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INTRODUCTION

Today's computing devices are based on the CMO S technology, that is the subject of the famous Moore's Law [1], predicting that the number of transistors in an integrated circuit will be doubled every two years. Despite the advantages of the technology shrinking, we are facing the physical limits of CMO S. Among the multiple challenges arising from technology nodes lower than 20 nm, we can highlight the high leakage current (i.e., high static power consumption), reduced performance gain, reduced reliability, complex manufacturing process leading to low yield, complex testing process, and extremely costly masks [START_REF] Hoeftlinger | Chips2020:AGuidetotheFutureotNanoelectronics[END_REF] [3] [4] [START_REF] Gielen | Emergingyieldandreliabilitychallengesinnanometer CMOS technologies[END_REF].

Additionally, the expected never-ending increasing of performances is indeed no longer true. Looking in more detail, the classical computer architectures, either Von Neumann or Harvard, divide the computational unit (i.e., CPU) from the storage element (i.e., memory). Therefore, data have to be transferred inside the computational element in order to be processed and then transferred back to be stored. The main problem of this paradigm is the bottleneck due to the data transfer time limited by the bandwidth. For instance, transferring one TeraByte at the rate of 1 Gbit/second re q uires more than two hours.

Many new technologies are under investigation, among them the memristor is a promising one [START_REF] Chua | Memristor-themissingcircuitelement[END_REF]. Indeed, the memristor is a non-volatile device able to act as both storage and information processing unit that presents many advantages: CMO S process compatibility, lower cost, zero standby power, nanosecond switching speed, great scalability, high density and non-volatile capability [START_REF] Waser | Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges[END_REF] [START_REF] Yang | Memristive devices for computing[END_REF]. Thanks to its nature (i.e., computational as well as storage element), the memristor is exploited in different kind of applications, such as neuro morphic systems [START_REF] Burger | Variation-tolerant computing with memristive reser voirs[END_REF], non-volatile memories [START_REF] Kim | A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications[END_REF], computing architecture for data-intensive applications [START_REF] Hamdioui | Memristor based computation-in-memory architec ture for data-intensive applications[END_REF].

This paper presents a comprehensive overview of memristor technology and its potential to design a new computational paradigm. The remainder of the paper is structured as following. Section 11 presents the basic background about the memristor and its potential. Section III discusses the design flow of memristor-based computing devices by presenting a synthesis flow and the design exploration framework. Finally, Section 0 discusses the real impact of memristor-based computing devices.

II.

MEMRlSTIVE DEVICES AND THEIR POTENTIAL

The continuous technology scaling, as well as the emergence of new technologies, favor increasing of the system complexity and performance, opening the scientific community to exotic applications and computation paradigms which had been unfeasible a few years back due to technological limitations of the hardware. The emergence of new low power, highly scalable, CMO S compatible memory devices (such as memristive devices) is tries to address the technical constraints of today's memories.

The memristive devices have great characteristics in terms of area, power and speed when used as memory or data storage devices, but, in addition, they are promising solutions for logic implementation. Thanks to the relative easiness of massive parallelism, computing in memristive memory becomes trending topic in current research activities. Moreover, other fields, such as brain-inspired computing, benefit from the uni q ue features of this technology. In continuation, a comprehensive overview of the memristive technology landscape with special emphasis on the most desirable features and dire shortcomings in memory and logic design is presented.

A. Working Principle and Classification

The memristor is a semiconductor device whose resistance is called memristance. The memristance is a charge dependent resistance and its value varies as a function of current and flux. The memristor technology has some great advantages such as data non-volatility, CMO S compatibility, low switching power, no leakage power, high integration capability.

Memristors can be classified in two different types: (i) ionic thin film and molecular memristors, and (ii) magnetic and spin based memristors. In this work we are focusing on the first category, since the second has developed independently as spintronic devices.

