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ABSTRACT
The perfect vision system could be a system which can obtain surround images or information at once. We present a
vision system which can view the image in 360 with high- resolution depth information. The proposed vision system is
compact and rigid with two fisheye cameras that provide a 360-degree field of view(FoV). Alongside, a high-resolution
stereo vision camera is mounted to monitor anterior FoV for precise depth perception of the scene. To effectively calibrate
the proposed camera system, we offer a novel camera calibration approach taking the advantages of Unified Camera Model
representation. The proposed calibration method outperforms the state-of-the-art methods. Moreover, we proposed more
affective algorithm in fusing the two fisheye images into a single unified sphere, which offers seamless stitching results.
This new omni-vision rig system is designed to obtain sufficient information to be used on a robot for object detection and
recognition. A large scale SLAM and dense 3D reconstruction can be achieved taking the advantage of the large FoV.
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1. INTRODUCTION
The research and development on computer vision are extremely increasing in parallel with the development on robotics
technology[1]. The fabrication of hybrid camera systems with wide FoV, combine with the computer vision technique
makes this research more interesting. The objectives of this research were to fully utilise vision sensor as the useful kit for
robotics navigation. This paper presents the novel camera system which can provide a 360◦ FoV and the depth information
concurrently. The system minimizes the use of equipment and image-data and has the ability to acquire sufficient informa-
tion on the scene. The applications of omnidirectional cameras are mainly for robotics such as localization and mapping,
robot navigation[2], object tracking, visual servoing, structure from motion/motion from structure and virtual reality.

1.1 Concept and Motivation
Most of the living creatures have their own capability to look on the object. The ability of view depends upon the position,
form and structure of the eyes. The omni vision cameras rig has been developed by referring to the two categories of
animals, prey, and predator. A prey animal has a wide FoV but a small binocular view. They use the eyes for observing
the environment from the predator or other threats. While the predator has a large frontal binocular view for targeting and
attacking. The same vision system can be realized using multiple camera for the purpose of object observation, recognition
and detection[3].

1.2 Proposed System
The proposed vision system consists of two CCD cameras mounted with a fisheye lens with each has FoV 185◦. The fisheye
cameras are placed back to back so that they cover the whole 360◦ FoV vertically and horizontally. A high-resolution stereo
vision camera is placed in front of the rig, so that its baseline is in parallel with the baseline of the fisheye cameras. The
stereo vision camera named ZED camera, provides a high-resolution RGB image with depth information. Fig.1 shows the
illustration and the views of camera rig.

Further author information:
Ahmad Zawawi Jamaluddin : E-mail: ahmad.jamaluddin@u-bourgogne.fr, Telephone: +33(0)385731090



Fisheye cameras with field of view 185°

ZED stereo camera
with high resolution.

Top view Right view

Figure 1. The front view of the proposed system with the desire FoV.

2. HYBRID CAMERA SYSTEM
2.1 Omnidirectional Camera
There are three main types of the omnidirectional camera which each has their own advantages. A dioptric system[4], has
a FoV more than 180◦. It consists of a single camera mounted with a special lens to increase the FoV. The catadioptric
camera is another type of omnidirectional camera[5]. It has more than 180◦ FoV with a single image. It consists of a camera
system with a cone shape reflected mirror. This camera produces also a black spot which is the image of the camera itself.
The third types is polydioptric camera. It consists of several overlapping and non-overlapping identical cameras to obtain
a panoramic 360◦ FoV. Fig.2 illustrates the different omnidirectional vision systems.
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Figure 2. The illustration shows the omniderectional vision systems (a) Dioptric, (b) Catadioptric and (c) Polydioptric.

The linear perspective geometry has been preserved from any camera system with a single viewpoint. Normally, a
single viewpoint exists in all omnidirectional camera. It allows the omnidirectional camera to extract a different view, from
perspective to panoramic view. However, for polydioptric which consists of several identical cameras, it considered either
they have a unique viewpoint[4][6]. The multi cameras system has a stereovision capability or to enhance the FoV, but it
is impossible for the camera rig to have a single effective viewpoint.

