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EXACT DISTANCE COLORING IN TREES

For an integer q ≥ 2 and an even integer d, consider the graph obtained from a large complete q-ary tree by connecting with an edge any two vertices at distance exactly d in the tree. This graph has clique number q + 1, and the purpose of this short note is to prove that its chromatic number is Θ d log q log d . It was not known that the chromatic number of this graph grows with d. As a simple corollary of our result, we give a negative answer to a problem of Van den Heuvel and Naserasr, asking whether there is a constant C such that for any odd integer d, any planar graph can be colored with at most C colors such that any pair of vertices at distance exactly d have distinct colors. Finally, we study interval coloring of trees (where vertices at distance at least d and at most cd, for some real c > 1, must be assigned distinct colors), giving a sharp upper bound in the case of bounded degree trees.

Introduction

Given a metric space X and some real d > 0, let χ(X, d) be the minimum number of colors in a coloring of the elements of X such that any two elements at distance exactly d in X are assigned distinct colors. The classical Hadwiger-Nelson problem asks for the value of χ(R 2 , 1), where R 2 is the Euclidean plane. It is known that 5 ≤ χ(R 2 , 1) ≤ 7 [START_REF] De Grey | The chromatic number of the plane is at least 5[END_REF] and since the Euclidean plane R 2 is invariant under homothety, χ(R 2 , 1) = χ(R 2 , d) for any real d > 0. Let H 2 denote the hyperbolic plane. Kloeckner [START_REF] Kloeckner | Coloring distance graphs: a few answers and many questions[END_REF] proved that χ(H 2 , d) is at most linear in d (the multiplicative constant was recently improved by Parlier and Petit [START_REF] Parlier | Chromatic numbers for the hyperbolic plane and discrete analogs[END_REF]), and observed that χ(H 2 , d) ≥ 4 for any d > 0. He raised the question of determining whether χ(H 2 , d) grows with d or can be bounded independently of d. As noticed by Kahle (see [START_REF] Kloeckner | Coloring distance graphs: a few answers and many questions[END_REF]), it is not known whether χ(H 2 , d) ≥ 5 for some real d > 0. Parlier and Petit [START_REF] Parlier | Chromatic numbers for the hyperbolic plane and discrete analogs[END_REF] recently suggested to study infinite regular trees as a discrete analog of the hyperbolic plane. Note that any graph G can be considered as a metric space (whose elements are the vertices of G and whose metric is the graph distance in G), and in this context χ(G, d) is precisely the minimum number of colors in a vertex coloring of G such that vertices at distance d apart are assigned different colors. Note that χ(G, d) can be equivalently defined as the chromatic number of the exact d-th power of G, that is, the graph with the same vertex-set as G in which two vertices are adjacent if and only if they are at distance exactly d in G.

Let T q denote the infinite q-regular tree. Parlier and Petit [START_REF] Parlier | Chromatic numbers for the hyperbolic plane and discrete analogs[END_REF] observed that when d is odd, χ(T q , d) = 2 and proved that when d is even, q ≤ χ(T q , d) ≤ (d + 1)(q -1). A similar upper bound can also be deduced from the results of Van den Heuvel, Kierstead, and Quiroz [START_REF] Van Den Heuvel | Chromatic Numbers of Exact Distance Graphs[END_REF], while the lower bound is a direct consequence of the fact that when d is even, the clique number of the exact d-th power of T q is q (note that it does not depend on d). In this short note, we prove that when q ≥ 3 is fixed,

d log(q-1) 4 log(d/2)+4 log(q-1) ≤ χ(T q , d) ≤ (2 + o(1)) d log(q-1)
log d , where the asymptotic o(1) is in terms of d. A simple consequence of our main result is that for any even integer d, the exact d-th power of a complete binary tree of depth d is of order Θ(d/ log d) (while its clique number is equal to 3).

The following problem (attributed to Van den Heuvel and Naserasr) was raised in [START_REF] Nešetřil | Sparsity -Graphs, Structures, and Algorithms[END_REF] (see also [START_REF] Van Den Heuvel | Chromatic Numbers of Exact Distance Graphs[END_REF] and [START_REF] Nešetřil | On low tree-depth decompositions[END_REF]).

Problem 1.1 (Problem 11.1 in [START_REF] Nešetřil | Sparsity -Graphs, Structures, and Algorithms[END_REF]). Is there a constant C such that for every odd integer d and every planar graph G we have χ(G, d) ≤ C?

