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Abstract

In order to control more efficiently the feet-ground interaction of humanoid robots during walking, we investigate adding
outer soft (i.e. compliant) soles to the feet. The deformation subsequent to the contact of the soles with the ground
is taken into account using a new walking pattern generator and deformation estimator. This novel humanoid walking
approach ensures that the desired zero moment point for stability requirement is fulfilled. We validate our new controller
using the HRP-4 humanoid robot performing walking experiments with and without the estimator. Also, to test the
robustness of our approach and to obtain low-energy walking, we performed different walking motions.

Keywords: Compliant soles, Deformation Estimator, Walking Pattern Generator, Humanoid robots, Optimized
walking gait

1. Introduction

Gaited or non-gaited walking is generated by alternat-
ing phases of contact creation and breaking with the envi-
ronment [1]. With rigid links and without shock absorbing
mechanism, impact forces with the ground must be thresh-
olded through contact transitions with nearly zero speed.
This considerably limits the walking dynamics. Therefore,
compliant mechanisms are used in humanoid robotics to
absorb shocks at impacts and prohibit their propagation
along the entire structure that results in non-desirable vi-
brations and eventually unstable behaviors. One common
solution is to add flexible mechanisms at the robot an-
kles [2, 3] that also protect the feet embedded force sensors.
Unfortunately, such compliant mechanisms also act as pas-
sive joints whose deformations are hardly measurable [4].
In this way, the robot attitude is difficult to control, espe-
cially in complex maneuvers [5]. Another solution is to add
the compliance between the foot and ground contact, see
early work by [6]. In fact, humanoid robots have generally
a thin rubber sole attached under each robot foot. Due
to the thinness of this sole, the impact shocks are mainly
absorbed by the ankle flexibility.

Alternatively, we favor removing the ankle flexibilities
and investigate the use of thick soft soles under each foot
of a humanoid robot (see Fig. 1). These soles not only ab-
sorb the impacts due to contact transitions, they also cast
ground unevenness resulting in a relative increase of the
contact surface. During walking, the compliance of these
soles depends on the contact area variations. Also, since
the compliance is put outside, it can be decoupled from
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Figure 1: (a): Rectangular parallelepiped soles mounted on HRP-4’s
feet; (b): meshed sole with 1494 tetrahedron elements

the rigid dynamics. In order to generate balanced robot
movements and directly control the contact with the envi-
ronment, we developed a new Walking Pattern Generator
(WPG) and deformation estimator. We validate our new
methods for walking with compliant soles performing dif-
ferent experiments on HRP-4.

2. Problem formulation

In most simplified model-based planning and control,
the ankle flexibility and the sole compliance are not mod-
eled. They are left as ‘perturbations’ or ‘uncertainties’ to
be tackled by the closed-loop controller. Therefore, con-
trollers have to compensate for the errors in the attitude
(i.e. free-floating orientation and position) due to the de-
formations of the flexible parts. In our control framework,
we consider the model of the deformation that results from
the contact of the soft sole with the ground using the Fi-
nite Element Model (FEM) and the mechanical laws of
compliant contacts.
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Figure 2: Control scheme. The ankle reference trajectories change according to sole deformations.

To control the humanoid robot attitude during walk-
ing, we use the multi-objective Quadratic Programming
(QP) control scheme illustrated in Fig. 2. In particular,
we developed a new WPG that is coupled with a sole de-
formation estimator to achieve good balance during walk-
ing. We also experimented the HRP-4’s humanoid robot
performances for different WPG.

In section 3, we detail our new WPG; in section 4 we
illustrate how we can estimate the foot position and orien-
tation taking into account the deformations; then in sec-
tion 5 we explain the QP for the whole-body control of the
robot, which tracks the previously determined trajectories;
in section 6 we show how our WPG and the deformation
estimator improve humanoid robot performances; finally,
we conclude and explain the future works in section 7.

3. Walking pattern generator

The Zero Moment Point (ZMP) and the ankle positions
are directly linked (see later Eq. (33)). To obtain smooth
right ankle and left ankle trajectories in the control frame-
work of Fig. 2, we define the ZMP trajectories using a
5th order polynomial function. As will be explained in
section 3.3, the WPG developed in this paper calculates
also smooth center of mass (COM) trajectories. This new
WPG optimizes both single support phase (SSP) and dou-
ble support phase (DSP) using a QP optimization.

Several works formulate the walking gait as an optimiza-
tion problem [7][8][9]. They use an inverted pendulum
model with a point mass to study feet convex-hull ZMP
and not the whole ZMP trajectory of each foot. Therefore,
the study of the DSP trajectory and force of each foot are
not previously studied in the literature.

For the remainder of the paper, we denote with subscript
”1” the foot that leaves the floor at the end of DSP, and
with subscript ”2” the foot that comes in contact at the
beginning of DSP.

3.1. Optimization criteria

We want to generate walking gaits that minimize the
energy consumption E:

min. (E) (1)

From [9], the energy consumption that accounts for the
motor and the gear models can be expressed as:

E =
∑
j

∫ tf

ti

(ajτ
2
j + bjτj q̇j + cj q̇

2
j )dt (2)

where τj is the force/torque, q̇j is the joint j velocity, and
aj , bj , cj are the coefficients depending on joint j motor
parameters and gear ratio.

Using the simplified robot model in Fig. 3a, Eq. (2) be-
comes:

E =

∫ tf

ti

(apF
2
p +bpFpṙ+cpṙ

2+aaΓ2
a+baΓaθ̇+caθ̇

2)dt (3)

where subscript p denotes the prismatic joint and a the
ankle joint, Fp is the prismatic force, ṙ is the prismatic

velocity, Γa is the ankle torque and θ̇ is the ankle velocity.
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Figure 3: Simplified robot model in sagittal plane at left and cart-
table model at right

To obtain a quadratic problem (ṙ and θ̇ are nonlinear
functions of the ZMP and the COM), we keep only the

2



force/torque terms (linear in terms of ZMP and COM pa-
rameters, see (13)). Therefore Eq. (3) becomes:

E = λ
∫ tf
ti
‖FCOM(t)‖2dt + (1− λ)

∫
SSP
‖ΓaSSP(t)‖2dt

+
1

2
(1− λ)

∫
DSP

(‖Γa1(t)‖2 + ‖Γa2(t)‖2)dt

+µ
∫
DSP

(‖P̈ZMP1
(t)‖2 + ‖P̈ZMP2

(t)‖2) ) dt
(4)

where λ and µ are the weights of each criterion; aSSP
denotes the ankle of the support foot in SSP; ai refers
to the ankle of the foot “1” or “2” in DSP; PZMP =[
xZMP yZMP

]T
are the ZMP coordinates. The motor char-

acteristics of the simplified model of Fig. 3a are not known
and therefore the weights λ and µ are determined from ex-
perimental trials (see section 6.3).