2.2 Stereo vision Camera
Stereovision is a technique used to build three dimensional description of a scene observed from different viewpoints
[7]. This technique is used to perceive depth information through generating disparity maps, which then is used to detect
obstacles in the environment [8]. This is a classical technique that helps in the field of robotics for localization, navigation
and obstacle detection since several decades. Lately, the release of ZED Stereo Camera[9] enables the researchers to get
high-resolution three dimensional depth sensing. Fig. 3 shows the illustration of stereo vision system.
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Figure 3. The Illustration shows the stereo vision system. (a): Left and right cameras have their own view, the green colour is the
common view or stereovision. (b): A simplified stereovision model.



3. METHODOLOGY
3.1 Unified Spherical Camera Model
The unified spherical camera model has been proposed by Barreto J.P[6][10]. The image formation on dioptric camera
was effected by the radial distortion. Due to that, the point on the scene is not linear with the point on the dioptric image.

Then, the model was extended by Christopher Mei[11] and he developed the calibration toolbox to calibrate the omni-
directional camera. The model was enhanced by introducing another type of distortion called tangential distortion which
is incorporated with the radial distortion. Fig. 4 shows the Mei’s projection model from camera to unified spherical model.
The eccentricity, ξ parameter which defines the amount of distortion has been explained. Mei’s projection model[11][15]
has been used as a reference and it provides procedures to map the image on an unified spherical model.
Let consider a 3D point χ = (X ,Y,Z)T in the world, and project it to the unit sphere with Cm as a center of the sphere.

χs =
χ

‖χ‖
= (Xs,Ys,Zs)

T , (1)

Then the point χs mapped to the new reference frame with the new center Cp

(χs)Fm → (χs)Fp = (Xs,Ys,Zs)
T , (2)

Next, the point projected onto the normalised plane

mu = (
Xs

Zs +ξ
,

Ys

Zs +ξ
,1)T = }Xs, (3)

The model of distortion (tangential and radial) are added to the projection model. It consists of three radial and two
tangential distortion parameters.

xc = x1+ k1r2 + k2r4 + k5r6 +2k3xy+ k4(r2 +2x2), (4)

yc = y1+ k1r2 + k2r4 + k5r6 +2k4xy+ k3(r2 +2y2), (5)

where:
r =

√
x2 + y2, (6)

and the sum of distortion is
md = mu +D(mu,V ), (7)

where V contains the coefficients of distortion.

V = (k1,k2,k3,k4,k5,k6), (8)

and finally, the point md is projected to the image plane using K, which is a generalized camera projection matrix. The
value f and η should be also generalized to the whole system (camera+lens).

p = Kmd =

 f1η f1ηα u0
0 f2η v0
0 0 1

md , (9)

where the [ f1, f2]
T is the focal length, (u0,v0) is the principal point and α is the skew factor. Finally, by using the projection

model, the point on the normalized camera plane can be lifted to the unit sphere by the following equation:

}−1(mu) =


ξ+
√

1+(1−ξ 2)(x2+y2

x2+y2+1 x
ξ+
√

1+(1−ξ 2)(x2+y2

x2+y2+1 y
ξ+
√

1+(1−ξ 2)(x2+y2

x2+y2+1 −ξ

 , (10)
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Figure 4. Mei’s projection model from camera to unified spherical model. This figure is the courtesy of Christopher Mei [11].

3.2 Fisheye Camera Calibration.
Mei’s calibration toolbox has been used to estimate the intrinsic parameters, such as the principle point, focal length and
the enfolding parameter, ξ . For the proposed multi-camera setup, there are two fisheye cameras rigidly attached opposite
to each other. Since the FoV of the fisheye camera has 185o, the proposed setup has an overlapping area between the two
fisheye cameras periphery. The 2.5o overlapping area has been used to extract the extrinsic parameters to estimate the
transformation matrix between two fisheye cameras. The fusion of right fisheye to the left fisheye image and zed image
to the unit sphere are used the rigid 3D transformation by assuming the pure rotation. The Interior Point Optimization
Algorithm is used to to estimate the rotation between the projected points[12].