When used as a memory device, the first category of memristors is called resistive memory, more precisely Resistive Random Access Memory (RRAM) and it can act as a non-volatile memory. Its data storage element is a three-layer device, consisting of a dielectric sandwiched between two metal electrodes. There are many materials which can be used for thc clcctrodcs and diclcctric, but thc undcrling opcration principlc rcmains thc samc. Thc RRAM dcvicc switchcs between two resistive states, i.e., the high resistance state (HRS) and the low resistance state (LRS), when triggered by an electrical input.

RRAM relies on the formation (corresponding to low resistance) and the rupture (corresponding to high resistance) of conductivc paths in thc diclcctric laycr. Oncc thc conduction path is formed, it may be RESET (the path broken, transition ii'om LRS to HRS) or SET (the path re-formed, transition from HR S to LRS). Usually, right after fabrication (i.e., the pristine samples) the devices have a very high electrical resistance (-1 GQ) and a large voltage is required for the first SET operation, also known as the forming process; this drastically reduces the device resistance (to about IOKQ) triggering the switching behavior in the subsequent cycles.

Classification: The memristive devices (RRAM) can be classitied following ditTerent criteria. They can be c1assitied according to the used materials, the switching mechanism, the conductive path, and the switching mode. There are two possible RRAM switching modes: unipolar switching, which depends only on the amplitude of the applied voltage and not its polarity, i.e., the SET and the RESET opcrations arc controllcd by thc samc polarity; and bipolar switching in which thc SET and thc RESET opcrations arc controlled by reverse polarities.

Depending on the do minant physical switching mechanism, the resistive devices can be elassified in: Phase Change Memories, Electrostatic/ Electronic Effects Memories, and Rcdox Mcmorics. Va rious rcsistivc switching mcchanisms havc bccn proposcd to cfficicntly pcrform thc SET and RESET operations. They include the formation and rupture of conductive paths, charge trapping, electrode-limited conduction [START_REF] Lee | Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices[END_REF], [START_REF] Zhu | An overview of materials issues in resistive random access memory[END_REF]. Thc low-rcsistancc conductive path can bc cithcr localizcd (filamcntary) or homogcncous.

One of the most versatile resistive memories is the Redox RAM [1], [START_REF] Yu | Overview of resistive switching memory (RRAM) switching mechanism and device modeling[END_REF], where the RESET and SET processes, breakdown and regrow of the conductive filaments, involve oxidation and reduction (i.e., redox reaction). These are Metal Insulator-Metal (MIM) structures, in which the switching mechanism is electrochemical and it can occur in the insulator-layer, or at the insulator-layer/metal contact interfaces.

Figure 1. Resistive device classification

The MIM structures can be classified by their underlying switching mechanism as follows [START_REF] Vatajelu | Nonvolatile memories: Present and future challenges[END_REF]:

The Valence Change Mechanism (VCM): here the dielectric layer can act as an electrolyte and the migration of oxygen vacancies within the applied electric field evolves in a bipolar manner. The conductive path is formed due to the oxygcn anions (positively chargcd oxygcn vacancics), while the electric current is defined by the electrostatic barrier in the band diagram. Appling negative bias voltage on the electrodes of the memristor the SET operation is performed due to a local redox reaction which increases the device conductivity. The RESET operation is performed by reversing the bias polarity and allowing thc rccombination of oxygcn. Thc most common examples of VCM RRAMs use TaOx, HfOx and TiOx [START_REF] Lim | Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey[END_REF], [START_REF] Wedig | Nanoscale cation motion in TaOx, HfDx and TiOx memristive systems[END_REF] devices.

The Electrochemical Mechanism (ECM): uscs an clectrochcmically activc clectrodc mctal such as Ag or Cu. The mobile metal cations drift in the ion conducting layer and discharge at the counter-electrode, leading to a growth of conductive metallic filaments in the isolation layer -i.e., the SET mechanism. The RE SET mechanism is performed by reversing the polarity of the applied voltage, resulting in the electrochemical dissolution of the conductive filaments [START_REF]Electrochemical and thermochemical memories[END_REF].

