
HAL Id: hal-01525701
https://hal.science/hal-01525701

Submitted on 29 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable k-NN based text clustering
Alessandro Lulli, Thibault Debatty, Matteo Dell ’Amico, Pietro Michiardi,

Laura Ricci

To cite this version:
Alessandro Lulli, Thibault Debatty, Matteo Dell ’Amico, Pietro Michiardi, Laura Ricci. Scalable k-
NN based text clustering. 2015 IEEE International Conference on Big Data, Oct 2015, Santa Clara,
United States. pp.958 - 963, �10.1109/BigData.2015.7363845�. �hal-01525701�

https://hal.science/hal-01525701
https://hal.archives-ouvertes.fr

Scalable k-NN based text clustering
Alessandro Lulli∗†, Thibault Debatty§‖, Matteo Dell’Amico‡, Pietro Michiardi‖, Laura Ricci∗†

∗University of Pisa, Italy {surname}@di.unipi.it
†ISTI, CNR, Pisa, Italy {name.surname}@isti.cnr.it

‡Symantec Research Labs, matteo dellamico@symantec.com
§Royal Military Academy, Brussels, Belgium, {name.surname}@rma.ac.be
‖EURECOM, Campus SophiaTech, France, {name.surname}@eurecom.fr

Abstract—Clustering items using textual features is an impor-
tant problem with many applications, such as root-cause analysis
of spam campaigns, as well as identifying common topics in
social media. Due to the sheer size of such data, algorithmic
scalability becomes a major concern. In this work, we present
our approach for text clustering that builds an approximate k-
NN graph, which is then used to compute connected components
representing clusters. Our focus is to understand the scalability /
accuracy tradeoff that underlies our method: we do so through an
extensive experimental campaign, where we use real-life datasets,
and show that even rough approximations of k-NN graphs are
sufficient to identify valid clusters. Our method is scalable and
can be easily tuned to meet requirements stemming from different
application domains.

I. INTRODUCTION

Data clustering and analysis is a fundamental task, that
consists in finding groups of related data items, according to
a definition of similarity that is application specific.

In this work, we focus on a particular data clustering
task, which involves grouping text data items. The application
domain of our work stems from the objective of analyzing
SPAM campaigns: for instance, we focus on data collected
by Symantec Research Labs, that perform root-cause analysis
of large scale SPAM email campaigns originated from bot
networks. In this adversarial context, data clustering is even
more challenging, because spammers manipulate text to avoid
SPAM emails being clustered the same campaign. Hence, the
similarity metrics used for clustering must cope with text
mangling, which require non-metric distances that disregard
typos, character swapping, and other techniques to avoid
detection. In addition, data clustering is challenging due to
the large volume of data: this calls for the design of scalable
algorithms, capable of ingesting millions of data points and
cluster them in meaningful ways.

Current approaches fall short in addressing the above chal-
lenges. For example, the widespread K-means clustering algo-
rithm requires text data to be transformed into d-dimensional
vectors to operate correctly. However, such transformations
generally imply high-dimensional vectors, which render dis-
tance functions problematic. Similarly, approaches for text
clustering based on frequency analysis of shingles suffers
from high-dimensionality problems. Moreover, the techniques
discussed above are not amenable to non-metric spaces, which
is a requirement for the application domain we study. As a
consequence, clustering can perform poorly. Finally, designing

scalable clustering algorithms is hard. For example, K-means
– albeit easy to parallelize – suffers from a large runtime
when K is large, and requires a large number of similarity
computations. Frequency based methods are also difficult to
scale, as it is generally cumbersome to parallelize frequent
itemset mining algorithms.

In this work we present a clustering approach that addresses
the above concerns: i) it produces high quality clusters that are
easy to interpret, ii) it accommodates any kind of similarity
metrics, and iii) it is scalable. The gist of our approach consists
in building an approximate k-NN graph of the input text data,
and compute its connected components, which identify data
clusters. In particular, we aim at understanding the trade-off
that exists between accuracy, scalability and, ultimately, clus-
tering quality. To do so, we perform a thorough experimental
evaluation of our method with real, large-scale datasets, using
our implementation for the Apache Spark.

In summary, the contributions of our paper are as follows:
• We design and implement a scalable algorithm for text

clustering, which works in an “adversarial” setting, and
that produces high quality, and interpretable clusters.

