N
N

N

HAL

open science

Determining the k in k-means with MapReduce
Thibault Debatty, Pietro Michiardi, Wim Mees, Olivier Thonnard

» To cite this version:

Thibault Debatty, Pietro Michiardi, Wim Mees, Olivier Thonnard. Determining the k in k-means
with MapReduce. EDBT/ICDT 2014 Joint Conference, Mar 2014, Athénes, Greece. hal-01525708

HAL Id: hal-01525708
https://hal.science/hal-01525708
Submitted on 30 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01525708
https://hal.archives-ouvertes.fr

Determining the k in k-means with MapReduce

Thibault Debatty

Royal Military Academy, Brussels, Belgium
thibault.debatty@rma.ac.be

Wim Mees

Royal Military Academy, Brussels, Belgium
wim.mees@rma.ac.be

Abstract

In this paper we propose a MapReduce implementation
of G-means, a variant of k-means that is able to auto-
matically determine k, the number of clusters. We show
that our implementation scales to very large datasets
and very large values of k, as the computation cost is
proportional to nk. Other techniques that run a clus-
tering algorithm with different values of k and choose
the value of k that provides the “best” results have a
computation cost that is proportional to nk?.

We run experiments that confirm that the processing
time is proportional to k. These experiments also show
that, because G-means adds new centers progressively,
if and where they are needed, it reduces the probability
to fall into a local minimum, and finally finds better
centers than classical k-means processing.

1. INTRODUCTION

Discovering groups of similar objects in a dataset,
also known as clustering, is one of the most fundamental
techniques of data analysis [12]. Clustering algorithms
are used in many fields including machine learning, pat-
tern recognition, image analysis, information retrieval,
market segmentation and bioinformatics.

A lot of different algorithms exist, mainly depending
on their definition of a cluster. Density based algo-
rithms, like DBSCAN [8] and OPTICS [2] for example,
define a cluster as a high density region in the feature
space. Other algorithms assume that the data is gener-
ated from a mixture of statistical distributions. Finally,
centroid models, like k-means, represent each cluster by
a single center point. This algorithm thus implicitly as-
sumes that the points in each cluster are spherically
distributed around the center [9).

The most known algorithm for computing k-means
clustering is Lloyd’s algorithm [13], also known as “the
k-means algorithm”. Although, it was published more
than 30 year ago, it is still widely used today as it is
at the same time simple and effective [12]. However, it
also has a number of drawbacks:

1. It may converge to a local minimum, producing
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counterintuitive or even inconsistent results.

2. It is not really efficient, and may converge very
slowly.

3. It prefers clusters of approximately similar size, as
it always assigns an object to the nearest center.
This often leads to incorrect borders between clus-
ters.

4. Finally, like a lot of other clustering algorithms, it
requires the number of clusters — k — to be specified
in advance, which is considered as one of the most
difficult problems to solve in data clustering [12].

In this paper we tackle this last drawback. We present
and analyze the performance of a MapReduce imple-
mentation of G-means|9], an efficient algorithm to de-
termine k. We also compare our algorithm to a common
MapReduce implementation of k-means.

More specifically, we first show that a MapReduce im-
plementation of G-means requires some modifications of
the original algorithm to reduce I/O operations, as these
are very costly in MapReduce, and to reduce the num-
ber of chained MR jobs. We also show that an efficient
implementation that maximizes processing parallelism
requires a hybrid design that takes into account the
number of nodes running the algorithm and the quan-
tity of heap memory available.

We then study the performance aspects of the pro-
posed algorithm implementation by modeling the com-
munication and computational cost. We show that our
algorithm is able determine k and find clusters with a
computation cost proportional to nk. Other techniques
that run a clustering algorithm with different values of
k and choose the value of k that provides the “best”
results have a computation cost that is proportional to
nk?.

Finally, we evaluate both solutions experimentally.
Our results confirm that the proposed MR, implemen-
tation of G-means has linear complexity with respect to
k. The algorithm also takes full advantage of additional
computing nodes, which makes it scalable to very large



datasets. Moreover, our experiments show that our im-
plementation clearly outperforms the classical iterative
k-means solution as it reduces the probability to fall into
a local minimum and provides better clustering results.