The Thermochemical Mechanism (TCM): relies on a filament modification due to Joule heating. Conductive filaments, composed of the electrode metal transported into the insulator, are formed during the forming process prior to memory cyclic switching. The SET operation is achieved by Joule heating; it triggers local redox reactions that facilitate the formation of oxygen deficient ions and metallic filaments. The RESET operation is a thermally activated process resulting in a local decrease of the metallic species. TCMs are unipolar switching devices. N iO has emerged as the reference material for resistive switching based on the TCM [19]. As a reasonably representative example, in the subsequent sections the focus will be on HfOx-based VCM RRAMs, as they see:n the most promising. Note that the focus of the paper is on device test where the quality of the conductive path formation is relevant, regardless of the physical mechanism.

B. Opportunities and Challenges

Opportunities: Memristive are on the way to change the classical memory/storage architectures. They should meet the high demands of tomorrow applications, like high performance and high density, good endurance, small devices sizes, good integration, low power profile, resistance to radiation, and ability to scale below 20 nm 120 J, 1211.

The most investigated use of the memristor is memory since a it can store data. When compared with traditional memories, such as SRAM or DRAM, this kind of memory has many benefits, such as, no leakage power, non-volatility and scalability, being in the same time superior to flash memory in terms of speed and scalability. In addition, the memristive device can be used in logic circuits, either as standalone logic gates, or used in hybrid CMOS-memristor circuits. Memristors can be used to do digital logic using implication instead of NAND.

The simple device structure (metal-insulator-metal) of a RRAM device, its compatibility with CMOS process, the scaling opportunities below 8nm, its large on/off ratio, and fast operating speed make the RRAM devices ideal candidates to eventually be used as embedded memories.

Challenges: Amongst the greatest challenges faced by today's RRAM devices is their relatively low endurance (10 5 -10 10 cycles [22]) and poor uniformity. The low endurance limits their efficiency as embedded memories, while the poor uniformity causes extreme variability and limited reproducibility.

Another challenge is the large number of new materials (and combinations of materials) which can be used for the resistive stack formation (as seen in Fig. I a) making difficult the standardization of the fabrication process. The introduction of new materials in RRAM fabrication does not allow enough time to collect and generate the data required to guarantee sufficient yield. These issues, which are common to all emerging technologies, introduce aggressive challenges on defect and fault modelling and possible test solutions.

The main concern regarding the RRAM is the variability of its switching parameters. It has been demonstrated that lowering the switching power of RRAM will induce large variability of the filament formation. This is due to movement of only countable number of atoms [1]. This movement can cause device to device resistance variation but also cycle to cycle variation [START_REF] Chen | Variability of resistive switching memories and its impact on crossbar array performance[END_REF]. This has resulted in the need for enhancing the read/write power consumption in RRAM [START_REF] Xue | A 0.13 urn 8 Mb Logic-Based CuxSiyO ReRAM With Self-Adaptive Operation for Yield Enhancement and Power Reduction[END_REF] along with designing adaptive sensing circuits to mitigate this effect [START_REF] Park | Analysis of resistance variations and variance-aware read circuit for cross-point ReRAM[END_REF]. Moreover, it has motivated the utilization of other types of RRAMs such as the conductive bridging RAM (CBRAM) which has bigger high to low resistance ratio and non-filamentary RRAM devices in which the ions drift across the whole aperture of RRAM [START_REF] Govoreanu | A-VMCO: A novel forming-tree, selt:rectifYing, analog memory cell with low-current operation, non filamentary switching and excellent variability[END_REF].

In terms of scaling RRAM has shown to be promising device as its data storage is based on atomic movement. Theoretically, RRAM can scale down to size of a conductive filament and scaled devices down to 2nm has been reported. Nonetheless extensive scaling can make the filament so small and might induce retention problems [START_REF] Chen | Improvement of data retention in HfD2/Hf 1 TlR RRAM cell under low operating current[END_REF].