• We perform a detailed experimental analysis, where we
show the impact of the parameters that govern the degree
of approximation of our method. Our results indicate that
even rough approximations are sufficient to obtain high
quality clusters.

• We use real-life datasets and evaluate the overall clus-
tering quality of our approach both using traditional
metrics and with the help of domain experts through
manual investigation, highlighting the interpretability of
clustering results.

II. RELATED WORK

Data clustering has been widely studied in the literature,
with nuances ranging from graph theoretic and data mining
principles [13], [5] to experimental approaches [30], [35].

One of the most popular algorithm for clustering is K-
means [21], which is a simple approach that can be used
to perform clustering, where K indicates the number of
clusters the algorithm produces. Since K-means operates on
d-dimensional vectors, text clustering requires a transforma-
tion phase to encode sentences and words into vectors [17],
[32]. For example, Mikolov et al. [24] present an efficient
implementation of the continuous bag-of-words and skip-gram

https://www.researchgate.net/publication/45854744_Community_Detection_in_Graphs?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/2437989_Fast_Supervised_Dimensionality_Reduction_Algorithm_with_Applications_to_Document_Categorization__Retrieval?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/220682848_Least_Squares_Quantization_in_PCM's?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/220343649_Empirical_and_Theoretical_Comparisons_of_Selected_Criterion_Functions_for_Document_Clustering?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==

architectures for computing vector representations of words.
In our work, we use such approach as a baseline to which
we compare our method, and show that it suffers from the
underlying inability to accept non-metric distance measures,
which are essential to detect similarity between mangled
sentences, and from its poor scalability.

Alternative approaches search for frequent terms in the
dataset to identify clusters [7], [6], [23]: the idea is to find
subsets of frequent term sets, which are a proxy for clusters,
and map data items containing elements of such subsets to the
same cluster. Such approaches scale poorly, and do not take
into account similarity metrics resilient to mangling.

Other approaches aim to optimize the computation of pair-
wise similarity between text items using matrix computations
[25]. In this category, recently, Lin et al. [19] present an
optimized algorithm to retrieve clustering of text data from
a similarity matrix, using cosine similarity. In general, such
approaches do not accommodate non-metric similarity mea-
sures and are difficult to scale, although recent work [8] has
shown the benefits of approximate matrix operations, which
scale better than exact, all-pair similarity computations.

An approach that targets goals that are similar to ours is
Triage [31], which addresses the same application domain we
target in this paper. However, the focus of Triage is on multi-
feature data items, and not on scalability: the authors mainly
address problems related to information fusion, by defining a
method to merge several different distance metrics operating
on text, categorical and numerical values. Recently, a parallel
version of Triage has been proposed [29], which partially
addresses scalability issues. However, the approach still com-
putes all-pair similarity among representative, prototype items,
with an O

(
n2

)
complexity that still makes handling very large

data sets difficult.

III. k-NN BASED CLUSTERING

We present our approach for text clustering, which is
based on a scalable, randomized algorithm, and recognizes the
role played by approximation which constitutes an important
contribution to our analysis of the trade-off that exists between
clustering quality and the scalability of our method.

The problem of text clustering we consider is particularly
challenging due to the application scenario we study. We face
an adversarial setting in which text data is generated such that
finding similar items is cumbersome: SPAM campaigns intro-
duce text mangling, spelling errors and generally variations
on some baseline text which makes SPAM items belonging
to the same campaign appear different one from each other.
As a consequence, we need to use a similarity metric between
items that can overcome, or at least mitigate, the problem.
Similarity Metric. There exist numerous similarity metrics in
the vast literature on the subject of this work. In particular,
for text data, the Hamming distance and Levenshtein distance
have been extensively used to determine the similarity among
text items. In this work, for the reasons illustrated above, we
choose the Jaro-Winkler [14], [33] similarity metric which,
simply stated, counts the common characters between two

strings even if they are misplaced, misspelled, and mangled
by a “short” distance. Note that, the Jaro-Winkler metric has
a codomain in [−1, 1].

Given the choice of the similarity metric we use in this
work, the wide spectrum of techniques to find clusters of
similar text items reduces to few methods. This is the main
driving factor that steers the algorithmic design choices we
make in this work.