The rest of the paper is organized as follows : In sec-
tion [2| we present G-means[9] and other existing meth-
ods to determine k, as well as other optimizations of k-
means. In section |3| we present and justify our MapRe-
duce implementation of G-means. In section {4] we esti-
mate and compare the computation and communication
costs of the MapReduce implementations of G-means
and k-means. In section [5] we present our experimental
results, and finally we present our conclusions.

2. RELATED WORK

When clustering a dataset, the right number of clus-
ters to use — k — is often a parameter of the algorithm.

Even when analyzing data visually, the correct choice
of k is often ambiguous. It largely depends on the shape
and scale of the distribution of points in the data set
and on the desired clustering resolution of the user.

In addition, arbitrarily increasing k will always re-
duce the amount of error in the resulting clustering,
to the extreme case of zero error if each data point is
considered its own cluster.

If an appropriate value of k is not apparent from prior
knowledge of the properties of the data set, it must be
chosen somehow. There are several methods for making
this decision. Lots of them rely on cluster evaluation
metrics. They run a clustering algorithm with different
values of k, and choose the value of k that provides the
“best” results according to some criterion.

For example, Dunn’s index (DI) [7] can be used to de-
termine the number of clusters. The k for which the DI
is the highest can be chosen as the number of clusters.

The elbow method [20] is another possible criterion.
It chooses a number of clusters so that adding another
cluster doesn’t give much better modeling of the data.
Therefore, it computes the percentage of variance ex-
plained (the ratio of the between-group variance to the
total variance, also known as an F-test) for different
values of k. In the graph of the percentage of variance
explained by the clusters against the number of clusters,
the first clusters will add much information (explain a
lot of variance), but at some point the marginal gain
will drop, giving an angle in the graph. The number of
clusters is chosen at this point, hence the “elbow cri-
terion”. As it is a visual method, this “elbow” cannot
always be unambiguously identified.

The average silhouette of the data |18] is another use-
ful criterion for assessing the natural number of clusters.
The silhouette of a point is a measure of how close it
is to other points within its cluster and how loosely it
is matched to points of the neighboring cluster, i.e. the
cluster whose average distance from the point is lowest.

A silhouette close to 1 implies the point is in an appro-
priate cluster, while a silhouette close to -1 implies the
point is in the wrong cluster. If there are too many or
too few clusters, as it may occur when a wrong value of
k is used with k-means algorithm, some of the clusters
will typically display much narrower silhouettes than
the rest. Thus silhouette plots and averages may also
be used to determine the natural number of clusters
within a dataset.

Sugar and James [19] used information theory to pro-
pose a new index of cluster quality, called the “Jump
method”. The method is based on the notion of “distor-
tion”, which is a measure of within-cluster dispersion.
For each possible value of k, the method calculates the
“jump” of distortion compared with previous value of
k. The Estimated number of clusters is the value of k
with the largest jump.

Tibshirani and al. [21] proposed anoter method based
on dispersion, called the “Gap statistic” for estimating
the number of clusters in a data set. The idea is to
compare the change in within-cluster dispersion to that
expected under an appropriate null distribution as ref-
erence. The number of clusters is then the value for
which the observed dispersion falls the farthest below
the expected dispersion obtained under a null distribu-
tion.

Finally, two other studies presented iterative tech-
niques to determine the number of clusters when per-
forming k-means clustering, which do not require to run
k-means for every possible value of k: X-means [17] and
G-means [9)].

X-means iteratively uses k-means to optimize the po-
sition of centers and increases the number of clusters
if needed to optimize the Bayesian Information Crite-
rion (BIC) or the Akaike Information Criterion (AIC)
measure. The main advantage of the algorithm is the
efficiency of the test used to select the most promising
centers for refinement. This leads to a fast algorithm
that outputs both the number of clusters and their po-
sition. Experiments showed this technique revealed the
true number of clusters in the underlying distribution,
and that it was much faster than repeatedly using k-
means for different values of k.

G-means is also an iterative algorithm but it uses
Anderson-Darling test to verify whether a subset of data
follows a Gaussian distribution. G-means runs k-means
with increasing values of k£ in a hierarchical fashion un-
til the test accepts the hypothesis that the points as-
signed to each center follow a Gaussian distribution.
Experimental results showed that the algorithm seems
to outperform X-means.

The G-means algorithm starts with a small number
of clusters, and increases the number of centers. At
each iteration, the algorithm runs k-means to refine the
current centers. The clusters whose data appears not



to come from a Gaussian distribution are then split.
For each cluster X (being a subset of data) of center
¢, the algorithm works as follows:

1. Find two new centers ¢; and cs.
2. Run k-means to refine ¢; and cs.

3. Let v = ¢1 — ¢ be the vector that connects the
two centers. This is the direction that k-means
believes is important for clustering.