Note that as a result of filamentary switching, RRAM scaling will not be accompanied by scaling of the operating voltage and currents because the filament conduction is governed by the electrical programming conditions, therefore to achieve low power constrains proper material selection and optimized programming conditions is required [START_REF] Wouters | Phase-Change and Redox Based Resistive Switching Memories[END_REF].

From reliability perspectives, RRAMs have recently improved a lot from their early stage appearances. Their endurance cycles have increased from 10 3 up to 10 12 cycles and there has been some attempts to remove the initial forming step which is one of the sources for their resistance variability [START_REF] Wong | Metal-Oxide RRAM[END_REF]. A consolidation of material engineering along with optimizing the device operating parameters and novel techniques at circuit level are under research to further improve their reliability.

Due to attractive potential scaling and fast operation properties of RRAM they are considered as strong replacement for flash memories. Several prototyped chips have been presented for RRAM devices. As examples Panasonic has presented an 8Mb fast RRAM memory [START_REF] Kawahara | An 8 Mb Multi-Layered Cross-Point ReRAM Macro With 443 MB/s Write Throughput[END_REF], also Scandisk/Toshiba have presented a 32 Gb chip for high density applications.

TIT. TOWARD AUTOMA nON OF MEMRISTIVE DEVICE BASED CIRCUIT DESIGN

A fundamental component of any kind of computing architecture is the implementation of boolean logic functions thus, an automated tool for the synthesis of memristor-based circuits is mandatory [START_REF] Du Nguyen | Synthesizing HDL to memristor technology: A generic framework[END_REF][START_REF] Jintao | Skeleton-based design and simulation flow for Computation-in-Memory architectures[END_REF]. Tn [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF], the authors proposed a methodology for the synthesis of boolean logic function on a memristor-based crossbar. Their work showed that is possible to implement any kind of boolean function on a memristor based crossbar. Tn [START_REF] Traiola | XbarGen: A memristor based boolean logic synthesis tool[END_REF], we illustrated a methodology to automatically map an arbitrary boolean function to a memristor-based crossbar implementation. By applying different minimization tools and different synthesis parameters, we also showed that each obtained architecture is strongly dependent on them. Design Space Exploration (DSE) is therefore mandatory to help and guide the designer to select the best architecture.

Bearing in mind such consideration, in this section, we present a formal DSE approach that aims to calculate interesting circuits attributes avoiding simulation campaigns. We propose an algorithmic method to estimate both workload independent attributes (e.g. performance, area, etc.) and work load dependent ones. In particular, we estimate the power consumption of a given memristor-based crossbar architecture (the Fast Boolean Logic Circuit [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF]) providing both a lower and an upper bound for the power consumption and an error estimation.

A. Synthesis Flow and DSE

As described in [START_REF] Xie | Fast Boolean Logic Mapped on Memristor Crossbar[END_REF], FBLC approach implements a boolean function as a Sum-of-Product (SoP). Thus, the resulting crossbar has to be configured accordingly to the function's minterms. The proposed synthesis flow is depicted in the OThe input of the flow is the target boolean function that is minimized by using two different synthesis tools (i.e., ABC [START_REF][END_REF] and SIS [START_REF] Sentovich | SIS: A System for Sequential Circuit Syn thesis[END_REF]). Actually, we exploited two different tools to estimate the impact of different synthesis parameters and algorithms on the circuit characteristics (i.e., performance, area, power consumption, etc.). More in detail, SIS is employed for generating 2-levels logical networks while ABC is exploited for generating multi-levels logical networks. The result is the boolean function minimized and described as a set of minterms. As described above, different descriptions can be obtained. The subsequent step is the mapping of the minimized boolean function onto a crossbar-based memristor circuit. The tool XbarGen [START_REF] Traiola | XbarGen: A memristor based boolean logic synthesis tool[END_REF] can extract the function's minterms from the generated representation in order to analyze them and to build the corresponding FBLC circuit. The result is the set of VHDL files modelling the crossbar circuit. Finally, the crossbar VHDL model can be simulated by using any available logic simulator.