A. Phase 1: k-NN Graph Construction

Algorithm 1: k-NN construction
1 procedure Map(Node n, NeighborList(n))
2 forall the u ∈ NeighborList(n) ∪ n do
3 forall the v ∈ NeighborList(n) ∪ n \ u do
4 EMIT(u, (v, SIMILARITY(u, v)))
5 end
6 end
7 procedure Reduce(Node n,List[(Node u,
Similarity s)] l)

8 orderedList = ORDERDESC(l).LIMIT (k)
9 EMIT(n, orderedList)

In the first phase of our method, we build a k-NN graph.
Essentially, the construction of a k-NN graph is the process of
building a directed graph from a set of items V , with vertex set
equals to V and an edge from each v ∈ V to its k most similar
items in V under a given similarity measure. In this work, we
limit our attention to text features: for example, we extract the
subject of a SPAM email as the only representative feature
of the item. Considering additional, heterogeneous features is
outside the scope of this work, and we defer it to an extension
of our approach.

The naı̈ve approach to build a k-NN graph consists in
finding all-pairs similarity among all items of a dataset, then
select the k most similar items to each item. Clearly, this
“brute-force” approach is not scalable, as it requires O(n2)
similarity computations, where n is the number of items in
the dataset. Note that the “brute-force” algorithm produces
exact k-NN graphs, which we use in this work as a baseline
to determine the approximation quality of our method.

In this work, we design a parallel version of the NNDescent
algorithm [12], which is an elegant, and widely used method
to build approximate k-NN graphs through an iterative proce-
dure.1 From NNDescent, our approach inherits the capability
of using arbitrary similarity metrics, including Jaro-Winkler.
Although alternative approaches to build k-NN graphs exist,
for example using locality sensitive hashing (LSH) [34], [26],
such methods do not extend to arbitrary similarity metrics.2

The main idea behind the k-NN graph algorithm we use
in the first phase of our method is to iteratively improve an

1Although an Hadoop MapReduce version of NNDescent is discussed in
[12], we are not aware of any experimental validation of it. Moreover, in our
work we use Spark, a more efficient MapReduce framework geared toward
iterative algorithms.

2We are currently working on an extension of this work to include modern
LSH-based algorithms that can support arbitrary similarity metrics [15], [10],
[9] as well.

https://www.researchgate.net/publication/225291260_Dimension_Independent_Similarity_Computation?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/227691013_Probabilistic_Linkage_of_Large_Public_Health_Data_Files?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/220838609_A_Very_Fast_Method_for_Clustering_Big_Text_Datasets?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/2909380_Keyword_Extraction_From_A_Single_Document_Using_Word_Co-Occurrence_Statistical_Information?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/281907809_MR-TRIAGE_Scalable_multi-criteria_clustering_for_big_data_security_intelligence_applications?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/220271802_A_strategic_analysis_of_spam_botnets_operations?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/2509449_The_State_of_Record_Linkage_and_Current_Research_Problems?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==

initial, random k-NN graph, by “swapping” the neighborhood
of each node, searching for similar candidates among its two-
hop neighborhood. Increasing the number of iterations allows
the algorithm to converge to better approximations of the k-
NN graph, at the cost of higher convergence time.

Algorithm 1 illustrates the pseudo-code of a generic iter-
ation of our parallel k-NN graph algorithm, which we cast
through the MapReduce programming model. Note that the
output of the algorithm is a weighted k-NN graph, where
each edge is labelled with the similarity measure between
its end vertexes. First, we initialize the algorithm by building
a random, undirected k-NN graph:3 each node of the graph
(i.e. a data item) is assigned k random neighbors. In the
“map phase”, the algorithm accepts as input the random k-NN
graph, explores the two-hop neighborhood of each node and
computes the similarity among each pair, as shown the Map
procedure. Note the vertex-centric nature of the algorithm:
each vertex n considers a couple of its neighbours (u,v)
and “unselfishly” computes the similarity between them. The
result of this computation is then sent to the interested nodes
through the EMIT operation. In the reduce phase, Reduce,
each node selects its top-k similar nodes, and produces a new
approximated k-NN graph, that is used as an input for the
next iteration of the algorithm. Note that NeighborList is
composed of (Node, Similarity) pairs.