4. Let X’ be the projection of X on v. X’ is a one-
dimensional representation of the data projected
on v.

5. Normalize X' so that it has zero mean and vari-
ance equal to 1.

6. Use Anderson-Darling to test X':

e If X'’ follows a normal distribution, keep the
original center, and discard c¢; and cs.

e Otherwise, split the cluster in two, use ¢; and
co as new centers and run the algorithm on
each sub-cluster.

The main advantage of this algorithm is that it sim-
plifies the test for Gaussian fit by projecting the data to
one dimension where the test is simple to apply. More-
over it only creates new centers where needed, improv-
ing clustering quality.

In this paper, we present a MapReduce implementa-
tion of the G-means algorithm. Some key challenges to
be addressed are the various design choices for paral-
lelizing the algorithm, as these may have a significant
impact on final results quality, but also on communica-
tion and computational cost.

While the choice of k is a critical question, many other
optimizations have been proposed in the literature to
improve or speed up k-means processing.

A first optimization consists in selecting better initial
centers, which allows the algorithm to converge quicker,
reduces the probability to fall into a local minimum
and reduces the number trials needed. In k-means+-+
[3], the starting centers are chosen randomly, but with
a probability proportional the distance to the nearest
already chosen center. Bahmani [4] also proposed a
MapReduce version of k-means++ initialization algo-
rithm. Another common possibility is to use canopy
clustering [15] to compute the initial centers. Algo-
rithms also exist to avoid local minimums, for example
by swapping points between clusters [11].

Other optimizations deal with nearest neighbor (NN)
search. In k-means, a NN search is required to decide
to which cluster a point belongs. It is thus one of the
basic operations of k-means processing, but also of a
lot of other clustering algorithms. Omne type of effi-
cient NN search algorithm uses tree-based structures,

like the mrkd-tree algorithm proposed by Pelleg et al.
[16]. The algorithm uses a multi-resolution k-d tree to
represent groups of points and efficiently identify the
nearest cluster centers for those points. Vrahatis et al.
[22] proposed a version that uses a windowing technique
based on range trees. A range tree on a set of points
in d-dimensions is a recursively defined multi-level bi-
nary search tree. Each level of the range tree is a binary
search tree on one of the d-dimensions, which allows fast
range searches. Another category of algorithms uses
random projection, like Locality Sensitive Hash used
by Buhler [5].

Other algorithms improve the clustering efficiency by
first summarizing a large data set, and then applying
the clustering algorithm. Different approaches exist:

e Replace a small tight group of objects (but not the
whole cluster) by a single object [6] or by a coreset
110;

e Pre-process data to reduce dimensionality, drop-
ping unnecessary features (dimensions) [1];

e Partition data into overlapping subsets [15] for high
dimensional data.

While all these different optimizations of k-means are
definitively valuable, it is outside the scope of this pa-
per to implement and evaluate all of them. However,
some of these optimizations could be easily integrated
in the MapReduce implementation proposed in this pa-
per, and we are considering them as part of our future
work.

3. MAPREDUCE IMPLEMENTATION OF G-
MEANS

Our implementation of G-means for MapReduce is
presented in Algorithm [I]

Algorithm 1 MapReduce G-means pseudo-code
P1oKINITIALCENTERS
while Not CLUSTERINGCOMPLETED do
KMEANS
KMEANSANDFINDNEWCENTERS
TESTCLUSTERS
end while

The first step, PickInitialCenters, is a classical
step of any k-means algorithm. The main difference
with respect to classical k-means implementations is
that it picks pairs of centers (c; and ¢3). We use a
serial implementation, that picks initial centers at ran-
dom, but other distributed or more efficient algorithms
can be found in the literature and can perfectly be used
instead.

The algorithm then enters a while loop that will con-
tinue as long as there are clusters that must be split.



The first operation of the loop is a classical MapReduce
implementation of k-means with combinerd’} to refine
to position of current centers.

The last iteration of k-means is implemented in a sep-
arate MapReduce job called KMeansAndFindNewCenters
in Algorithm It will also, for each cluster, pick the
two new centers (¢; and ¢p) that will be used at next it-
eration. This job is specific to our implementation and
is further explained below.