Using the cart-table model in Fig. 3b, the COM force
can be expressed as:

FCOM(t) = −FZMP(t) = M
(
P̈COM(t) + g~z

)
(5)

where P̈COM is the COM acceleration, M is the robot mass
and FZMP(t) is the floor reaction force (ZMP force).

Considering the foot in contact at a fixed position during
the whole SSP, we obtain:

Γa(t) = FZMP(t)× (Pa(t)−PZMP(t)), (6)

where Γa is the torque at the ankle, Pa is the ankle po-
sition and PZMP is the ZMP position. During the DSP
the two feet are in contact and we obtain a similar equa-
tion to (6) for Γa1(t) and Γa2(t). The force distribution
constraint between feet in DSP is detailed in AppendixB.

For λ = 1 in (4) we obtain a walking pattern close
to [7][9], while for λ = 0 we obtain a ZMP trajectory
similar to [8]. Intermediate values of λ give compromises
between the two extreme behaviors. Our experimental tri-
als reveal that the best obtained values for λ are not the
extreme ones (i.e. λ = 0 or λ = 1).

In Eq. (4), PZMP and PCOM depend on FCOM and Γa
whereas PZMP1 and PZMP2 depend only on Γa. For this
reason, optimal PZMP1 and PZMP2 tend to be close to
the ankles, resulting in a ZMP trajectory under each foot
going from ankle to heel, then to toe and finally go back
to the ankle. For a foot with flexible sole, obtaining an
oscillating foot orientation is suboptimal from the point
of view of energy consumption due to the ankle velocity
in (3). To solve this problem, we added the last term to
the optimization criterion (4) dependent on PZMP1

and
PZMP2

accelerations.

3.2. ZMP trajectories

We divided the walking gait in three cycles:

1. Start : the robot begins with a DSP. This cycle starts
on the point ZMPinit.

2. Walking : the robot does n steps alternating SSP and
DSP.
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Figure 4: Walking sequences with via-points (o) and ZMP trajecto-
ries during SSP (blue) and DSP (red)

3. Stop: the robot ends with a DSP. This cycle finishes
on the point ZMPend.

Each SSP and start/stop DSP are defined by two C2

polynomials and each remaining DSP is defined by one.
Four via-points are defined to parametrize these phases
(see Fig. 4). For a given sequence q, the SSP polynomials
go from the via-point Aq to the via-point Bq and from the
via-point Cq to the via-point Dq. The DSP polynomial
goes from the via-point Bq to the via-point Cq. Therefore,
we need m = 3n+ 4 polynomials to model the whole ZMP
trajectory:

x
(j)
ZMP(t) =

5∑
i=0

a
(j)
i (∆tj)

i (7)

where the superscript j denotes the jth phase, ai is the ith

polynomial coefficient and ∆tj = t− tj−1.

To find the polynomial coefficients of (7) and to obtain
smooth trajectories, we enforced the boundary conditions
in position, speed and acceleration at each via-point. In
particular, we interpolated the polynomial functions be-
tween ZMPinit → C1 during Start, Aq → Bq, Bq → Cq and
Cq → Dq during the sequence q and Bn+2 → ZMPend dur-
ing Stop. ZMPinit and ZMPend are not necessarily equal
to B1 and Cn+2 respectively. In addition, to reduce the
number of via-points and using their boundary conditions,
Aq and Dq are combined into one via-point Aq.

3.3. COM trajectories

Using the cart table model in Fig. 3b, we can write the
COM acceleration in x-axis as:

ẍ
(j)
COM =

g

zCOM
(x

(j)
COM − x

(j)
ZMP) (8)
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Substituting (7) into (8), the COM position can be ex-
pressed as following [10]:

x
(j)
COM = V (j)cj +W (j)sj +

5∑
i=0

A
(j)
i (∆tj)

i (9)

where:

cj = cosh(ωj∆tj)
sj = sinh(ωj∆tj)

ωj =
√

g

z
(j)
COM

=
√
g/zCOM

A
(j)
i =

{
a
(j)
i +

∑(5−i)/2
k=1 b

(j)
i+2ka

(j)
i+2k for i =0 · · · 3

a
(j)
i for i =4, 5

b
(j)
i+2k =

∏k
l=1

(i+ 2l)(i+ 2l − 1)

w2
j

V (j) and W (j) are the unknowns of (9) and a
(j)
i coefficients

are known from (7). This is the difference between (9) and
the system of equations in [10].

Details of how to find V (j) and W (j) are given in
the AppendixA.

3.4. ZMP of each foot in DSP

As for the ZMP, we define ZMP1 and ZMP2 trajectories
as C2 polynomials. We assign to them a new via-point B′q
and C ′q respectively. To obtain the coefficients of these
polynomials, we interpolated them between Bq → B′q and
C ′q → Cq.

Using the ZMP definition, we obtain:

Γ
(j)
ZMP(FZMP1

) + Γ
(j)
ZMP(FZMP2

) = 0 (10)

where Γ
(j)
ZMP(FZMPi) is the torque of the reaction force

FZMPi
under foot i ∈ {1, 2} applied on ZMP during the

phase j.
Solving (10) in the direction ~y we can write:

2∑
i=1

(x
(j)
ZMPi

− x(j)ZMP)F
z(j)
ZMPi

= 0 (11)

where xZMP is the component x of the ZMP position and
F zZMPi

is the component z of the reaction force under the
foot i ∈ {1, 2}.