In this work we are particularly interested in the role of the
number of iterations of the algorithm, which determines its
approximation quality. We claim that even rough approxima-
tions of the k-NN graph are sufficient for the ultimate goal
of our clustering method. Intuitively, the existence of a path
between similar items on the k-NN graph is sufficient for the
last phase of the clustering algorithm we propose.

B. k-NN Graph Pruning

The iterative procedure to build an approximate k-NN graph
may induce neighboring relations among text items that have
a low pairwise similarity. Indeed, the algorithm necessarily
outputs the k most similar neighbors for each item: any skew
in the distribution of the pairwise similarities may produce a k-
NN graph in which some nodes are only “loosely” similar. We
thus introduce a pruning phase, that uses a parameter θ ∈ [0, 1]
to determine a cut-off similarity value, below which edges
between any pair of nodes are eliminated. The pruning phase
inspects each node of the k-NN graph, and prunes such edges.

Choosing an appropriate threshold θ determines the final
output of our clustering method: as θ → 1 clustering is strict,
which leads to a large number of small clusters of essentially
identical items; as θ → 0 clustering is loose, leading toward
the degenerate case of a single, giant cluster.

C. Phase 2: Connected Components

The second and last phase of our approach uses the pruned
k-NN graph, and outputs its connected components, that we
use as a proxy for identifying clusters of similar items. Recall

3We omit the pseudo-code of this phase, as it is trivial.

that the problem of finding the connected components of a
graph amounts to searching for sub-graphs in which any two
vertexes are connected to each other by paths.

Finding connected components in large-scale graphs using
scalable algorithms is a well studied and understood problem,
as shown in the rich literature on the subject [27], [18], [22].

In this work we use a parallel implementation of the Cracker
algorithm [22], wherein each node is tagged with the smallest
node identifier of its component called seed node identifier.
The key idea of Cracker is to reduce the graph size in each
step of the computation, by employing a technique inspired
by the “contraction algorithm” to compute minimum cuts of
a graph [16]. At termination, all nodes tagged with the same
seed identifier are grouped in the same component.

IV. EXPERIMENTAL SETUP

This section provides details about our experimental setup,
including datasets used, evaluation metrics, parameters and
system environment.
Experimental platform. All the experiments have been con-
ducted on a cluster running Ubuntu Linux consisting of 17
nodes (1 master and 16 slaves), each equipped with 12 GB of
RAM, a 4-core CPU and a 1 Gbit interconnect.

To implement our approach and the baseline method we
use for our comparative analysis using Apache Spark [1]: our
source code is publicly available4.
Evaluation Metrics. We now discuss the metrics we use to
analyse the parameter space of our approach, and for its global
validation in terms of clustering quality. Also, we manually
investigate the clusters we obtain, using domain knowledge to
evaluate the goodness of clustering.

We study the role of the parameters of our approach using
the following metrics:

• N. of clusters: measures the number of clusters identified
by the clustering algorithm. If not otherwise stated, we
only consider clusters to be “useful” if they have more
than 1,000 elements;

• Largest cluster size: measures the size of the largest
cluster identified by the algorithm.

We compute clustering quality using well-known metrics
[11], [20], that we report below:

• Silhouette [28]: constitutes an aggregate metric, that
takes into account the inter- and intra-cluster pairwise
similarity between items. Higher values are preferred.

• Recall: this metric relates two data clustering obtained
by different methods. Using clustering C as a reference,
we compute the recall of clustering D by computing the
fraction of items that belong to the same cluster in both
C and D. In particular, we use as a reference the exact
clustering we obtain with the “brute force” approach to
compute the k-NN graph. Higher values of recall are
preferred.

It is important to notice that computing the above metrics is
computationally as hard as computing the clustering we intend

4https://github.com/alessandrolulli/knnMeetsConnectedComponents

https://www.researchgate.net/publication/228057572_Global_Min-cuts_in_RNC_and_Other_Ramifications_of_a_Simple_Mincut_Algorithm?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==
https://www.researchgate.net/publication/222451107_Rousseeuw_P.J._Silhouettes_A_Graphical_Aid_to_the_Interpretation_and_Validation_of_Cluster_Analysis._Comput._Appl._Math._20_53-65?el=1_x_8&enrichId=rgreq-19dae57e-0b24-47a4-a9c5-83636c5a305d&enrichSource=Y292ZXJQYWdlOzI4MzA4NjgyMztBUzoyODc2NjkwOTI0MDUyNDhAMTQ0NTU5NzA2NDA0Mg==