We will show that our result on large complete binary trees easily implies a negative answer to Problem 1.1. More precisely, we will prove that the graph U d 3 obtained from a complete binary tree of depth d by adding an edge between any two vertices with the same parent gives a negative answer to Problem 1.1 (in particular, for odd d, the chromatic number of the exact d-th power of U d 3 grows as Θ(d/ log d)). We will also prove that the exact d-th power of a specific subgraph Q d 3 of U d 3 grows as Ω(log d). Note that U d 3 and Q d 3 are outerplanar (and thus, planar) and chordal (see Figure 2).

Kloeckner [START_REF] Kloeckner | Coloring distance graphs: a few answers and many questions[END_REF] proposed the following variant of the original problem: For a metric space X, an integer d and a real c > 1, we denote by χ(X, [d, cd]) the smallest number of colors in a coloring of the elements of X such that any two elements of X at distance at least d and at most cd apart have distinct colors. Considering as above the natural metric space defined by the infinite q-regular tree T q , Parlier and Petit [START_REF] Parlier | Chromatic numbers for the hyperbolic plane and discrete analogs[END_REF] proved that q(q -1) ⌊cd/2⌋-⌊d/2⌋ ≤ χ(T q , [d, cd]) ≤ (q -1) ⌊cd/2+1⌋ (⌊cd⌋ + 1).

We will show that χ(T q , [d, cd]) ≤ q q-2 (q -1) ⌊cd/2⌋-d/2+1 + cd + 1, which implies that the lower bound of Parlier and Petit [START_REF] Parlier | Chromatic numbers for the hyperbolic plane and discrete analogs[END_REF] (which directly follows from a clique size argument) is asymptotically sharp.

Exact distance coloring

Throughout the paper, we assume that the infinite q-regular tree T q is rooted in some vertex r. This naturally defines the children and descendants of a vertex and the parent and ancestors of a vertex distinct from r. In particular, given a vertex u, we define the ancestors u 0 , u 1 , . . . of u inductively as follows: u 0 = u and for any i such that u i is not the root, u i+1 is the parent of u i . With this notation, u d can be equivalently defined as the ancestor of u at distance d from u (if such a vertex exists). For a given vertex u in T q , the depth of u, denoted by depth(u), is the distance between u and r in T q . For a vertex v and an integer ℓ, we define L(v, ℓ) as the set of descendants of v at distance exactly ℓ from v in T q .

We first prove an upper bound on χ(T q , d).

Theorem 2.1. For any integer q ≥ 3, any even integer d, and any integer k ≥ 1 such that k(q -1) k-1 ≤ d, we have χ(T q , d) ≤ (q -1) k + (q -1) ⌊k/2⌋ + d k + 1. In particular, χ(T q , d) ≤ d+q+1, and when q is fixed and d tends to infinity, χ(T q , d) ≤ (2+o(1)) d log(q-1) log d . Proof. A vertex of T q distinct from r and whose depth is a multiple of k is said to be a special vertex. Let v be a special vertex. Every special vertex u distinct from v such that u k = v k is called a cousin of v. Note that v has at most q(q -1) k-1 -1 cousins (at most (q -1) k -1 if v k = r). A special vertex u is said to be a relative of v if u is either a cousin of v, or u has the property that u and v k have the same depth and are at distance at most k apart in T q . Two vertices a, b at distance at most k apart and at the same depth must satisfy a ⌊k/2⌋ = b ⌊k/2⌋ , and so the number of vertices u such that u and v k have the same depth and are at distance at most k apart in T q is (q -1) ⌊k/2⌋ . It follows that if v k = r, then v has at most q(q -1) k-1 -1 relatives and otherwise v has at most (q -1) k + (q -1) ⌊k/2⌋ -1 relatives.

The first step is to define a coloring C of the special vertices of T q . This will be used later to define the desired coloring of T q , i.e. a coloring such that vertices of T q at distance d apart are assigned distinct colors (in this second coloring, the special vertices will not retain their color from C).