Finally, the clusters are tested using the MapReduce
job referred to as TestClusters in Algorithm For
each point, the job searches the cluster it belongs to (us-
ing the centers from previous iteration), then projects
it on the vector formed by the two corresponding cen-
ters (of current iteration). Finally, for each cluster it
tests if the projections form a normal distribution. This
job, also specific to the proposed implementation, is ex-
plained in more details here below.

As can be noticed, our MapReduce implementation
of G-means differs from the sequential version in three
main aspects.

First, the original G-means algorithm works locally,
by analyzing each cluster separately. It thus requires
that each point is “linked” in some way to the cluster
it belongs to at each iteration of the algorithm. Im-
plementing this in MapReduce would require a write
operation at each iteration, to save this information in
the distributed file system.

This membership information can of course be used
to reduce computations at some steps of the algorithm:

e When running k-means, for each point, the algo-
rithm does not have to compute the distance to
each center, but only to ¢; and co, the 2 children
centers of the cluster the point currently belongs
to;

e When testing the clusters, the cluster to which a
point belongs is directly identified, and the algo-
rithm does not have to compute the distance from
this point to each cluster.

However, binding the points to their cluster would
require a write operation at each iteration, and could
at best spare O(2nk) distance computations. Given the
very high cost of I/O operations in MapReduce, we do
not recommend using this solution. Moreover, as men-
tioned above, other techniques already exist to optimize
nearest neighbor search that can perfectly be added to
our implementation.

Next, in the original G-means algorithm, new centers
are picked at the beginning of each iteration. Imple-
menting this directly in MapReduce would require an
additional MapReduce job. To minimize the number

'A combiner is a well-known pre-aggregation optimization
available in MapReduce.

of jobs executed at each iteration and the number of
dataset reads, we merge this operation with the last it-
eration of k-means. Thus, the KMeansAndFindNewCenters
operation will perform classical k-means and at the same
time find 2 new centers (¢; and ¢3) for each cluster,
which will be used at next iteration of G-means.

Finally, while the sequential algorithm analyzes clus-
ters individually, and thus adds new centers sequen-
tially, the MapReduce version analyzes all clusters in
parallel and will thus try to double the number of cen-
ters at each iteration. As a result, it may eventually
overestimate the value of k. Future versions of the al-
gorithm will thus add a post-processing step to merge
close centers.

One of the subtleties of the MapReduce version of
G-means, as proposed in Algorithm [1} is that each it-
eration has to deal with centers from previous, current
and next iteration:

e KMeans refines the centers of current iteration;

e KMeansAndFindNewCenters picks centers that will
be used at next iteration;

e TestClusters assigns each point to its cluster (a
center from previous iteration), then projects it on
the vector joining the 2 corresponding centers of
current iteration.

3.1 KMeans and Find New Centers

KMeansAndFindNewCenters is a MapReduce job with
combiners that performs two operations at the same
time:

1. Run k-means to refine current centers;

2. For each current center, pick two new centers (¢
and ¢o) that will possibly be used at next iteration.

In our implementation, the new centers are chosen
randomly. More sophisticated algorithms can be used
to select the new points, but they may require an addi-
tional MapReduce job.

Algorithm 2 KMeansAndFindNewCenters Mapper
Input: point (text)
Output:
centerid (long) = coordinates (float[]), 1 (int)
centerid + OFFSET (long) = coordinates (float[]), 1
(int)

procedure Map(key, point)
Find nearest center
Emit(centerid, point)
Emit(centerid + OFFSET, point)
end procedure




The Map step of the job is presented in Algorithm
The coordinates of each point are emitted twice. This
doubles the quantity of data to be shuffled and trans-
mitted over the network. However, this effect is largely
mitigated by the use of a combiner. The efficiency of
the combiner is of course very dependent of the dataset.
There are recent execution engines (such as SPARKEI)
that allow to specify ”partition-preserving” operations.
Preserving partitions would help the combiners to per-
form more efficiently at next iteration. It is however
outside the scope of this paper to consider such opti-
mizations.

To make the distinction between coordinates that cor-
respond to new centers to be used at next iteration of
the algorithm and current centers that we want to re-
fine with k-means, we use an arbitrary high offset value.
More precisely, as the type of center idisa Java Long,
we use an offset value equal to half the largest possible
value of a Java Long. The value of OFFSET is thus 262
(approximatively 4E18). This also limits our algorithm
to datasets with at most 262 centers.