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

N
od

e
pe

rc
en

ta
ge

Number of edges after pruning

θ = 0.5
θ = 0.6
θ = 0.7
θ = 0.8
θ = 0.9
θ = 1

(a) Edges Removed with k=5.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
lu

st
er

in
g

R
ec

al
l

Iteration

K = 5
K = 10
K = 15

(b) Iterations vs. Clustering recall.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.8 0.9 1

S
ilh

ou
tte

θ

K = 5
K = 10
K = 15

KMeans

(c) Silhouette (higher is better).

Fig. 1: Impact of the pruning phase threshold θ. Impact of number of iterations for the k-NN graph construction phase of our
algorithm. Clustering quality in terms of clustering Silhouette for the full Symantec dataset.

to evaluate. For this reason, we resort to uniform sampling:
instead of computing the all-to-all pairwise similarity between
items, we pick items uniformly at random, with a sampling
rate of 1%, increasing it up to 10% for small clusters.
The dataset. The main dataset we use in our evaluation
consists of a subset of SPAM emails collected by Symantec
Research Labs, between 2010-10-01 and 2012-01-02, which
is composed by 3, 886, 371 email samples. Each item of the
dataset is formatted according to JSON and contains the
common features of an email, such as: subject, sending date,
geographical information, the bot-net used for the SPAM
campaign as labeled by Symantec systems, and many more.
For instance, a subject of an email in the dataset is “19.12.2011
Rolex For You -85%” and the sending day is “2011-12-19”.

In this work, we are interested in identifying clusters
of SPAM emails using subjects alone, as they constitute a
compact description of the email.

V. RESULTS

In this section we present our result, and we organize it
as follows. First, we analyze the parameter space of our
algorithm, and discuss the impact of such parameters on
the metrics we defined above. Then, we focus on clustering
quality, and compare the performance of our approach to that
of the baseline algorithm we discuss in section II. Finally, we
study the clustering scalability.
Analysis of the parameter space. First, we summarize the
parameters underlying our algorithm and discuss about their
role. Our approach has 3 main parameters: k, the number
of neighbors to construct the k-NN graph; the number of
iterations of the first phase of the algorithm; and θ, the pruning
threshold.

The experimental results we show in this section are ob-
tained with a sampled version of the Symantec dataset, and
account for 800,000 data items. A sampled dataset allows us to
execute the “brute force” method to compute the k-NN graph.

In what follows, we let the number of iterations and θ to be
free parameters, and instead select a few representative values
for k. We chose k to be small, i.e., we allow a few neighbors
per node in the k-NN graph.

Impact of the pruning threshold θ. We now discuss how the
pruning mechanism modifies the k-NN graph, and what is the
impact on clustering. As discussed in section III, as θ tends to
0, pruning is less effective, and the k-NN graph tends to have
a single giant component. Instead, when θ tends to one, only
very similar neighbors survive pruning, and the k-NN graph
is fractioned in a large number of small clusters.

Figure 1a shows the fraction of nodes for which a given
number of edges are removed after pruning, as a function of
θ. For values of θ < 0.8, pruning is less effective, as the
number of pruned edges is small. Instead, for θ > 0.9, a large
fraction of nodes remain with one or fewer edges after the
pruning phase. This translates in sizes of the largest clusters
to approach the entire dataset, for θ = 0.5 already, or to be
extremely small, for θ = 1.
Overall impact of approximation. We now study the impact
of the k-NN graph approximation on clustering quality, by
analysing the deviation of our approach from the results
obtained from an exact k-NN graph computed using the “brute
force” approach. Our results indicate that approximate k-NN
graphs obtained with a low k and few iterations are sufficient
to obtain data clustering that is practically indistinguishable
from that obtained by an onerous O(n2) k-NN graph con-
struction phase.

