , f 1 ǫ i 1 ¡ j f 2 ǫ i 2 = δ i 2 ,j gǫ k , f 1 ¡ f 2 ǫ i 1 = δ i 2 ,j δ i 1 ,k g, f 1 ¡ f 2 = δ i 2 ,j δ i 1 ,k ∆ ¡ (g), f 1 ⊗ f 2 = ∆ ¡ (g)(ǫ k ⊗ ǫ j ), f 1 ǫ i 1 ⊗ f 2 ǫ i 2 .
As the pairing is nondegenerate, we obtain the result. 2

Notations. We define inductively, for l ≥ 0, j 1 , . . . , j l ∈ [N ]:

∆ ¡ ∅ = Id, ∆ ¡ j 1 ,...,j l = ∆ ¡ j 1 ⊗ Id ⊗(l-1) • ∆ ¡ j 2 ,...,j l .

For all g ∈ T (V * ), for all i ∈ [N ]: ∆ ¡ j 1 ,...,j l (gǫ k ) = ∆ (l) ¡ (g)(ǫ k ⊗ ǫ j 1 ⊗ . . . ⊗ ǫ j l ); for all f 1 , . . . , f l ∈ T (V ):

∆ ¡ j 1 ,...,j l (g), f 1 ⊗ . . . ⊗ f l+1 = g, f 1 ¡ j 1 . . . ¡ j l f l+1 .

Dual of the post-Lie product

Proposition 20 In H V = S((g ′ a ) * )/ ∅ǫ 1 :

• For all i ∈ [N ], ∆ * (∅ǫ i ) = ∅ǫ i ⊗ 1 + 1 ⊗ ∅ǫ i .

• For all y ∈ V * , g ∈ (g ′ a ) * : where we denote by µ the sum of the iterated products of H V :

∆ * • θ y (g) =
µ : T (H V ) -→ H V g 1 ⊗ . . . ⊗ g k -→ g 1 . . . g k .
Proof. The first point comes from ∅ǫ i * U (g ′ a ) + = (0).

In order to prove the formula, it is enough to prove that, for f, f 1 , . . . , f k ∈ g: y, F j 1 ,...,j l (x) ∆ ¡ j 1 ,...,j l (g), f ′ * i / ∈I

∆ * • θ y (g), f ⊗ f 1 . . . f k = l≥0 
f i ⊗ f i 1 . . . ⊗ f i l = j 1 ,...,j l ∈[N ]
F * j 1 ,...,j l (y), x (Id ⊗ µ) • (∆ * ⊗ Id) • ∆ ¡ j 1 ,...,j l (g), f ′ ⊗ f 1 . . . f k = j 1 ,...,j l ∈[N ]

(θ F * j 1 ,...,j l (y) ⊗ Id) • (Id ⊗ µ) • (∆ * ⊗ Id) • ∆ ¡ j 1 ,...,j l (g), xf ′ ⊗ f 1 . . . f k , which ends the proof. 2

In order to obtain a better description of the coproduct ∆ * , we are going to identify the following three objects: Notations. We denote by ∆ 1¡ the coproduct on T + (V * ) ⊗ (V ) N -1 dual to the product 1 ¡ . As 1 ¡ = ¡ 1 op , ∆ 1 ¡ = ∆ cop ¡ 1 , and for all g ∈ T (V ), for all i ∈ [N ]: ∆ 1 ¡ (gǫ i ) = ∆ ¡ (g)(ǫ 1 ⊗ ǫ k ).

S((g ′ a ) * + ) ∼ ( ( Q Q Q Q Q Q Q Q Q Q Q Q ∼ w
Proposition 22 In S((g ′ a ) * + )/ ∅ǫ 1 , for all g ∈ (g ′ a ) * + :

∆ • (g) = ∆ * (g) + (Id ⊗ µ) • (∆ * ⊗ Id) • ∆ 1 ¡ (g).

Proof. Let f, f 1 , . . . , f k ∈ (g ′ a ) + .

∆ • (g), f ⊗ f 1 . . . f k = g, f • f 1 . . . f k = g, f * f 1 . . . f k + k p=1 (f * f 1 . . . f p . . . f k ) 1 ¡ f p = ∆ * (g), f ⊗ f 1 . . . f k + ∆ 1¡ (g), k p=1 f * f 1 . . . f p . . . f k ⊗ f p = ∆ * (g), f ⊗ f 1 . . . f k + (∆ * ⊗ Id) • ∆ 1 ¡ (g), k p=1 f ⊗ f 1 . . . f p . . . f k ⊗ f p = ∆ * (g), f ⊗ f 1 . . . f k + (Id ⊗ µ) • (∆ * ⊗ Id) • ∆ 1 ¡ (g), f ⊗ f 1 . . . f k .
As (g ′ a , * ) is pre-Lie, ∆ • (g) ∈ (g ′ a ) * + ⊗ S((g ′ a ) * + ) and the nondegeneracy of the pairing implies the formula.