From (11), we obtain the following relationship between
ZMP1 and ZMP2:

x
(j)
ZMP2

= x
(j)
ZMP −

F
z(j)
ZMP1

F
z(j)
ZMP2

(x
(j)
ZMP1

− x(j)ZMP) (12)

From (12), if ZMP1 trajectories and the distribution be-
tween F zZMP1

and F zZMP2
are known, we obtain ZMP2 tra-

jectories. Details of how to find the force distribution be-
tween F zZMP1

and F zZMP2
, and the constraints that they

must satisfy are given in AppendixB.
During the start and the stop sequences, to obtain a ro-

bust optimization algorithm with respect to the different

walking parameters, we added new via-points to ZMP1

and ZMP2 trajectories, B′′q and C ′′q respectively. Thus,
during these sequences, ZMP1 and ZMP2 are defined by
two consecutive polynomials interpolated respectively be-
tween Bq → B′′q → B′q and C ′q → C ′′q → Cq. On these
new via-points, ZMP1 and ZMP2 trajectories satisfy the
boundary conditions in position, speed and acceleration.

3.5. Optimization parameters

The WPG is formulated as a QP optimization problem.
In this section, we detailed the optimization variables.

FCOM, Γa and P̈ZMPi
in (4) are linear functions of op-

timization variables. They can be written as:

FCOM = AFCOM
X +BFCOM

,
Γa = AΓa

X +BΓa
,

P̈ZMPi = AP̈ZMPi
X +BP̈ZMPi

(13)

where X is the vector of optimization variables:

X =
[
xvp

0 xCOM
0 xstep

0 xvp′

0

]T
(14)

xvp
0 represents the boundary conditions in position, speed

and acceleration at via-points of ZMP (3m+3 parameters),
xCOM

0 represents the initial and final boundary condition
in position and speed of COM (4 parameters), xstep

0 repre-

sents the foot step positions (n − 1 parameters) and xvp′

0

represents the boundary conditions in position, speed and
acceleration at via-points of ZMP1 (3m+ 6 parameters).

xvp
0 =

[
x
(1)
0 ẋ

(1)
0 ẍ

(1)
0 · · · x

(m+1)
0 ẋ

(m+1)
0 ẍ

(m+1)
0

]T
xCOM

0 =
[
x
(1)
COM(t0) ẋ

(1)
COM(t0) x

(m+1)
COM (tm) ẋ

(m+1)
COM (tm)

]T
xstep

0 =
[
xstep1 xstep2 · · · xstepn−1

]T
xvp′

0 =
[
x
(1)
1 ẋ

(1)
1 ẍ

(1)
1 · · · x

(m+2)
1 ẋ

(m+2)
1 ẍ

(m+2)
1

]T
We imposed:

• Initial and final feet positions

• Initial and final position, speed and acceleration of
the ZMP

• SSP and DSP duration

• COM height

• Foot step directions. It can be changed to define the
rotation during walking

• Foot step positions. It is optional and define a specific
walking path

In order to generate feasible trajectories, the ZMP trajec-
tories must be inside the support convex hull [11]. It is
defined by the area of the support foot. To obtain this
area, we added inequality constraints to the QP. During
the SSP, this condition is linear and can be integrated as
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inequality constraints into a QP. During the DSP, this con-
dition is not linear. However, if ZMP1 and ZMP2 trajecto-
ries are in the support convex hull defined by the areas of
each foot, the stability condition for the ZMP trajectories
is fulfilled. Therefore, these conditions are linear and can
also be integrated in the QP optimization.

Based on human walking results in [12] and for ensur-
ing safe walking w.r.t the robot lack of precision [8], we
defined a feet support areas within a security margin of
5 − 10% of the foot length. To avoid self-collisions, we
defined a minimal distance between the robot feet (3 cm).
To avoid stretched legs’ singularity, we chose a maximum
step length (30 cm). To respect the boundary condition
for the COM position and velocity, we added the equality
constraints (A.2) and (A.6) to the optimization.

3.6. WPG summary

The problem that we solve is:

min
X

(E)

subject to equality and inequality constraints
(15)

where the criteria E comes from (4) and it is based on
a simplification of the energy consumption, and the op-
timization variables X include the ZMP limit conditions,
the COM initial and final conditions and the feet positions
(14).

The inequality constraints are:

1. ZMP ∈ the convex hull during the SSP

2. ZMP1 and ZMP2 ∈ the convex hull during the DSP

3. Maximum and minimum foot step stretching distance

The equality constraints are:

1. Initial robot state as condition on the first via-point
of ZMP and ZMP1 and on the initial condition of the
COM.

2. Final robot state as condition on the last via-point of
ZMP and ZMP1 (optional)

3. Final condition on the COM as a goal to reach or
condition on the COM over the whole walk (e.g. COM
velocity...) (optional)

4. Foot step placement (optional, e.g. used to define a
specific path...)

4. Deformation estimator

In this section, we develop an algorithm that calculates
the ankle position/orientation and the deformation of the
flexible sole [13] to match the interaction force Fd

ZMP(t)
and the ZMP trajectory Pd

ZMP(t) given by the WPG (see
the control scheme 2).

The Fig. 6 shows this algorithm. It is divided in two
main blocks: frictional contact problem (see section 4.1)
and update sole position and orientation (see section 4.2).
For a more detailed presentation, see also [14].

To simulate the flexible behavior of the sole, a static
linear FEM is used [15]. This model is valid for small de-
formations. Indeed, due to the dense shape of the soles,
their deformations are relatively small compared to their
size. In future works, we may consider using a nonlinear
large-deformation model to improve precision. Static sim-
ulation is a good approximation since Fd

ZMP and Pd
ZMP

variations are negligible w.r.t the sole dynamic response.

Ω is the sole shape meshed with 1494 tetrahedron ele-
ments (see meshed sole in Fig. 1), ΩI is the interior volume
of Ω, ∂Ω gather the surface SD attached to the rigid robot
foot (Dirichlet surface) and the surface SS that could be in
contact with the ground. SD and SS contain two disjoint
set of nodes:

∂Ω = SD ∪ SS , with SD ∩ SS = ∅ (16)

The static linear FEM gives a relationship between the
node displacements of Ω and the external forces:

K lU = lF (17)

where lF ∈ RN is the vector of nodal forces and lU ∈ RN
is the vector of the node displacements. The superscript l
before a letter denotes a vector expressed in the sole frame
and no superscript means that the vector is expressed in
the world frame.

From the definition, the Dirichlet nodes have a known
null displacement. Thus, the system (17) can be rewritten:KDD KDI KDS

KID KII KIS

KSD KSI KSS

 0
lU I
lUS

 =

lFDlF I
lF S

 (18)

where I, D and S denotes respectively nodes of ΩI , SD
and SS .