Figure 1b shows how clustering recall varies as a function
of the k-NN iterations. As shown in the Figure, k = 10
and 5 iterations are sufficient to obtain a clustering which
is essentially identical to that obtained with the exact k-NN
graph. Even a very low value of k = 5 settles to a 0.8 recall,
after roughly 10 iterations. Even rough approximations of the
k-NN graph, obtained with a small number of iterations, are
sufficient for the algorithm to stabilize.
Analysis of the clustering quality. We now move to a
global evaluation of the algorithm we present in this work,
and compare clustering quality to the baseline algorithm
described in section II. In particular, we use the efficient K-
means implementation available in Spark’s MLLib package
[2], and the word2vec package [4], as illustrated in [3].
If not otherwise specified, we set K = 1000 such that
the baseline algorithm output 1,000 clusters similarly to our

TABLE I: Symantec Dataset: Manual Investigation
cluster size bot days subjects sample
7255 Grum, Unclassified 2011/12/14-2011/12/20 ”17.12.2011 Rolex For You -73%” ”15.12.2011 Rolex For You -89%” ”19.12.2011 Rolex For You -85%”

4512 Rustock, Unclassified 2010/12/04-2010/12/06 ”jadevnn, Alena (status-online) invites you for chat.” ”Hi zmes40, Alena (status-online) invites you for chat.”
”keumd,,Alena (status-online) invites you for chat.”

4412 Rustock, Unclassified 2011/01/28-2011/02/01 ”Re: User kilmernn” ”Re: User anguinet” ”Re: User hudnalli”

4116 Rustock, Unclassified 2011/03/12-2011/03/14 ”tdwilkey, you have a new PRIVATE MESSAGE”, ”dbeltondd, you have a new PRIVATE MESSAGE”
”bn, you have a new PRIVATE MESSAGE”

2992 Grum, Unclassified 2011/08/19-2011/08/23 ”cseeberd@Amega.com VIAGRA ? 84% consensus!” ”Maia@Amega.com VIAGRA ? 50% consensus!”
”zelmo38dd@Amega.com VIAGRA ? 16% consensus!”

 0

 50

 100

 150

 200

 250

 300

1-2 3-4 5-6

N
um

be
r

of
 "

go
od

"
C

lu
st

er
s

(s
iz

e
>

 1
00

0)

bot number range

θ = 0.7
θ = 0.8
θ = 0.9
θ = 1

KMeans

(a) Bot network identifiers.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1-7 8-14 15-21

N
um

be
r

of
 "

go
od

"
C

lu
st

er
s

(s
iz

e
>

 1
00

0)

day number range

θ = 0.7
θ = 0.8
θ = 0.9
θ = 1

KMeans

(b) Days.

Fig. 2: Clustering quality in terms of the unique number of
features in each cluster output by clustering algorithms.

approach. Also, this configuration yields the best result in term
of Silhouette metric.

We focus on the full Symantec dataset. In addition, in what
follows and if not otherwise specified, we set the operating
parameters of our algorithm as follows: k = 10, and 10
iterations, which are the parameters that offer a good trade-
off between clustering quality, approximation quality, and
algorithm runtime.

Figure 1c illustrates that the clustering Silhouette obtained
by our approach is superior to the baseline algorithm, and
this holds for all parameter choices. This is confirmed also in
Figures 2a and 2b, which show the number of “good” clusters
(with at least 1,000 items) as determined by domain knowledge
metrics. Essentially, these figures report the number of clusters
amenable to manual inspection of the results, as a function of
features such as the number of bot-nets and the time-frame of
a SPAM campaign. For example, in Figure 2a, domain experts
can extract valuable information when the number of SPAM
bots in a cluster is small, in the 1-2 range: in this case, our
approach is superior to the baseline algorithm, which performs
slightly better for the less interesting cases of 3-4 and 5-6
bots. Similarly, Figure 2b shows that the number of “good”
clusters identified by our approach is always better than that
of the baseline algorithm, and this is especially true for the
1-7 range, indicating clusters with emails spanning a 1 week
time-frame.