We could also use a text prefix, but although simpler
to interpret, this choice would hurt performance due to
the requirement of an additional parsing phase. More-
over, during the shuffle phase, sorting text keys requires
more processing than simple integer values.

The combiner and reducer test the value of the key.
If it is larger than the predefined offset, they keep only
2 new centers per cluster. Otherwise they perform clas-
sical k-means reduction and compute the new position
of each cluster center.

3.2 Test Clusters

The TestClusters procedure is is the last MapRe-
duce job of our distributed G-means implementation
(Algorithm . The mapper projects the points of a
cluster on the line joining the two centers (c¢; and c3)
and the reducer then tests if these values follow a nor-
mal distribution.

At the first steps of G-means, when k is low, this algo-
rithm performs poorly as the parallelism of the reduce
phase is bounded by k.

To achieve higher parallelism, the algorithm adopts
another strategy when k is low, called TestFewClusters
(Algorithm The test for normality is directly per-
formed by the mapper, thus on subsets of data. This
of course only delivers correct results if the number of
samples for each subset is sufficient, which we can sup-
pose is verified for low values of k. Anderson-Darling
is a powerful statistical test, which has proved being
reliable even with small samples (as a rule of thumb, a
minimum size of 8 is considered to be sufficient). In our
implementation we use a threshold of 20, to stay on the
safe side. The number of reduce tasks is still equal to

Zhttp://www.spark-project.org/

Algorithm 3 TestClusters Mapper

Input: point (text)
Output: vectorid (int) = projection (double)

procedure SETUP
Build vectors from center pairs
Read centers from previous iteration
end procedure

procedure MAP(key, point)
Find nearest center
Find corresponding vector
Compute projection of point on vector
Emit(vectorid, projection)
end procedure

Algorithm 4 TestClusters Reducer

Input: vectorid (int) =< projection (double) >

procedure REDUCE(vectorid, projections)
Read projections to build a vector
Normalize vector (mean 0, stddev 1)
ADTEST(vector)
if normal then

Mark cluster as found

end if

end procedure

k (which is low), but as their task is only to combine
the decisions taken by mappers, this will not limit the
performance of the algorithm.

Moreover, TestFewClusters limits the size of the
vector of projections to a level that fits into RAM mem-
ory: If we assume that the value of a point in each
dimension is stored as a string of approximatively 15
characters (the number of significant decimal digits of
IEEE 754 double-precision floating-point format), and
each character is encoded using 1 Byte, the number of
points in a dataset is 0(15%), where S is the size of the
dataset (in Bytes) and D is the number of dimensions.

For each point, the algorithm will compute a projec-
tion, encoded as a double (8 Bytes). The total memory
space needed to store all projections is thus 0(8%)
and thus O(%) Bytes, which can be very large. In the
worst case scenario, if all points of the dataset belong
to the same cluster, as a result of the TestClusters
procedure, the amount of memory required by a single
combiner will be prohibitive.

When TestFewClusters is used, the quantity of mem-
ory required by each mapper to store the projections
will be O(%), where Ss is the size of a single split
(64MB on a default Hadoop installation), which is now
completely reasonable.

Choosing when to switch from one strategy to the
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Algorithm 5 TestFewClusters Mapper

Input: point (text)
Output: vectorid (int) = A*? (double)

procedure SETUP
Build vectors from center pairs
Read centers from previous iteration
end procedure

procedure MAP(key, point)
Find nearest center
Find corresponding vector
Compute projection of point on vector
Add projection to list vectorid
end procedure

procedure CLOSE
for Each list do
Read projections to build a vector
Normalize vector (mean 0 , stddev 1)
Compute A*? = adtest(vector)
Emit(vectorid = A*?)
end for
end procedure

other is, as often, a matter of compromise.
If the algorithm switches too late (i.e., when k is

large), the algorithm will keep using the TestFewClusters

strategy, even for a large number of clusters. As the
test for normality is performed by the mapper, there
is a risk that the number of points in some clusters is
smaller than the threshold. The mapper is then not
able to compute a decision.

If the algorithm switches too early (i.e., when k is
small), the test is performed by the reducers even for a
small number of clusters. There is a risk that the num-
ber of projections received by a single reducer becomes
too large and exhausts the heap: in the worst case,
the maximum amount of memory required by a single
reducer will be O(%) Bytes (if the complete dataset be-
longs to a single cluster), and in the best case it will be
O(k%) Bytes (if all k clusters have the same number of
points).