As in [16], we suppose that the internal interaction forces
lF I are zeros and therefore SD is the only surface with
nodal forces.

The system (18) can be rewritten:[
KII KIS

KSI KSS

] [
lU I
lUS

]
=

[
0

lF S

]
(19)

Based on [16] and (19), a condensed linear elasticity law
is defined:

lUS =
(
KSS −KSIK

−1
II KIS

)−1 lF S
= K−1S

lF S = CS
lF S

lU I = −K−1II KIS
lUS

(20)

where KS is the stiffness surface matrix and CS is the
compliance surface matrix.

In order to obtain the shape deformation from (20), the
contact with the ground directly induces lUS , which en-
gender the computation of lU I .
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4.1. Frictional contact problem

The frictional contact problem finds the contact space
displacement vector δ and contact force vector F at each
time step ts. This problem must be constrained to verify
the Signorini’s and Coulomb’s laws.

The inputs of this algorithm are:

1. lP free: node positions

2. CS : surface compliance matrix from (20)

3. lP ts−1: node positions at the previous time step

4. Ol: foot position vector

5. Υ = (θ, φ, ψ): Euler rotation angles of the foot

The outputs of this algorithm are:

1. δ: relative position of the sole nodes to its ground
projection (see Fig. 5). It is called node contact space
displacement vector

2. F : node contact force vector

P
Q

Ol

ground

sole

α

α

O
n

δα

Figure 5: Contact between the sole and the ground

For a contact point α, δα is defined by:

δα = P α −Qα (21)

where Qα is the normal projection of α on the ground.
The normal component of a vector is denoted by the

subscript n such as vn = nv where n =
[
0 0 1

]
; the

tangential components of a vector are denoted by the sub-

script t such as vt = tv, where t =

[
1 0 0
0 1 0

]
. The

superscript T denotes the transpose operator.
The contact model used for calculating the deformation

of the sole takes into account two very important mechan-
ical laws: (i) the Signorini’s law is used to enforce the
non-interpenetration (in the computation) of the sole with
the ground, and (ii) the Coulomb’s law which defines the
dry friction. Based on (21), we have:

1. Signorini’s law:

0 ≤ F n,α ⊥ δn,α ≥ 0 (22)

where F α is the contact force applied to a contact
node α, subscript n is its normal component.

2. Coulomb’s law. We can distinguish two state con-
ditions: stick and slip motion.

(a) Stick condition:

‖F t,α‖ < µ|Fn,α|, δt,α = 0 (23)

(b) Slip condition:

F t,α = −µFn,α
δt,α
‖δt,α‖

(24)

where µ is the friction coefficient.

In our simulation, we use a quasi-static contact model.
Quasi-static means that at a given instant in time we can
assume the problem is static. This assumption works well
because the dynamics of the sole deformation are fast com-
pared to the dynamics of the limit conditions applied to it
(here Force and ZMP).

The foot velocity is not considered in the static case.
In the quasi-static case taking into account the slippage,
the foot velocity is considered by computing the state just
after the sole stop to slip. Therefore, slip occur until a
static state is reached. This gives a non-reversible sole
simulation and a sole state that depends on the history of
its deformation.

Frictional con-
tact problem

Walking pattern generator

Sole Position at ts − 1

Update sole
position

and orientation
(equation (33))

Ψ = 0

F d
ZMP,P

d
ZMP

Ots−1
l ,Υts−1

δ,F

Ol,Υ

NO

YES

P

Figure 6: Framework for contact handling to obtain F d
ZMP

and Pd
ZMP. ts − 1 is the previous time step and Ψ =[

F ZMP − F d
ZMP, PZMP −Pd

ZMP, ΓPZMP,n

]T
In order to obtain P α and Qα and solve this problem,

the displacement US of equation (20) (in absolute frame)
is used:

US = P − P free (25)

and then, the sole surface node positions are defined as:

P = HCSH
TF + P free def

= WF +Ol +H lP
free

(26)

W is the Delassus’ operator [17]; H = diag(R, . . . ,R),
where R is the foot orientation matrix defined by Υ =
(θ, φ, ψ).

During the contact nQα = 0 and then the normal com-
ponent of δα is:

δn,α = nOl + nR lP free
α + n

cn∑
β=1

(W αβF β)

def
= δfreen,α + n

cn∑
β=1

(W αβF β)
(27)
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where W αβ
def
=

[
Wt

Wn

]
def
=

[
Wtt Wtn

Wnt Wnn

]
is the 3× 3 Delas-

sus’ operator coupling the contacts α and β and cn is the
number of contact nodes.

The tangential component of δα is:

δt,α = tOl,α + tR lP free
α + t

cn∑
β=1

(W αβF β)− tQα

≈ tOl,α + tR lP free
α + t

cn∑
β=1

(W αβF β)− tP (q−1)
α

def
= δfreet,α + t

m∑
β=1

(W αβF β)

(28)

If at ts − 1 a node α is already in contact, the reference
node at ts is P (ts−1)

α . If α is not in contact at ts − 1,
the reference contact node at ts is approximated by the
normal projection of α on the ground at ts − 1. In reality,
the contact creation occurs at an intermediate time step
between ts−1 and ts. The contact creation position could
be found with a variable step size and an event driven
simulation. This can be computationally costly for a large
number of new contact nodes. However, with a small time-
step, the approximation error is negligible.

Based on (27) and (28), a contact node α has a contact
space displacement defined by:

δα = Ol +R lP free
α −

[
P

(ts−1)
t,α

0

]
+

cn∑
β=1

W αβF β

def
= δfreeα +

cn∑
β=1

W αβF β

(29)

The concatenation of (29) for all α gives the frictional
contact problem solved by:

δ = Ol +H lP free −Q+WF (30)

where Q =

[[
P

(ts−1)
t,1

0

]T
· · ·
[
P

(ts−1)
t,cn

0

]T]T
.

The system (30) has 3cn equations with 6cn unknowns
defined by δ and F . Additional 3cn equations are obtained
considering that each node in contact α can be in two
different conditions:

1. Stick: (23), δα = 0 ⇒ 3cstick equations where cstick
is the number of contacts in stick case

2. Slip: δn,α = 0 ⇒ cslip equations where cstip is the
number of contacts in slip case.

To define the frictional contact problem, 2cslip equations
are still needed. They are obtained using the Coulomb’s
law (24) in [18]. From [18] and (29), a system is built
for each contact node α and solved using a Newton’s
method [19].