3.3 Epipolar Geometry of Omnidirectional Camera.
The epipolar geometry for an omnidirectional camera has been studied and it originally used for a catadioptric camera as
a model[13]. The study was extended to the dioptric or fisheye camera system. Fig. 8 shows the epipolar geometry of
fisheye camera. Lets consider the two positions of a fisheye camera which observed a point P in the space. The points P1
and P2 are the projection point P onto the unit sphere image in two different fisheye’s positions[10]. The points P, P1, P2,
O1 and O2 are coplanar, such that:

O1O2×O2P1 ·O2P2 = 0,

O2
1×P2

1 ·P2 = 0,
(11)

where, O2
1 and P2

1 are the coordinates of O1 and P1 in coordinate system X2,Y2,Z2. The transformation between system
X1,Y1,Z1 and X2,Y2,Z2 can be described by rotation R and translation t. The transformation equations are:

O2
1 = R ·O1 + t = t,

P2
1 = P1 ·O1 + t,

(12)

By substituting (12) in (11) we get,
PT

2 EP1 = 0, (13)

where, E = [t]×R is the essential matrix which consists of rotation and translation. In order to estimate the essential matrix,
the points correspondence pairs on the fisheye images are stacked into the linear system, thus the overall epipolar constraint
becomes.

U f = 0 , where U = [u1,u2, ...,un]
T (14)

and ui and f are vectors constructed by stacking column of matrices Pi and E respectively.

Pi = PiP
′T
i , (15)

E =

 f1 f4 f7
f2 f5 f8
f3 f6 f9

 , (16)



Figure 5. The epipolar geometry of fisheye camera.

The essential matrix can be estimated with linear least square by solving equation (18) and (19), where Pi
′ is the projected

point which corresponds to P2 of the Fig. 5, U is n× 9 matrix and f is 9× 1 vector containing the 9 elements of E. The
initial estimate of essential matrix is then utilized for the robust estimation of essential matrix and a modified iteratively
re-weighted least square method for omnivision cameras is proposed which is originally explained in [14]. This assigns
minimal weights to the outliers and noisy correspondences. The weight assignment is performed by finding the residual ri
for each point.

ri = f1x′ixi + f4x′iyi + f7x′izi + f2xiy′i + f5yiy′i+ f8y′izi + f3xiz′i + f6yiz′i + f9ziz′i, (17)

err→min
f

n

∑
i=1

(
wSi f T ui

)2
, (18)

wSi =
1

∇ri
, where ri = (r2

xi + r2
yi + r2

zi + r2
xi′ + r2

yi′ + r2
zi′)

1
2 , (19)

where, wSi s the weight (known as Sampson’s weighting) that will be assigned to each set of corresponding point and ∇ri
is the gradient; rxi and so on are the partial derivatives found from equation (17), as rxi = f1x′i + f2y′i + f3y′i.
Once all the weights are computed, U matrix is updated as follow,: U =WU .
where, W is a diagonal matrix of the weights computed using equation (18). The essential matrix is estimated at each step
and forced to be of rank 2 in each iteration. The procrustean approach is adopted here and singular value decomposition is
used for this purpose.

4. EXPERIMENTAL RESULTS
4.1 The estimation of intrinsic parameters
The unknown parameters f1, f2, u0, v0 and ξ of fisheye cameras are estimated using the omnidirectional camera toolbox
provided by Christopher Mei’s. The fisheye images are projected onto the unit sphere using the Inverse Mapping Function
(10) defined in Christopher Mei’s camera. Fig. 7 shows the images from left and right fisheye cameras projected onto the
unit sphere.