During the mapping process, XbarGen extracts the crossbar attributes that will be exploited by the proposed formal DSE approach. Let us first detail those attributes before moving to the DSE description. They can be divided in two main categories, namely the workload independent and workload dependent. Next subsections describe both of them and last subsection details the formal DSE.

B. Workload independent attributes

The workload independent attributes do not need any sim ulation (i.e., we do not have to simulate the crossbar VHDL model) to be evaluated. They are extracted by XbarGen during the mapping process and they are formalized as follows: Number of memristors in the circuit defined by the following equation: given that:

• Indexes i and ) run on minterms and crossbars respectively;

• Nin and Noul are the number of inputs and outputs respectively;

• Nocc ( mi , � ) is the number of occurrence of i-th minterm in j-th crossbar;

• NUl (m, ) is the number of literals of i-th minterm;

• Pii is equal to 1 if the i-th minterm is present in the )-th crossbar, otherwise it is equal to 0;

• Tc is the 'Latency' of a Crossbar;

• Ne is the Number of Crossbars in the circuit.

C. Workload dependent attributes

The workload dependent attributes require the simulation of the generated VHDL circuits to be evaluated. Tn this work, we consider the power consumption as workload dependent attributes formalized as: )-th crossbar that switch from '0' to '1' and from '1' to '0' respectively;

P = L [NuP j . Cup + Ndown j . Cdown]
• Cup and Cduwn are the power consumption of a memristor switching from '0' to '1' and from ' l' to '0' respectively.

It is worth to note that N,pj and Ndownj depend on the applied workload.

D. Formal DSE

The main goal of the proposed DSE is the characterization of the synthesized crossbars w.r.t. the above identified attributes. The idea is to avoid any simulation to speed up the DSE. Clearly, for the workload independent attributes the formal DSE is straightforward since it is enough to exploit the equations (1), ( 2) and (3). Thc challcnging issuc is dctcrmining thc actual powcr consumption. Even if the power consumption is a workload dependent attribute, we will show how to compute two bounds that cannot be exceeded by the actual power consumption: a worst case bound and a best case bound. It is wOlih to emphasize that such bounds will be computed without any simulation.

Referring to the equation ( 4), the idea that we exploit is to identify within the crossbar the elements that do not depend on actual inputs and manage those which are dependent on actual inputs. Thus, we can observe -as 0 shows -that the architecture has a first RE SET stage (INA) in which all the memristor in the circuit are set to ' 1 ' . Therefore, during this stage, we have only the contribution of N"pj * Cup while, during the rest of the computation, only NdolVnj * CdolVn contributes to the power consumption. Moreover, in both worst and best case scenarios, we consider a concatenation of executions providing inputs which trigger the worst and the best case respectively. Bearing in mind this, we can observe that, whether Ndownj memristors switch from ' 1 ' to '0' during the computation, the RESET phase has to switch the same number of memristors from '0' to '1'. Therefore, considering both worst and best case, we can assume that the two contributions are equal: In ordcr to cstimatc this contribution, let us considcr that a crossbar can be divided in 4 parts, as detailed in [START_REF] Traiola | XbarGen: A memristor based boolean logic synthesis tool[END_REF]. Hence we can assume the following:

• Concerning the green IN box, it is clear that half of the input memristors are going to switch during each execution of the circuit.

•

The same consideration is true for the output memristors, in the blue OL box.