Finally, an iterative Gauss-Seidel method in [20, 21] is
used to solve the system (30). This method is very fast
and applicable for real-time solution [20].

4.2. Update sole position and orientation

In the frictional contact problem of the previous section,
the foot position and orientation are the inputs when the
contact forces and the contact space displacements are the
outputs. Here, a new algorithm is developed to find the
good foot position and orientation to match a desired ZMP
force F d

ZMP(t) and position Pd
ZMP(t) (see Fig. 6). Seeing

the sole as a (complex 6-dof) spring, the principle is to
invert the relation between the spring deformation and the
force applied to it.

The inputs of this algorithm are the geometric and me-
chanical properties of the sole and the desired ZMP: i)
lP free, ii) CS , iii) lP ts−1, iv)

(
F d

ZMP,P
d
ZMP

)
.

The outputs of this algorithm are the foot position and
orientation: i) Ol, ii) Υ = (θ, φ, ψ). Recall that the con-
tact node forces F and the displacements δ are computed
solving the frictional contact problem explained in the pre-
vious section.

Therefore, we can describe our algorithm using a func-
tion f :

f(Ol,Υ) =

 F d
ZMP(t)

Pd
ZMP(t)

Γd
PZMP,n

= 0

 (31)

We impose null vertical torque at ZMP Γd
PZMP,n

= 0.
From the system (30) and the Signorini’s and Coulomb’s

laws, 6cn+ 6 unknowns (considering now position and ori-
entation of the sole as unknowns) and 6cn equations are
given (see section 4.1). The remaining 6 equations are
obtained using the total force at ZMP F ZMP:

F ZMP =

cn∑
α=1

F α (32)

and the ZMP definition:ΓPZMP,t1 = 0
ΓPZMP,t2 = 0

ΓPZMP,n

 =
cn∑
β=1

 (Pt2,β − PZMP,t2) · Fn,β
−(Pt1,β − PZMP,t1) · Fn,β

(Pt1,β − PZMP,t1) · Ft2,β − (Pt2,β − PZMP,t2) · Ft1,β


where ΓPZMP

is the resultant torque at ZMP. The sub-
scripts t1 and t2 denote respectively the first and second
component of the vector.

To solve the problem (31), we use a Newton’s method.
A differential relationship between (FZMP,PZMP,ΓPZMP,n)
and (Ol,Υ) is used to derive a Newton step:[

O
(ts)
l

Υ(ts)

]
=

[
O

(ts−1)
l

Υ(ts−1)

]
− J−1

F ZMP − F d
ZMP

PZMP −Pd
ZMP

ΓPZMP,n

 (33)

where J is the Jacobian matrix.
The algorithm in Fig. 6 loops on frictional contact prob-

lem followed by a Newton step that gives a new foot po-
sition and orientation. To increase the speed of the al-
gorithm, the precision of the frictional contact problem is
increased with the convergence of the Newton steps.
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The reference ankle position and orientation in the con-
trol scheme 2 is computed during the contact phase with:

P a = Ol +R lP a (34)

where lP a is the ankle position in the sole frame.
During the SSP, ankle positions and orientations of the

foot in the air are computed by interpolating with 5th

order polynomials the absolute ankle orientation, posi-
tion, velocity and acceleration between take-off and land-
ing phases.

4.3. Initial conditions

The previous problem is solved by imposing the initial
conditions on position Oinit

l and yaw orientation ψinit of
the foot. They are set at ts = 0 to compute the first refer-
ence contact position Q. Initial roll and pitch orientation
could be discontinuous to fulfill the desired ZMP position.
Thus initial roll and pitch orientation of the foot are set
as those obtained from the desired ZMP position. The
Newton step (33) at the first time is changed accordingly
to the tangential reference contact positions:

Qt = tOinit
l + tRinit(θ, φ, ψinit) lP free

α (35)

5. Multi-objective quadratic program controller

The reference trajectories for the COM, the ankle posi-
tion and orientation are obtained offline. Those references
are online tracked as good as possible by a QP that takes
also into account the robot constraints. The obtained mo-
tions are then compatible with the COM dynamics and the
model of the flexibility. A task-space QP formulation with
a weighted hierarchy [5] is used to generate the whole body

motion. The optimization variables are x =
[
q̈T λT

]T
where q̈ is the joint acceleration vector and λ is the force
intensity along with the linearized friction cone.

The QP is formulated as follows:

min.
x

(
1

2
xTMx+ cTx

)
= min.

x

N∑
i=1

αi‖Ei(x)‖2+αλ‖λ‖2

where N is the number of tasks put in the cost part, Ei(x)
is the task errors, αi is the task weight and αλ‖λ‖2 is a
damping term to ensure positive definite Hessian matrix.

From [5], the tasks put as constraints are:

1. Joint torque limits

2. Joint position/velocity limits

3. No-sliding contacts: zero acceleration for the con-
tact body i

4. Collision avoidance

More specifically, the tasks we used are:

1. Ankle: desired ankle trajectories given by the defor-
mation estimator
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Figure 7: ZMP and COM trajectories with fixed ankle position

2. COM: tracking of the desired COM position, velocity
and acceleration given by the WPG

3. Torso: fixed torso absolute orientation

4. Posture: fixed posture for the whole upper body
(torso, head, and arms)

6. Results

6.1. WPG optimization results

The Fig. 7a shows part of the obtained ZMP and COM
reference trajectories with fixed ankle position for different
values of λ:

• λ = 0: minimization of ankle torque only

• λ = 0.5: minimization with equal weights on COM
force and on ankle torque

• λ = 1: minimization of COM force only

For λ = 0 we obtain ZMP and COM trajectories similar
to [22][8] with large lateral variations of the COM. For
λ = 1 trajectories are similar to [7][23] with small lateral
variations of the COM and with a ZMP close to the feet
edge. The mid-compromise solution λ = 0.5 gives lim-
ited lateral variations of the COM, the ZMP trajectory is
smoother like human ZMP trajectories [24]. All solutions
result in walk with right and left feet as close as possible
to minimize lateral variations of COM (and hence COM
force) and variation of ZMP in DSP.