4.2 The estimation of extrinsic parameters
4.2.1 Rigid transformation between two fisheye images.

Our system has an overlapping features about 2.5o between the left and right hemispheres. The selected points are projected
onto the unit sphere. The rigid 3D transformation matrix are estimated using the overlapping features. The Interior Point
Optimization Algorithm is used to estimate the rotation between a set of projected points. Fig. 6 shows that the set of
projected points are aligned together. The rotation matrix is parameterized in terms of Euler angles and cost function is
developed that minimize the Euclidian distance between the reference (point projections of left camera image) and the
three dimensional points from the right camera image.
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Figure 6. The selected points are aligned together.

The transformation matrix of two fisheye cameras with pure rotation with zero translation.,

Tr f tol f =


−1.0000 −0.0048 0.0085 0
−0.0045 0.9994 −0.0335 0
−0.0087 −0.0334 −0.9994 0

0 0 0 1.0000

 , (20)

Fig. 7 shows that the two hemispheres are fused together using the estimated transformation matrix. Once the rotation

Front view Rear view
Figure 7. The unit sphere; images front and rear view from the camera rig.

matrix is estimated, fusion of the two hemispheres is only two step procedure. The points on the hemispheres that are
beyond the zero plane are first eliminated. Then the transformation (rotation only) is applied on the hemisphere of the right
fisheye camera and the point matrices are concatenated to get a full unit sphere.

4.2.2 Rigid transformation between a fisheyes and ZED camera

The same procedures are used to estimate the transformation matrix between the image from ZED camera and two hemi-
spheres. The transformation matrix image ZED camera refers to left fisheye.

Tztol f =


−0.0143 −0.0290 −0.9995 0
−0.0062 0.9996 −0.0289 0
−0.9999 0.0058 −0.0145 0

0 0 0 1.0000

 , (21)

As shown in fig. 8, the RGB and depth images from ZED camera are overlapped onto the unit sphere. It is also recovered
the scale between the ZED and fisheye cameras. The high-resolution RGB image and the depth image are fused onto the
unit sphere by the help of transformation matrix estimated. It should be noted that, the fusion of zed image onto the unit
sphere is an approximation. The result obtained is reasonable after handling the strong distortion on the fisheye images.
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Figure 8. The unit sphere overlaps with image from ZED camera (a: RGB image, b: Depth image).

4.3 3D reconstruction using the camera rig.
The 3D scene can be reconstructed using the triangulation, rotation and translation. The goal of triangulation is to min-
imized the distance between the two lines toward point P in 3D world. This problem can be expressed as a least square
problem.

min
a,b
‖aP1−bRP2− t‖ , (22)[

a∗

b∗

]
=
(

AT A
)−1

AT t,A = [P1−RP2] , (23)

By referring to fig. 5, looking from the first pose, point P, the line passing through O1 and P1 can be written as aP and the
line passing through O2 and P2 can be written as bRP2 + t, where a,b ∈ R and;

• P is the observed point.

• O1, P1 are the camera center and the point on the unit sphere at first position.

• O2, P2 are the camera center and the point on the unit sphere at second position.

• R and t are the rotation and translation.

The 3D point P is reconstructed by finding the middle point of the minimal distance between the two lines. It can be
computed by;

P =
a∗P1 +b∗RP2 + t

2
, (24)

Fig. 9 and fig.10 show the results of feature matching and scene reconstruction algorithm developed following the spherical
model of the camera.

Figure 9. The features matching points between two different poses of fisheye cameras.



Figure 10. The front view(left) and top view(right) of the three dimensional reconstruction scenes.

5. CONCLUSIONS
The intrinsic parameter of fisheye and ZED cameras are estimated from the camera calibration toolbox. The distortion
of fisheye camera is determined by parameter ξ . The rigid 3D transformation matrix are estimated using the overlapping
features which are assuming that it is a pure rotation. The Interior Point Optimization Algorithm is used to estimate the
rotation between a set of projected points. The same procedure is used to fuse ZED camera onto the unit sphere. The
overlap area between fisheye and ZED cameras is estimated for the purpose of object tracking and detection. The camera
rig is applied to reconstruct 3D scene using features matching and an algorithm based on a spherical model of camera.
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