Therefore, such two blocks of mernristors can be evaluated, in terms of switching memristors, independently from the actual input values. Thus, we are able to rewrite the equation 5 as follows: whcrc:

• Nintj is the number of mernristors that belong to the minterm boxes NAND and AND within the j-th crossbar that switches during the computation:

(7)
Let us now discuss about the remaining orange NAND and the red AND boxes. The memristors of these parts switch accordingly with the actual input values. For them, the goal is to find the two bounds. It is worth highlighting that the number of switching memristors in the AND box depends on which memristors switch in the NAND box. Therefore, the best and worst cases are computed by considering only the NAND box. Bearing in mind that half of the input memristors will eventually switch 1 ---+ 0 during each execution of the circuit, to find the best and worst input vectors we count, for each vertical nanowire, the number of memristors in the NAND box. For each couple of literals xi and xi (vertical nanowires) we consider, as for the best case, the one that leads to the lowest number of memristors and, as for the worst case, the one that leads to the biggest one.

Finally, we compute how many AND memristors will switch using the selected input vectors: since the minterms box is performing a NAND operation, if a minterm has at least one literal among those in the selected input vectors, the corresponding memristor in the AND box will not switch, otherwise it will.

As can be seen, we do not need the truth table of the function for retrieving (NmNAND , Nm/1ND)worstibesb indeed we only count the number of memristors in the NAND box in order to find the best and the worst combinations of inputs and then we verify if each minterm will be whether '0' or '1'. Therefore, the algorithm has a linear complexity. This is a grcat improvcmcnt comparcd to doing a simulation with all thc combinations of inputs that would lead to a complexity 8(2n), with n the number of inputs

E. Experimental Results

This section provides experimental results achieved by the proposcd flow. A bunch of combinatorial circuits arc uscd as bcnchmarks, dctails about circuits charactcristics arc available in [START_REF] Yang | Logic Synthesis and Optimization Benchmarks User Guide[END_REF]. Table I reports the achieved results for multiple crossbars. For each circuit, tables report the number of inputs (lN), minterms, memristors (Nm), the area, the estimated power consumption from PIVors! downto Pbes! including the error estimations (EIVors! and Ebes!). Moreover, in columns DSE Time and SimTime Overhead we report respectively the execution time of the proposed formal DSE and the overhead of a single simulation of the synthesized VHDL circuit compared to DSE. As shown in the tables, the cost of performing a full simulation to determine the power consumption is in average very high: about 300% for the multiple crossbar. This clearly prove the benefits of using our approach instead of a full simulation.

It is worth mentioning that, on a given circuit, the simulation is performed on a single workload while the formal DSE execution is actually independent from any specific workloads. Thus, the formal DSE takes only an execution in order to perform the estimation of both best and worst cases of power consumption, along with an error estimation. The simulation approach, on the other hand, require a full simulation per each workload to find actual best and worst cases of power consumption. Memristive devices are under investigation to explore not only their potential for building memories and logic, but also to build radically new computing architectures [START_REF] Hamdioui | Memristor For Computing: Myth or Reality?[END_REF], such as computing-in-memory (CIM).

CIM concept as proposed in [START_REF] Hamdioui | Memristor based computation-in-memory architec ture for data-intensive applications[END_REF] is based on the tight integration of computation and storage in a very dense crossbar array where memristors are injected at each junction of the crossbar (top electrode and bottom electrode). The communication and control from/to the crossbar can be realized using CMO S technology; it dictates what kind of operations have to be performed within the crossbar depending on the sequence and the voltages applied to the wordlines and the bitlines of the crossbar. The integration of CIM die with a conventional CPU can enable the realization of accelerators for specific application; these accelerators could outperform the traditional CPU with orders of magnitude [START_REF] Hamdioui | Memristor based computation-in-memory architec ture for data-intensive applications[END_REF].

In the rest of this section, we will briefly discuss an example of such an accelerator, including the architecture and principal of working, the potential applications that could benefit from such architecture, and some preliminary performance results.