In our MapReduce implementation of G-means, at
each iteration the algorithm counts the number of points
that belong to each cluster. By doing so, the algorithm
can estimate the maximum amount of heap memory
that will be required as the number of points belonging
to the biggest cluster multiplied by the average quantity
of heap memory required per point (that we determined
experimentally).

When an algorithm uses almost all heap memory avail-
able, the Java Virtual Machine (JVM) has to regularly
trigger the garbage collector to make room for new

objects and variables, which seriously degrades perfor-
mance. To avoid this, we use a maximum heap usage
coefficient.

The algorithm will thus first use the TestFewClusters
strategy, and switch to the other strategy only when the
following two conditions are met: the number of clusters
to test is larger than the total reduce capacity, and the
estimated maximum amount of required heap memory
is less than 66% of the heap memory of the JVM.

As illustration, Figure [I| shows the centers found by
successive iterations of our final MapReduce G-means
algorithm for a subset of data, consisting of 10 clusters
in R%2. At each iteration the algorithm splits clusters
in 2, except clusters that pass the test, and optimizes
centers position using k-means. The algorithm finally
finds 14 centers, as shown in Figure

4. COST MODELIZATION

We now estimate the cost of MapReduce G-means
clustering. More precisely, we estimate the number
of dataset reads, the number of computations and the
quantity of data that is shuffled.

Each iteration of G-means consists of three steps:
KMeans, KMeansAndFindNewCenters, and TestClusters.
Each iteration of KMeans requires one dataset readEl,
O(kn) distance computations, and shuffles O(n) coor-
dinates in worst case (if no combiner is used). As the
new centers are placed in an efficient way, where they
are really needed, we found experimentally that only

two k-means iterations are sufficient.

KMeansAndFindNewCenters consists of a single k-means
iteration, but the mapper will emit each point a second
time to pick two new centers for each current center. It
also requires one dataset read, O(kn) distance compu-
tations and, without combiner, shuffles O(2n) coordi-
nates.

TestClusters requires one dataset read. It computes
O(kn) distances, O(n) projections and performs O(k)
anderson-darling tests. For large values of k (thus for
a large number of clusters), this will be dominated by
distances computation and anderson-darling tests. The
step also shuffles O(n) projections.

If the algorithm starts with a single cluster at itera-
tion 0, at iteration 4 it is updating 2'+! = 2k centers to
test 28 = k possible clusters. At iteration i, the total
number of clusters that have been tested is

1+2+4+...+2i=22j:21'+1—1
§=0

The number of iterations required to test values of k

3Depending on the underlying execution engine, it may be
possible to avoid subsequent dataset reads. This is the case
for example with SPARK, where you can cache the dataset
in memory and make sure to preserve the data partitioning.
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Figure 1: Evolution of centers positioned by G-
means in a dataset containing 10 clusters in R?

between 1 and k., is theoretically

n= 10g2 real

In practice a few additional iterations are required
because MapReduce G-means tends to overestimate the
number of clusters, and because some clusters are dis-
covered before others.

The > k for all iterations of G-means is:

k= Zzﬂ' =21 ~ 02082 Freatl 1) = O(2kyeq))

n n
j=0  j=0

In total, G-means algorithm requires O(41ogs, kyeal)
dataset reads, computation of O(4n > k) = O(8nkrear)
distances and O(>_ k) = 2k, anderson-darling tests.

The algorithm is thus able to find & with a num-
ber of computations that remains proportional to kyeq!
The price to pay is an iterative processing, that requires
O(logg krear) iterations, and thus O(logy kreqi) dataset
reads.

At the other side, the classical way to find & is to use
a MapReduce implementation of k-means, to let it run
for different values of k, and to use one of the criteria
described above to find the bet value of k. However,
this is not efficient.

To compare MapReduce versions of k-means and G-
means in a fair way, we used another implementation,
multi-k-means, that computes the centers for all possi-
ble values of k at each iteration. The mapper step is
presented by algorithm [6] The combiner and reducer
are classical.