2

Rewriting this formula in S((g ′ a ) * + )/ ∅ǫ 1 -1 :

∆ • (gǫ 1 ) = ∆ * (gǫ 1 ) + (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ 1 ⊗ ǫ 1 )) = ∆ * (gǫ 1 ) + (Id ⊗ µ) • (∆ * ⊗ Id)((∆ ¡ (g) -g ⊗ ∅)(ǫ 1 ⊗ ǫ 1 )) = ∆ * (gǫ 1 )(1 ⊗ (1 -∅ǫ 1 )) + (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ 1 ⊗ ǫ 1 )) = (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ 1 ⊗ ǫ 1 )).

Identifying in S((g ′ a ) * + ):

Proposition 23 In S((g ′ a ) * + )/ ∅ǫ 1 -1 , if g ∈ T (V * ): ∆ • (gǫ 1 ) = (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ 1 ⊗ ǫ 1 )), if i ≥ 2, ∆ • (gǫ i ) = ∆ * (gǫ i ) + (Id ⊗ µ) • (∆ * ⊗ Id)(∆ ¡ (g)(ǫ i ⊗ ǫ 1 )), with the convention ∅ǫ 1 = 1. We put ∆ • (g) = ∆ • (g) + 1 ⊗ g for all g ∈ (g ′ a ) * + and extend ∆ • to S((g ′ a ) * + ) as an algebra morphism. This coproduct makes S((g ′ a ) * + ) a Hopf algebra, isomorphic to the graded dual of the enveloping algebra of ((g ′ a ) + , [-, -] * ).

Remark. These are mutatis mutandis the formulas of Lemma 4.3 in [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF].

l≥0 j 1

 1 ,...,j l ∈[N ] (θ F * j 1 ,...,j l (y) ⊗ µ) • (∆ * ⊗ Id) • ∆ ¡ j 1 ,...,j l (g),

  j 1 ,...,j l ∈[N ] (θ F * j 1 ,...,j l (y) ⊗ µ) • (∆ * ⊗ Id) • ∆ ¡ j 1 ,...,j l (g), f ⊗ f 1 . . . f k ,or equivalently:θ y (g), f * f 1 . . . f k = l≥0 j 1 ,...,j l ∈[N ] (θ F * j 1 ,...,j l (y) ⊗ µ) • (∆ * ⊗ Id) • ∆ ¡ j 1 ,...,j l (g), f ⊗ f 1 . . . f k ,If f = ∅ǫ i , both sides are equal to 0. Otherwise, we can assume that f = xf ′ , with x ∈ V and f ′ ∈ g.θ y (g), f * f 1 . . . f k = yg, I={i 1 <...<i l }⊆[k] j 1 ,...,j l ∈[N ] F j 1 ,...,f l (x) f ′ * i / ∈I f i ¡ j 1 f i 1 . . . ¡ j l f i l = I={i 1 <...<i l }⊆[k] j 1 ,...,j l ∈[N ]
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Both identification sends x ∈ (g ′ a ) * + to its class. Let us reformulate Proposition 20 in the vector space S((g ′ a ) * )/ ∅ǫ 1 -1 :

Finally, identifying in S((g ′ a ) * + ):

Proposition 21 For all j 1 , . . . , j l ∈ [N ], we put:

In S((g ′ a ) * + )/ ∅ǫ 1 -1 :

• For all y ∈ V * , for all g ∈ (g ′ a ) * + :

Example. For g SISO , as V is a module over the associative algebra (g (1,0) , ⊳), if l ≥ 2, F j 1 ,...,j l = 0 by Proposition 11, so G j 1 ,...,j l = 0. Moreover:

The coproduct ∆ * on S((g SISO ) * + ) is given by:

• For all g ∈ K x 1 , x 2 , for all i ∈ [2]:

These are formulas of Lemma 4.1 of [START_REF] Gray | SISO Output Affine Feedback Transformation Group and Its Faà di Bruno Hopf Algebra[END_REF], where a w = wǫ 2 , b w = wǫ 1 , θ 0 = θ x 1 , θ 1 = θ x 2 and ∆ = ∆ * .