Finally, we proceed with a manual inspection of the clusters
we obtain with our approach, to further illustrate the “good-
ness” of the clustering we achieve, with k = 10, 5 iterations
and θ = 0.9. Table I illustrates a few email samples in clusters
where both the number of bot-nets is less or equal to 2, and all
emails are sent within one week time-frame. For instance, we
obtain a cluster of 7255 emails sent from the Grum bot-net,
between 2011/12/14 and 2011/12/20: the subjects of the email

TABLE II: Symantec dataset: breakdown of the algorithm
runtime (in seconds)

k-NN graph phase Iteration
k 5 10 15 20 CC
5 675 2293 3185 4897 66
10 2281 4610 5320 7061 81
15 4061 8475 13594 18203 107

TABLE III: Symantec dataset: K-means, baseline algorithm
runtime (in seconds)

K time

K-means

1000 3498 (1.53×)
2000 10004 (4.39×)
3000 28411 (12.46×)
4000 56008 (24.55×)

Our approach, k = 10 and 5 iterations 2281

are related to a SPAM campaign involving a Rolex discount.
Note that subjects are all related, albeit not identical.
Analysis of algorithm scalability. We study the scalability
of our approach and compare it to the baseline algorithm
discussed earlier: first, we vary the dataset size maintaining
the same number of compute machines that execute the
parallel algorithms, then we keep the dataset size constant, and
increase the level of parallelism by adding compute machines.

Figure 3a, shows the algorithm runtime with varying dataset
sizes, using 5 different samples of the Symantec dataset of size
100,000, 200,000, 400,000, 800,000 and 1,600,000 emails re-
spectively. All values plotted are the average of 5 independent
executions. Our results indicate roughly a linear scalability
with respect to the size of the dataset, an observation that
holds irrespectively of the value of k.

Figure 3b shows the algorithm runtime as the number of
cores we devote to the computation varies between 4 and 64,
considering datasets 400,000 and 800,000 items; in both cases,
our results indicate a quasi-linear speed-up, especially for the
biggest dataset. For example, increasing doubling the number
of cores from 8 to 16, for the large dataset, cuts almost in half
the algorithm runtime.

Finally, Table II, reports the runtime breakdown of the k-
NN graph construction phase, and of the connected component
phase of our algorithm, for several values of k and for θ = 0.9.
Again, all values are the average of 5 independent executions.

As expected, the k-NN graph construction runtime increases
both with k and with the iterations number, although more
slowly than the worst scale asymptotic analysis and experi-

 0

 200

 400

 600

 800

 1000

 1200

 1400

100,000 400,000 800,000 1,600,000

R
un

ni
ng

 ti
m

e
(s

)

Dataset Size

k = 5
k = 10
k = 15

(a) Dataset sizes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

4 8 16 32 48 64

R
un

ni
ng

 ti
m

e
(s

)

Number of cores

800000
400000

(b) Number of cores.

Fig. 3: Scalability. Our approach scales roughly linearly.

mental results presented in [12].5 Note that the first phase
of our approach dominates the overall algorithm runtime, as
computing the connected components is fast. Once the k-NN
graph is built, it is possible to quickly proceed with various
versions of the pruning phase (tuning θ for the application at
hand) and obtain different clusters.

Table III illustrates the runtime of the baseline algorithm
that uses K-means: the table reports the “slow-down” of the
baseline algorithm with respect to our approach, when k = 10
and with 5 iterations, and for different values of K, the number
of clusters K-means constructs. Our approach outperforms the
baseline algorithm in terms of end-to-end clustering times,
even for small values of K.

VI. CONCLUSION

Exploratory data analysis requires fundamental techniques
to understand, describe and eventually extract value from large
amounts of data. One of such techniques is data clustering.
In this work, we presented a scalable approach for text data
clustering, that accommodates arbitrary similarity measures
and that produces high quality clusters.

To overcome the quadratic nature of typical approaches to
text clustering, this work studied the role of approximation
in establishing a trade-off between high clustering quality
and fast algorithmic runtime. We showed, through a detailed
experimental campaign, that our method does not require ac-
curate representations of pairwise similarity across data items
to produce high quality, interpretable clusters. We supported
our claims using real traces covering adversarial applications
aiming at identifying SPAM campaigns, and through manual
inspection by domain experts of the clusters output by our
algorithm.

Our next steps include the design of an LSH-based k-NN
graph algorithm supporting arbitrary similarity metrics to push
approximation even further, the extension of our method to a
density-based approach and, ultimately, to take into account
multiple, heterogeneous features of the data.

ACKNOWLDEGMENTS

This work has been partially funded by the BigFoot project,
in the framework FP7-ICT-ICT-2011.1.2 Call 8, Project No.
317858.

5Recall that we use a different parallel execution framework in our work,
Spark, which is geared towards efficient execution of iterative algorithms.