Algorithm 6 Multi-k-means Mapper

Input: point (text)
Output: k_centerid (text) = coordinates (float]]), 1
(int)

procedure MAP(key, point)
for k = k_min; k <= k_max; k+ = k_step do
Find nearest center
Emit(k_centerid = point)
end for
end procedure

The main drawback is of course that number of dis-
tances computed and the quantity of data that is shuf-
fled and transmitted over the network at each iteration
of k-means are much bigger. But the quantity of data
to shuffle is largely reduced by using the combiner. So
this drawback is largely outbalanced by the advantage
that all possible values of k£ can be tested in a single
round, thus vastly reducing the number of iterations
and dataset reads!



To test all values of k between 1 and k4., the total
number of centers computed by multi-k-means is:

. k(k+1
j:¥20(k2)

j=1

At each iteration, multi-k-means requires 1 dataset
read, O(nk?,,,
coordinates if no combiner is used.

Clearly, from a theoretical point of view G-means has
a huge advantage over multi-k-means, as the number of
computations remains proportional with k., instead
of k2,,.. It does, however need O(logy kreqr) iterations,
and thus O(log, kreqr) dataset reads.

For example, for a dataset containing 100 clusters,

G-means theoretically requires 7 iterations, and thus

0(800n) distance computations, O(200) anderson-darling

tests and 28 dataset reads. At the other side, for such a
small value, multi-k-means already requires O(10000n)
distance computations at each iteration!

Moreover, G-means stops processing when k is found,
while multi-k-means has to process all possible values of
k before taking a decision. As G-means adds new cen-
ters progressively, where they are required, it reduces
the probability to get stuck in a local minimum, while
this can be the case for multi-k-means if initial centers
are poorly chosen. A production version of multi-k-
means thus requires multiple runs with different start-
ing points, or an additional job to select initial centers,
for example using canopy clustering|15], or an algorithm
that avoids local optima [11]. Finally, once the centers
have been computed for different values of k, multi-k-
means requires at least one additional job to find the
correct value of k.

In any way, there is a risk that because of skewed
data, some reducers will have a higher workload, thus
reducing the global efficiency of the algorithm. Han-
dling skewed data in MapReduce is a whole subject by
itself and is left as future work.

5. EXPERIMENTAL RESULTS

To test the algorithms we propose in this paper, we
use a Hadoop implementation and run tests on a cluster
consisting of 4 nodes. Each node is equipped with 2
quad-core Xeon processors and 32GB of RAM.

As a first experiment, we want to estimate the quan-
tity of heap memory required by the reducer of the
TestClusters step of Algorithm [I] Therefore we run
the algorithm with different datasets that consist of a
variable number of points. During the first iteration of
the algorithm, all points belong to a single cluster, and
will thus be tested by a single reducer. We iteratively
run the algorithm, and let the amount of heap mem-
ory vary. When the quantity of available heap memory
becomes to small, the job crashes with an error (”Java

) distance computations and shuffles O(nkiq4)

heap space”). The results are shown on Figure
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Figure 2: Estimation of the amount of heap

memory required by the reducer of the step
TestClusters

Linear regression shows our reducer requires approxi-
matively 64 Bytes (8 doubles) per point. This value can
certainly be further optimized, but it is not the goal of
this paper to create a production level version of the al-
gorithm. So for all other tests, the algorithm uses that
value of 64 to estimate the quantity of heap memory
required by the reducer of the TestClusters step, and
to decide when to switch from one strategy to the other.

We now turn to the experiments performed in order
to test our G-means algorithm on different synthetic
datasets. We used five datasets of 10M points (in R19)
generated using a Gaussian distribution, and using a
variable number of clusters ranging from 100 up to 1600.
Table [[ shows for each dataset the real number of clus-
ters, the number of clusters discovered by G-means, as
well as the number of iterations and time required.

Table 1: Results of G-means clustering
d100 d200 d400 d800 d1600

Clusters 100 200 400 800 1600
Discovered 134 305 626 1264 2455
Time (sec) 1286 1667 2291 4208 5593
Iterations 9 10 11 13 13

As expected, the algorithm overestimates the number
of clusters. The proportion of discovered clusters to
the real number of clusters seems to be quite constant
(1.5). The algorithm thus requires a post-processing
step to merge clusters, the development of which is left
as future work.



The number of iterations is also slightly greater than
the theoretical value (1 + log, k). As some centers are
discovered before the last iteration, the algorithm will
not create new centers for them. It may thus require 1
ore more additional iterations to discover all centers.

Finally, as expected, the execution time scales lin-
early with k.