We greedily assign a color C(v) to each special vertex v of T q as follows: we consider the vertices of T q in a breadth-first search starting at r, and for each special vertex v we encounter, we assign to v a color distinct from the colors already assigned to its relatives, and from the set of ancestors v ik of v, where 2 ≤ i ≤ d k +1 (there are at most d k such vertices). Note that if v k = r, the number of colors forbidden for v is at most q(q -1) k-1 -1 and if v k = r the number of colors forbidden for v is at most (q -1) k + (q -1) ⌊k/2⌋ + d k -1. Since k(q -1) k-1 ≤ d, in both cases v has at most (q -1) k + (q -1) ⌊k/2⌋ + d k -1 forbidden colors, therefore we can obtain the coloring C by using at most (q -1) k + (q -1) ⌊k/2⌋ + d k colors. For any special vertex v, the set of descendants of v at distance at least d/2 -k and at most d/2 -1 from v is denoted by K(v, k). We now define the desired coloring of T q as follows: for each special vertex v, all the vertices of K(v, k) are assigned the color C(v). Finally, all the vertices at distance at most d/2 -1 from r are colored with a single new color (note that any two vertices in this set lie at distance less than d apart). The resulting vertex-coloring of T q is called c. Note that c uses at most (q -1) k + (q -1) ⌊k/2⌋ + d k + 1 colors, and indeed every vertex of T q gets exactly one color.

We now prove that vertices at distance d apart in T q are assigned distinct colors in c. Assume for the sake of contradiction that two vertices x and y at distance d apart were assigned the same color. Then the depth of both x and y is at least d/2. We can assume by symmetry that the difference t between the depth of x and the depth of y is such that 0 ≤ t ≤ d since otherwise they would be at distance more than d. Let u be the unique (special) vertex of T q such that x ∈ K(u, k) and v be the unique (special) vertex such that y ∈ K(v, k). By the definition of our coloring c, we have C(u) = C(v). Note that u and v are distinct; indeed, otherwise x and y would not be at distance d in T q . Assume first that u and v have the same depth. Then since u and x (resp. v and y) are distance at least d/2 -k apart, u and v are cousins (and thus, relatives), which contradicts the definition of the vertex-coloring C. We may, therefore, assume that the depths of u and v are distinct. Moreover, since u and v are special vertices, we may assume that their depths differ by at least k. In particular, u lies deeper than v in T q .

First assume that the depths of u and v differ by at least 2k. Then v is not an ancestor of u in T q . Indeed, for otherwise we would have v = u ik for some integer 2 ≤ i ≤ d k + 1, which would contradict the definition of C. This implies that the distance between x and y is at least

d/2 -k + d/2 -k + 2k + 2 = d + 2,
which is a contradiction. Therefore, we can assume that the depths of u and v differ by precisely k. Since v is not a relative of u, we have that v = u k and the distance between u k and v is more than k. Moreover, since u and x (resp. v and y) are at distance at least d/2 -k apart, this implies that the distance between x and y is more than

d/2 -k + k + k + d/2 -k = d, a contradiction.
Thus, c is a proper coloring.

By taking k = 1 we obtain a coloring c using at most (q-1) 1 +(q-1) ⌊1/2⌋ + d 1 +1 = q+d+1 colors, and by taking k = ⌊ log d-log log d+log log(q-1) log(q-1) ⌋, we obtain a coloring c using at most

d log(q-1) log d + d log(q-1) log d + d log(q-1)
log d-log log d+log log(q-1)-log(q-1)

+ 1 = (2 + o(1)) d log(q-1) log d colors.
For k = 1, the proof above can be optimized to show that χ(T q , d) ≤ q + d 2 (by simply noting that vertices at even depth and vertices at odd depth can be colored independently). Since we are mostly interested in the asymptotic behaviour of χ(T q , d) (which is of order O d log d ), we omit the details. We now prove a simple lower bound on χ(T q , d). Let T d q be the rooted complete (q -1)ary tree of depth d, with root r. Note that each node has q -1 children, so this graph is a subtree of T q . Theorem 2.2. For any integer q ≥ 3 and any even d, χ(T d q , d) ≥ log 2 ( d 4 + q -1). Proof. Consider any coloring of T d q with colors 1, 2, . . . , C, such that vertices at distance precisely d apart have distinct colors. For any vertex v at depth at most d 2 + 1 in T d q , the set of colors appearing in L(v, d 2 -1) is denoted by S v . Observe that if v and w have the same parent, then S v and S w are disjoint since for any x ∈ L(v, d 2 -1) and y ∈ L(w, d 2 -1), x and y are at distance d.

Fix some vertex u at depth at most d 2 in T d q and some child v of u. We claim that:

Claim 2.3. For any integer 1 ≤ k ≤ depth(u) 2
, there is a color of S u 2k-1 that does not appear in S v .

To see that Claim 2.3 holds, observe that in the subtree of T d q rooted in u k , there is a vertex of L(u 2k-1 , d 2 -1) at distance d from all the elements of L(v, d 2 -1). The color of such a vertex does not appear in S v , therefore Claim 2.3 holds.

graph U d

3 shows that this is asymptotically best possible (as d tends to infinity), up to a log d factor.