The Fig. 7b shows also ZMP1 and ZMP2 trajectories
during the DSP. ZMP1 and ZMP2 are local ZMPs in DSP.
When we have ZMP1 under one foot, we have a ZMP2

under the opposite one. In Fig. 7b several foot step are
drawn and each foot step has a ZMP1 and ZMP2 but they
don’t exist during the same phase.

We chose µ equal to 15 which experimentally gave us
the best compromise to have ZMP going from heel to toe
under each foot.
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6.2. HRP-4 walking with compliant sole using the new
controller

Here, we show the results of walking experiments with
the HRP-4’s new feet illustrated in Fig. 8. We removed
the original shock absorbing springs located in the ankle
(hence the ankle leg link is rigid) and added a flexible sole
to absorb the landing impact shock and eventually cast
terrain uncertainties. To do this experiments we used the
WPG and deformation estimator explained before.

(a) (b)

Figure 8: (a): new HRP-4’s feet; (b): photo of HRP-4’s feet with
flexible soles

The sole material is a flexible foam. Coupling compres-
sion test and FEM simulation, we obtained the Young’s
modulus E = 0.32MPa and Poisson’s ratio ν = 0.31 of the
sole (which is softer than flexible soles used in [25] where
Young’s modulus were 5MPa, so that an estimator was not
necessary).

Experiments consisted of HRP-4’s straightforward walk-
ing for 10 footsteps (distance of 0.5 m) with average speeds
of 3.5 cm/s and 4.2 cm/s. To validate our control frame-
work in Fig. 2, we used ZMP and COM trajectories ob-
tained using the WPG described in section 2 with λ = 0.8
and µ = 15 in (4). These trajectories are shown in Fig. 9a.
Fig. 9b shows the ankle trajectories when the foot is not
in contact with the floor.

0 0.05 0.1 0.15 0.2 0.25

−0.1

−0.05

0

0.05

ZMPCprojectedConCtheCground

x[m]

y[
m

]

ankleCposition
ZMP
ZMP1
ZMP2
COM
FootCedge

(a) (b)

Figure 9: (a): ZMP trajectory under the left foot and COM tra-
jectory during the 6th foot step (SSP+DSP); (b): ankle trajectories
when the foot is not in contact with the floor

The video1 and Fig. 10 clearly show the improvements
given by the control scheme in Fig. 2. Figs. 10a, 10b and
10c show the COM acceleration given by the robot Inertia

1https://youtu.be/XByYfO3vcuc

Measurement Unit (IMU) for the experiment with the flex-
ible foam. When we did not use the deformation estimator
the robot fell down (the problem of the COM acceleration
tracking is clearly identifiable around 4 s). When we used
the deformation estimator the COM acceleration along the
y-axis is close to the reference acceleration (see Fig. 10b).
On the contrary, the COM acceleration along x-axis and
z-axis are quite different from the reference acceleration
(see Figs. 10a and 10c). These tracking errors arise from
the use of the HRP-4’s built-in stabilizer: a black box that
adjust the desired robot state from the ones we compute
and tuned for the original feet design. Hence, it does not
take into account the new sole flexibilities. We also believe
that few tracking errors result from some conflicting tasks
and constraints of the multi-objective QP controller (see
section 5).

We looked also at the ankle force to validate our con-
trol framework in Fig. 2. As we can see from Figs. 10e
and 10f, that represent respectively the norm of horizon-
tal plane ankle forces and the ankle force along z-axes,
our controller estimates well the forces. As we can see
in Fig. 10d, we also obtained ankle positions close to ref-
erence, which shows that the stabilizer does not need to
change a lot the relative feet and waist positions to obtain
stability, and this is thanks to the estimator.

The most important estimation of our new controller to
enhance ZMP stabilization is given on foot orientations in
Figs. 10g, 10h and 10i (in particular along x- and y-axes).

We can therefore state that our novel WPG and de-
formation estimator are a good model of the robot with
flexible foam soles and enhances the native stabilizer to
keep the desired robot attitude during the walking task.

6.3. Optimized HRP-4 walking with compliant soles for
different ZMP trajectories

To find the best weight values in (4), we performed
experiments on the HRP-4 with different weights using
the new control framework in Fig. 2. Experiments con-
sisted of humanoid walking with four different values of
λ = {0.2, 0.4, 0.6, 0.8} in (4), robot performed a straight-
forward walking for 10 footsteps (distance of 0.5 m) with
average speed of 3.5 cm/s.

To choose experimentally the best weight λ of the cost
function (4), we analyzed the ankle torques (Fig. 10j) and
COM accelerations (Fig. 10k). The theoretical values are
obtained from the WPG without taking into account the
flexibility.

The Fig. 10j shows the right foot ankle torques for differ-
ent values of the WPG (results are similar for the left foot).
Theoretical ankle torques increase with λ since the weight
given to the criterion dependent on the ankle torque de-
creases. Analyzing the Fig. 10j, we can make the following
observations:

• For λ = 0.2, the mean torque is bigger than the the-
oretical one. In this case, the ZMP trajectory of each
foot is shorter than for λ > 0.2 and it is close to the

9



0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
COMGaccelerationGinGx−axisGwithGλ=0.8

t[s]

ac
c[

m
.s
− 2

]

withGestimator
withoutGestimator
WPGGreference

(a)

0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
COMGaccelerationGinGy−axisGwithGλ=0.8

t[s]
ac

c[
m

.s
−

2 ]

withGestimator
withoutGestimator
WPGGreference

(b)

0 5 10 15

−1

−0.5

0

0.5

COMGaccelerationGinGz−axisGwithGλ=0.8

t[s]

ac
c[

m
.s
−

2 ]

withGestimator
withoutGestimator
WPGGreference

(c)

0 5 10

−0.6

−0.4

−0.2

0

0.2

Right]ankle]position]in]COM]frame]with]λ=0.8

t[s]

Wx
,y

,z
P[

m
]

0 5 10

.6

.4

.2

0

2

Right]ankle]position]in]COM]frame]with λ=0.8

t[s]

with]estimator]in]x
without]estimator]in]x
WPG]reference]in]x
with]estimator]in]y
without]estimator]in]y
WPG]reference]in]y
with]estimator]in]z
without]estimator]in]z
WPG]reference]in]z