We then compare G-means with a hadoop implemen-
tation of multi-k-means. For each dataset, multi-k-
means computes the position of centers for all values
of k between one and the real number of clusters in the
dataset. Table [2]shows the average computing time for
a single iteration.

Table 2: Average time of a single iteration of
multi-k-means
d50 d100 di141 d200 d400

Clusters 50 100 141 200 400
Time (sec) 237 751 1356 2637 10252

The execution time of both G-means and multi-k-
means are graphed in Figure

We observe now that the execution time of multi-k-
means rises exponentially. Moreover, for a single iter-
ation of multi-k-means, and for a value of k as low as
100, G-means already outperforms multi-k-means.
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Figure 3: Running time of G-means and multi-
k-means

We also want to evaluate the consistency of the clus-
tering results provided by both algorithms. The final
goal of k-means clustering is to partition the n data
points into k sets S = S7,59,..., S so as to minimize
the within-cluster sum of squares (WCSS):

k
argsminz >l =l

=1 X €S,

where p; is the mean of points in S;. Therefore we
use WCSS as a measure of the quality of clustering.

For different datasets, Table [3]shows the real number
of clusters in the dataset, the number of clusters discov-
ered by G-means, the average distance between points
and their centers discovered by G-means, and the av-
erage distance between points and centers when using
multi-k-means for the same value of k. A smaller value
means the position of the centers is better. For multi-
k-means, we let the algorithm run 10 iterations, which
is enough to find a stable solution.

Table 3: Real number of clusters in each dataset,
number of clusters discovered by G-means, and
average distance between points and centers
found by G-means and multi-k-means

d100 d200 d400

kreal 100 200 400
k found 150 279 639
G-means 3.34 3.33 3.23

multi-k-means 3.71 3.60 3.39

As can be seen in Table 3] G-means consistently out-
performs multi-k-means, by approximatively 10%. This
is mainly due to the fact G-means progressively adds
new centers, if and where they are needed. This re-
duces the probability to fall into a local minimum.

This effect is illustrated on Figure |4} Both plots show
a small dataset consisting of 10 clusters. The upper
plot shows the 14 centers found by G-means. This is
more than the real number of clusters, but the clus-
ters are correctly detected. The lower plot shows the
centers found by multi-k-means after 10 iterations, for
k = 10. Two centers are located in the penultimate
cluster, around (80,80). Although the multi-k-means
searches the position of the correct number of centers,
it falls into a local minimum and does not detect the
correct clusters, which results in a larger average dis-
tance between point and center.

Finally, to test the scalability of the algorithm, we
generate a dataset consisting of 100M points (in R0)
distributed in 1000 clusters using a Gaussian distribu-
tion. We then run our MR G-means algorithm on 4, 8
and 12 nodes. All tests completed after 13 iterations of
G-means. The respective running times are shown in
Table ] and on Figure

We can observe that the running time decreases roughly
linearly with the number of nodes, which shows that our
algorithm and Hadoop can take advantage of additional
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Table 4: Running time of MR G-means to
ter a dataset of 100M points
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Figure 5: Running time of MR G-means to clus-
ter a dataset of 100M points

nodes and thus scale to very large datasets.

6. CONCLUSIONS AND FUTURE WORK

Despite its known drawbacks and alternative tech-
niques, k-means [14] is still a largely used clustering al-
gorithm. It also has a lot of variants and optimizations.
One of these variants, G-means, is able to automati-
cally determine k, the number of clusters. In this paper
we proposed a MapReduce implementation of G-means
that is able to estimate k£ with a computation cost that
is proportional to k.

We ran experiments that confirm that the process-
ing time scales linearly with k. These experiments also
show that, because G-means adds new centers progres-
sively, if and where they are needed, it reduces the prob-
ability to fall into a local minimum, and eventually finds
better centers than classical k-means processing.

The algorithm still has some caveats, as it tends to
constantly overestimate the number of clusters, but it
definitely deserves interest when it comes to clustering
large datasets consisting of an unknown number of clus-
ters.

As future work, we plan to explore ways to extend our
MapReduce implementation of G-means by leveraging
more advanced batch execution engine (e.g. SPARK)
which can provide advanced configuration options at



run-time in order to save unnecessary disk I/O oper-
ations via in-memory caching and partition-preserving
operations. We also plan to run additional experiments
on a larger cluster to evaluate further the performance
and scalability of the algorithm.
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