A. Principal a/working Figure 4 shows the CIM-based computing architecture concept. It includes a conventional CPU, CIM die, main memory DRAM and external memory. In a conventional architecture, the CPU fetches, decodes and executes a big data program in which intensive memory accesses costs enormous energy consumption and significantly degrades the overall performance. In CIM-based architecture, the aim is to have as much as possible parts of the program (requiring big data) executed locally within the CIM-die; i.e., instead of moving data back and forth to the cache & register file, the (big) data which is initially stored in the CIM die, will be kept in the same location and (ideally) all parts of the program that should be executed on this data should take place locally within the CIM-die. Only the final result is moved from the CIM-die to the master CPU. Note that the operations within CIM-die are performed within the (non-volatile) memory; moreover, the CIM die can perform multiple operations simultaneously without the overhead of fetching data from memory [START_REF] Hamdioui | Memristor based computation-in-memory architec ture for data-intensive applications[END_REF][START_REF] Du Nguyen | Computation-In-Memory Based Parallel Adder[END_REF]. Therefore, significant reduction in memory access and the use of non-volatile technology for the CIM-die will not only improve the overall performance, but also dramatically reduce energy consumption. Note that idea is to have the (big) data (on which the CIM die needs to perform the operations) loaded to the die itself, and that the capacity of the memory within the die is large enough to store this data. In addition, the optimized performance is obtained in case the we have different operation applied on the same data, which is not changing frequently; this benefit also the endurance of the non-volatile memory of the CIM die. It is well recognized that the communication between the CPU and the memory is the killer for both performance and energy, especially for data-intensive applications; loading data from on chip SRAM and from off-chip DRAM cost about 50X, respectively, 6400X more energy as compared with an ALU operation [START_REF] Brunhave | [END_REF]. Clearly reducing the communication will have a significant impact not only on the energy consumption but also on the overall performance. Data-intensive applications which requires the execution of algorithms containing also operations on big data could benefit from the architecture discussed above. The big data can be stored on the CIM die and all the operations that have to used such data can be execute locally with the CIM die, by have the CPU provide appropriate instruction to the local CIM controller; hence, no need for data movement. Moreover, the CIM dies can perform its operation while the CPU is also executing other operation in parallel, resulting in overall performance improvement.

To illustrate the above, assume the program of Figure 5. The program has three loops that need to make use of the big data, and are supposed to run on the CIM die; obviously the data should be stored on the same die. Each time the loop is invoked, the CPU sends a request to the CIM die; the latter, performs the requested operations and returns the results to the CPU. It is possible to maximize the overall performance by having the CPU send the instruction to the CIM die ahead of time and such that the CIM-die will make sure that the results are ready when needed by the CPU. Examples of applications that have similar characteristics as the program of Figure 5 are database applications, where multiple queries (each consisting of large loops) are applied to a fixed database. These queries are used to look for specific data patterns in the database.

C. Some preliminary results

To illustrate how CIM-based computing architecture advances the state-of-the-art, the performance of CIM-based and multicore-based architectures are estimated. We assume a program with a number of parallel instructions executed on the two architectures. Assumptions on multicore architecture and CIM -based architecture are similar to those in [START_REF] Hamdioui | Memristor based computation-in-memory architec ture for data-intensive applications[END_REF]; the multicore architecture consists of 4 cores (ALU only), 32KB cache and 1 GB DRAM; ClM -based architecture consists of one core (ALU only), ClM die with a special computing unit and the data capacity equal to 32KB cache, and 1 GB DRAM. The computations are performed by ALU and the special computing unit. The memory operations are modeled by a memory model based on cache miss rate and DRAM access time similarly as in [START_REF] Hamdioui | Memristor based computation-in-memory architec ture for data-intensive applications[END_REF]. Two metrics are used for the evaluation: (1) Energy Delay Product Efficiency (EDP) defined as the number of executed instruction divided by the energy delay product, and (2) Energy Efficiency (EE) defined as the number of executed instruction divided by consumed energy.

Fig. 6 shows that CIM-based architecture outperforms multicore architecture; the Energy-Delay product efficiency is two orders of magnitude better while Energy efficiency is � 5X better. The improvements are results of significant memory access reduction and the usage of non-volatile memory. The reduction of CPU memory accesses leads to a lower latency and lower energy consumption, while the non volatile memory reduces the static power to practically zero. 
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