Interval coloring

For an integer d and a real c > 1, recall that χ(T q , [d, cd]) denotes the smallest number of colors in a coloring of the vertices of T q such that any two vertices of T q at distance at least d and at most cd apart have distinct colors. Parlier and Petit [START_REF] Parlier | Chromatic numbers for the hyperbolic plane and discrete analogs[END_REF] proved that q(q -1) ⌊cd/2⌋-⌊d/2⌋ ≤ χ(T q , [d, cd]) ≤ (q -1) ⌊cd/2+1⌋ (⌊cd⌋ + 1).

In this final section, we prove that their lower bound (which is proved by finding a set of vertices of this cardinality that are pairwise at distance at least d and at most cd apart in T q ) is asymptotically tight. Theorem 3.1. For any integers q ≥ 3 and d and any real c > 1, χ(T q , [d, cd]) ≤ q q-2 (q -1) ⌊cd/2⌋-d/2+1 + cd + 1.

Proof. The proof is similar to the proof of Theorem 2.1. We consider any ordering e 1 , e 2 , . . . of the edges of T q obtained from a breadth-first search starting at r. Then, for any i = 1, 2, . . . in order, we assign a color c(e i ) to the edge e i as follows. Let e i = uv, with u being the parent of v, and let ℓ = ⌊cd/2⌋ -d/2. We assign to uv a color c(uv) distinct from the colors of all the edges xy (with x being the parent of y) such that x is at distance at most ℓ from u k (where k is the minimum of ℓ and the depth of u), or x is an ancestor of u at distance at most cd from u (and y lies on the path from u to x). There are at most cd + ℓ j=0 q(q -1) j ≤ q q-2 (q -1) ℓ+1 + d -1 such edges, so we can color all the edges following this procedure by using a total of at most q q-2 (q -1) ℓ+1 + cd colors. As in the proof of Theorem 2.1, we now define our coloring of the vertices of T q as follows: first color all the vertices at distance at most d 2 -1 from r with a new color that does not appear on any edge of T q , then for each vertex v with parent u, we color all the vertices of L(v, d 2 -1) with color c(uv). In this vertex-coloring, at most q q-2 (q -1) ℓ+1 + cd + 1 colors are used.

Assume that two vertices s and t, at distance at least d and at most cd apart, were assigned the same color. This implies that c(s d/2-1 s d/2 ) = c(t d/2-1 t d/2 ). Assume without loss of generality that the depth of s is at least the depth of t, and consider first the case where t d/2-1 is an ancestor of s. Then t d/2 is an ancestor of s d/2 at distance at most cd from s d/2 (and t d/2-1 lies on the path from s d/2 to t d/2 ), which contradicts the definition of our edge-coloring c. Thus, we can assume that t d/2-1 is not an ancestor of s. This implies that t d/2-1 t d/2 lies on the path between s and t, and therefore t d/2 is at distance at most ℓ = ⌊cd/2⌋ -d/2 from the ancestor of s d/2 at distance ℓ from s d/2 (or simply from r, if the depth of s d/2 is at most ℓ). Again, this contradicts the definition of our coloring c. We obtained a coloring of the vertices of T q with at most q q-2 (q -1) ℓ+1 + cd + 1 colors in which each pair of vertices at distance at least d and at most cd apart have distinct colors, as desired.
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In particular, Claim 2.3 implies that all the sets {S u 2k-1 | 1 ≤ k ≤ d/4} and {S w | w is a child of u} are pairwise distinct. Since there are d 4 + q -1 such sets, we have d 4 + q -1 ≤ 2 C and therefore C ≥ log 2 ( d 4 + q -1), as desired. It was observed by Stéphan Thomassé that the proof of Theorem 2.2 only uses a small fraction of the graph T d q . Consider for simplicity the case q = 3, and define P d 3 as the graph obtained from a path P = v 0 , v 1 , . . . , v d on d edges, by adding, for each 1 ≤ i ≤ d, a path on i edges ending at v i (see Figure 1). This graph is an induced subgraph of T d q and the proof of Theorem 2.2 directly shows the following 1 . The proof of Theorem 2.2 can be refined to prove the following better estimate for T d q , showing that the upper bound of Theorem 2.1 is (asymptotically) tight within a constant multiplicative factor of 8.

Theorem 2.5. For any integer q ≥ 3 and every even integer d ≥ 2, χ(T d q , d) ≥ d log(q-1)

4 log(d/2)+4 log(q-1) .