0 5 10

−0.6

−0.4

−0.2

0

0.2

Right]ankle]position]in]COM]frame]with

t[s]

Wx
,y

,z
P[

m
]

with]estimator]in]x
without]estimator]in]x
WPG]reference]in]x
with]estimator]in]y
without]estimator]in]y
WPG]reference]in]y
with]estimator]in]z
without]estimator]in]z
WPG]reference]in]z

0 5 10

−0.6

−0.4

−0.2

0

0.2

Right]ankle]position]in]COM]frame]with λ=0.8

t[s]

Wx
,y

,z
P[

m
]

with]estimator]in]x
without]estimator]in]x
WPG]reference]in]x
with]estimator]in]y
without]estimator]in]y
WPG]reference]in]y
with]estimator]in]z
without]estimator]in]z
WPG]reference]in]z

(d)

0 5 10 15
0

10

20

30

40

50

60

70
Norm[of[forces[along[xy−plane[in[right[foot[with[λ=0.8

t[s]

F
or

ce
[N

]

with[estimator
without[estimator
WPG[reference

(e)

0 5 10 15
0

100

200

300

400

500

600

Verticaluforcesuinurightufootuwithuλ=0.8

t[s]
F

or
ce

[N
]

withuestimator
withoutuestimator
WPGureference

(f)

0 5 10 15
−8

−6

−4

−2

0

2

4
RightWfootWrotationWoverWx−axisWwithWλ=0.8

t[s]

an
gl

e[
°]

withWestimator
withoutWestimator
WPGWreference

(g)

0 5 10 15

−20

−15

−10

−5

0

RightPfootProtationPoverPy−axisPwithPλ=0.8

t[s]

an
gl

e[
°]

withPestimator
withoutPestimator
WPGPreference

(h)

0 5 10 15
−6

−5

−4

−3

−2

−1

0

1

Rightmfootmrotationmovermz−axismwithmλ=0.8

t[s]

an
gl

e[
°]

withmestimator
withoutmestimator
WPGmreference

(i)

0.2 0.4 0.6 0.8
0

5

10

15

20

25

30
MeanNandNmaxNankleNtorquesNwithNfoamNsoles

λ

T
or

qu
es

[N
m

]

maxNankleNtorque
meanNankleNtorque
meanNtheoricalNankleNtorque

(j)

0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3
Mean]and]max]COM]acceleration]with]foam]soles

λ

A
cc

el
er

at
io

n[
m

.s
−

2 ]

max]COM]acceleration
mean]COM]acceleration
mean]theorical]COM]acceleration

(k)

Figure 10: (a,b,c) COM acceleration compared to the reference acceleration along x/y/z axes with and without the deformation estimator;
(d) Right ankle position along x/y/z axes; (e) Norm of horizontal plane ankle forces and (f) ankle force along z axes with and without the
deformation estimator; (g,h,i) Ankle orientation along x/y/z axes with and without the deformation estimator; (j) Ankle torque for different
cost functions; (k) COM acceleration for different cost functions.
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ankle position (see Fig. 7a). This position of the ZMP
must be more difficult to stabilize because it is the po-
sition of minimum sole flexibility when all the foam is
equally (fully) compressed.

• From λ = 0.4 to λ = 0.6, mean torques are close to
theoretical ones.

• For λ = 0.8, mean torques are lower than theoretical
one. In this case, the ZMP trajectory of each foot is
closer to the edge of the feet, which makes it difficult
to move it further to the edge to stabilize the robot.
Hence this walk is not as stable as for λ = 0.4 and
λ = 0.6. Maximum ankle torques are then larger, but
we have no explanation why the mean torque is lower
than the theoretical one.

• Maximum ankle torques have a similar evolution to
the theoretical mean ankle torques.

Fig. 10k shows the COM accelerations (which is also the
image of COM force). In (4), λ mainly affect the COM
acceleration in the lateral direction. Theoretical COM
acceleration decreases with λ since the weight given to
the minimization of the criterion dependents on the COM
force increase. Analyzing the Fig. 10k, we can make the
following observations:

• From λ = 0.2 to λ = 0.6, the evolution of COM ac-
celeration is similar to the theoretical one, albeit with
some variations due to the HRP-4 built-in stabilizer

• For λ = 0.8, the COM acceleration is not decreasing
for the same reason as before; it is a case more difficult
to stabilize.

Analyzing these results, we noticed that for λ = 0.4
and λ = 0.6 we obtained results closer to the theoretical
expected ones as compared to λ = 0.2 and λ = 0.8, which
might be due to problems of stability for extreme λ values.

7. Conclusion and future work

We investigated adding only flexible soles to a humanoid
robot as compliant elements. Using a new control ap-
proach, we validate our approach on the HRP-4 robot. Ex-
periments showed how our new WPG and deformation es-
timator enhances the ZMP stabilization during humanoid
walking with flexible/soft soles. In the paper [14], we illus-
trate a new method to optimize the sole shape for improv-
ing stability and walking performances. In future work,
we will use the controller illustrated in this paper to walk
with the optimized sole.

The WPG minimizes the energy consumption and finds
smooth heel-toe human-like ZMP force and trajectory un-
der each foot.

We modeled the contact between the sole and the
ground using a FEM model of the sole and a contact model
accounting for both Signorini’s and Coulomb’s laws. These

models are taken into account in the deformation estima-
tor.

In near future work, we will develop an optimization
that takes into account the WPG and the sole deforma-
tion at the same time. As a result, this will allow to obtain
a more precise and optimized ankle movements. We also
plan to design a control of COM with the sole flexibility
model to better compensate for perturbations or uncer-
tainty in the model.
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AppendixA. System to find COM trajectories

Equation (9) has 2m unknowns with m = 3n+4 phases.
These unknowns satisfy the following boundary conditions
for the COM position and velocity:

1. Initial

x(1)(T0) = V (1) +A
(1)
0 (A.1)

ẋ(1)(T0) = W (1) +A
(1)
1 (A.2)

2. Relationship between two successive sequences

VW (j) +
∑5
i=0A

(j)
i (∆Tj)

i = V (j+1) +A
(j+1)
0 (A.3)

VWω(j) +
∑5
i=1 iA

(j)
i (∆Tj)

i−1 = W (j+1)ωj +A
(j+1)
1 (A.4)

where

VW (j) = V (j)Cj +W (j)Sj
VWω(j) = V (j)ωjSj +W (j)ωjCj
Cj = cosh(ωj∆Tj), Sj = sinh(ωj∆Tj)

3. Final

x(m)(Tm) = VW (m) +
∑5
i=0A

(m)
i (∆Tm)i (A.5)

dx(m)

dt
(Tm) = VWω(m) +

∑5
i=1 iA

(m)
i (∆Tm)i−1 (A.6)

where ∆Tj = tj − tj−1.