REFERENCES

[1] Apache spark. https://spark.apache.org.
[2] Apache spark machine learning library. https://spark.apache.org/mllib/.
[3] Clustering the News with Spark and MLLib. http:

//bigdatasciencebootcamp.com/posts/Part 3/clustering news.html.
[4] Word2vector package. https://code.google.com/p/word2vec/.
[5] C. C. Aggarwal and C. Zhai. Mining text data. Springer Science &

Business Media, 2012.
[6] H. Becker et al. Beyond trending topics: Real-world event identification

on twitter. In Proc. of ICWSM, 2011.
[7] F. Beil et al. Frequent term-based text clustering. In Proc. of ACM

SIGKDD, 2002.
[8] R. Bosagh-Zadeh and A. Goel. Dimension independent similarity

computation. In Journal of Machine Learning Research, 2012.
[9] T. Debatty et al. Building k-nn graphs from large text data. In Proc. of

IEEE BigData, 2014.
[10] T. Debatty et al. Scalable graph building from text data. In Proc. ACM

BigMine, 2014.
[11] B. Desgraupes. Clustering indices. University of Paris Ouest, 2013.
[12] W. Dong et al. Efficient k-nearest neighbor graph construction for

generic similarity measures. In Proc. of ACM WWW, 2011.
[13] S. Fortunato. Community detection in graphs. Physics Reports, 486,

2010.
[14] M. A. Jaro. Probabilistic linkage of large public health data files.

Statistics in medicine, 14(5-7), 1995.
[15] J. Ji et al. Super-bit locality-sensitive hashing. In Proc. of NIPS, 2012.
[16] D. R. Karger. Global min-cuts in rnc, and other ramifications of a simple

min-cut algorithm. In SODA, volume 93, pages 21–30, 1993.
[17] G. Karypis and E.-H. S. Han. Fast supervised dimensionality reduction

algorithm with applications to document categorization & retrieval. In
Proc. of ACM CIKM, 2000.

[18] R. Kiveris et al. Connected components in mapreduce and beyond. In
Proc. of ACM SOCC, 2014.

[19] F. Lin and W. W. Cohen. A very fast method for clustering big text
datasets. In ECAI, pages 303–308, 2010.

[20] Y. Liu et al. Understanding of internal clustering validation measures.
In Proc. of IEEE ICDM, 2010.

[21] S. P. Lloyd. Least squares quantization in pcm. Information Theory,
IEEE Transactions on, 28(2), 1982.

[22] A. Lulli et al. Cracker: Crumbling large graphs into connected compo-
nents. In Proc. of IEEE ISCC, 2015.

[23] Y. Matsuo and M. Ishizuka. Keyword extraction from a single document
using word co-occurrence statistical information. International Journal
on Artificial Intelligence Tools, 13(1), 2004.

[24] T. Mikolov et al. Distributed representations of words and phrases and
their compositionality. In Proc. of NIPS, 2013.

[25] M. E. Newman. Finding community structure in networks using the
eigenvectors of matrices. Physical review E, 74(3), 2006.

[26] A. Rajaraman et al. Mining of massive datasets, volume 77. Cambridge
University Press Cambridge, 2012.

[27] V. Rastogi et al. Finding connected components in map-reduce in
logarithmic rounds. In Proc. of IEEE ICDE, 2013.

[28] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied
mathematics, 1987.

[29] Y. Shen et al. Mr-triage: Scalable multi-criteria clustering for big data
security intelligence applications. In Proc. of IEEE BigData, 2014.

[30] M. Steinbach et al. A comparison of document clustering techniques.
In Proc. of KDD workshop on text mining, 2000.

[31] O. Thonnard and M. Dacier. A strategic analysis of spam botnets
operations. In Proc. of ACM CEAS, 2011.

[32] Z. Toh and W. Wang. Dlirec: Aspect term extraction and term polarity
classification system. In Proc. of SemEval, 2014.

[33] W. E. Winkler. The state of record linkage and current research
problems. In Statistical Research Division, US Census Bureau, 1999.

[34] Y.-m. Zhang et al. Fast knn graph construction with locality sensitive
hashing. In Proc. of ECML PKDD, 2013.

[35] Y. Zhao and G. Karypis. Empirical and theoretical comparisons of
selected criterion functions for document clustering. Journal of Machine
Learning, 55(3), 2004.