Proof. Consider any coloring of T d q with colors 1, 2, . . . , C, such that vertices at distance precisely d apart have distinct colors. We perform a random walk v 0 , v 1 , . . . , v d in T d q as follows: we start with v 0 = r, and for each i ≥ 1, we choose a child of v i uniformly at random and set it as v i+1 . Note that the depth of each vertex v i is precisely i.

From now on we fix a color c ∈ {1, . . . , C}. For any vertex v of T d q , the set of vertices contained in the subtree of T d q rooted in v is denoted by V v , and we set

Claim 2.6. Assume that for some even integers i and j with 2 ≤ i < j ≤ d, and for some vertex v at depth i+j-d 2 , the set A v contains both i and j. Then v has precisely one child u such that A u contains i and j, and moreover all the children w of v distinct from u are such that A w contains neither i nor j. 1 Stéphan Thomassé noticed that this can also be deduced from the fact that the vertices at depth at least d 2 and at most d in the exact d-th power of P d 3 induce a shift graph.

To see that Claim 2.6 holds, simply note that i+j-d 2 < i < j and if two vertices u 1 , u 2 colored c are respectively at depths i and j, and their common ancestor is v, then they are at distance d in T d q (which contradicts the fact that they were assigned the same color). Indeed, the distance of

2 . This proves the claim.

We now define a family of graphs (G k ) 0≤k≤d/2 as follows. For any 0

. . , v k (and therefore also G k ) are fixed. Observe that G k+1 is obtained from G k by possibly removing some vertices and adding some edges. Thus, E k+1 can be larger than E k only if G k+1 contains edges that are not in G k . Therefore, it suffices to consider the contributions of those pairs of nonadjacent vertices in G k which could become adjacent in G k+1 (since these correspond to pairs i, j with k = i+j-d 2 , these pairs are pairwise disjoint), and prove that these contributions are, in expectation, equal to 0. Fix a pair of even integers i < j in V (G k ) with k = i+j-d 2 (and note that i and j are not adjacent in G k ). By Claim 2.6, either v k+1 is such that A k+1 contains i and j (this event occurs with probability 1 q-1 ), or A k+1 contains neither i nor j (with probability 1 -1 q-1 ). As a consequence, for any i < j in V (G k ) with k = i+j-d 2 , with probability 1 q-1 we add the edge ij in G k+1 and with probability 1 -1 q-1 we remove vertices i and j from G k+1 . This implies that for any i, j ∈ V (G k ), i < j, with k = i+j-d 2 , with probability 1 q-1 we have contribution at most (q-1) deg(i)+1 +(q-1) deg(j)+1 -(q-1) deg(i) -(q-1) deg(j) = (q-2)((q-1) deg(i) +(q-1) deg(j) ) to E k+1 (where deg refers to the degree in G k ) and with probability 1-1 q-1 we have a contribution of at most -(q -1) deg(i) -(q -1) deg(j) to E k+1 . Thus, the expected contribution of such a pair i, j is at most 1 q-1 (q-2)((q-1) deg(i) +(q-1) deg(j) )-q-2 q-1 ((q-1) deg(i) +(q-1) deg(j) ) = 0. Summing over all such pairs i, j, we obtain E(E k+1 ) ≤ E(E k ). This proves Claim 2.7.

2 -1, and in particular it follows that G d/2 is a (possibly empty) complete graph, whose number of vertices is denoted by ω ≥ 0. Note that the energy E of a complete graph on ω vertices is equal to ω(q -1) ω-1 , while the energy

this is the number of distinct even depths at which a vertex colored c appears in the subtree of height d 2 rooted in u). It follows from Claim 2.7 that the average of ω u (q -1) ωu-1 , over all vertices u ∈ L(r, d

2 ), is at most d 4 . Let a be the average of ω u , over all vertices u ∈ L(r, d

2 ). By Jensen's inequality and the convexity of the function x → x(q -1) x-1 for x ≥ 0, we have that a(q -1) a-1 ≤ d 4 , and thus a ≤ log(d/2) log(q-1) + 1.

Note that a depends on the color c under consideration (to make this more explicit, let us now write a c instead of a). Since there are d 4 even depths between depth d 2 and depth d, there is a color c ∈ {1, . . . , C} such that a c • C ≥ d 4 and thus, C ≥ d 4ac ≥

d log(q-1)

4 log(d/2)+4 log(q-1) , as desired.

We now explain how the results proved above give a negative answer to Problem 1. ) to show that these bounds are asymptotically tight.

It was recently proved by Quiroz [8] that if G is a chordal graph of clique number at most t ≥ 2, and d is an odd number, then χ(G, d) ≤ t 2 (d + 1). By Corollary 2.8, the