From the boundary conditions (A.1)-(A.5), the total
conditions are 2m + 2. Removing COM velocity condi-
tions on initial and final phases (they are solved at the
pattern optimization level), 2m conditions remain. The
unknowns can be calculated then by the following system:

G · y = N · x + H · l (A.7)
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where

y =
[
V (1) W (1) · · · V (j) W (j) · · · V (m) W (m)

]T
x =

[
x
(1)
COM(t0) ẋ

(1)
COM(t0) x

(m+1)
COM (tm) ẋ

(m+1)
COM (tm)

]T
l =

[
A

(1)
0 · · · A(1)

5 · · · A(m)
0 · · · A(m)

5

]T

Gh,q =



[
1 0
]

for (h, q) = (1, 1)[
Cm Sm

]
for (h, q) = (m+ 2,m)

G1,h for q = h− 1
G2,h for q = h
0 otherwise

Nh,1 =


[
1 0 0 0

]
for h = 1[

0 0 1 0
]

for h = m+ 2[
0 0 0 0

]
otherwise

Hh,q =


−
[
1 0 0 0 0 0

]
for (h, q) = (1, 1)

−
[
(∆Tm)0 · · · (∆Tm)5

]
for (h, q) = (m+ 2,m)

H1,h for q = h− 1
H2,h for q = h
0 otherwise

with h = 1, . . . ,m + 2, q = 1, . . . ,m, x
(1)
COM(T1) the ini-

tial COM position, ẋ
(1)
COM(T1) the initial COM velocity,

x
(m+1)
COM (Tm+1) the final COM position and ẋ

(m+1)
COM (Tm+1)

the final COM velocity. G1,h =

[
Cj Sh
ωhSh ωhCh

]
, G2,h =[

−1 0
0 −ωh

]
,

H1,h = −
[
(∆Tm)0 (∆Tm)1 · · · (∆Tm)5

0 (∆Tm)0 · · · (∆Tm)4

]
,

H2,h =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
.

AppendixB. System to find the distribution of
force under the feet in DSP

Based on the simplified robot model used in [10], the
relationship between F zZMP1

and F zZMP2
is:

F
z(j)
ZMP1

+ F
z(j)
ZMP2

= F
z(j)
ZMP = Mg

F
z(j)
ZMP1

= Mg − F z(j)ZMP2

(B.1)

where the reaction force F zZMP2
in (B.1) is defined by:

F
z(j)
ZMP2

= k(j) · F z(j)ZMP = k(j) ·Mg (B.2)

k in (B.2) is a 5th order polynomial representing the dis-
tribution of ZMP force under each foot.

From (12), (B.1) and (B.2), we obtain:

x
(j)
ZMP2

= x
(j)
ZMP1

− 1

k(j)
(x

(j)
ZMP1

− x(j)ZMP) (B.3)

The boundary conditions that must be satisfied at the
start of the DSP during a walking cycle are respectively a
C2 contact force and ZMP (due to the soft sole), an ar-

bitrary new ZMP x
(j)
ZMP2

inside the new foot position and

bounded ẋ
(j)
ZMP2

ẍ
(j)
ZMP2

:

F
z(j)
ZMP1

= F
z(j)
ZMP = Mg, Ḟ

z(j)
ZMP1

= 0, F̈
z(j)
ZMP1

= 0,

x
(j)
ZMP1

= x
(j)
ZMP = x

(j)
B , ẋ

(j)
ZMP1

= ẋ
(j)
ZMP = ẋ

(j)
B ,

ẍ
(j)
ZMP1

= ẍ
(j)
ZMP = ẍ

(j)
B

x
(j)
ZMP2

6= x
(j)
B and bounded ẋ

(j)
ZMP2

and ẍ
(j)
ZMP2

(B.4)

To satisfy (11) and (B.1) and their first and second time
derivatives, (B.4) gives at the start of the DSP:F

z(j)
ZMP1

Ḟ
z(j)
ZMP1

F̈
z(j)
ZMP1

 =

Mg
0
0

 and

F
z(j)
ZMP2

Ḟ
z(j)
ZMP2

F̈
z(j)
ZMP2

 =

0
0
0

 (B.5)

In the same way we obtain at the end of the DSP:F
z(j)
ZMP1

Ḟ
z(j)
ZMP1

F̈
z(j)
ZMP1

 =

0
0
0

 and

F
z(j)
ZMP2

Ḟ
z(j)
ZMP2

F̈
z(j)
ZMP2

 =

Mg
0
0

 (B.6)

Equations (B.5) and (B.6) are the initial and final condi-
tions to interpolate k in (B.3). k is a C2 function which
varies from 0 to 1.

To define the function k during start sequence, we took
into consideration experimental studies on human walk-
ing [24]. During start sequence, humans move their COM
laterally to be under the stance limb (we noted this foot
‘2’). The starting sequence begins with an equal load dis-
tribution in each limb under each foot. Then, the lateral
movement is induced by a momentary load of the swing
limb (we noted this foot ‘1’). At the final part of the walk-
ing phases, the stance limb is fully loaded and the swing
limb is unloaded to begin the first SSP. Using these con-
siderations, we chose the function k equal to 0.5 on C ′1,
0.25 on C ′′1 and 1 on C1.

The human behavior during stop sequence is symmetric
to start sequence [24]. During the stop sequence, humans
move laterally their COM and decelerate their movement.
This lateral movement begins with a full load of the stance
limb (foot 1) from the end of the SSP. Then, the deceler-
ation is induced by a momentary load of the swing limb
(foot 2). The stopping sequence ends with the same load
distribution on each limb (under each foot in our case) [24].
For this reason, we chose the function k equal to 0 onBn+2,
0.75 on B′′n+2 and 0.5 on B′n+2.
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