
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Approaches to Co-Evolution of Metamodels and
Models: A Survey

Regina Hebig, Djamel Eddine Khelladi, and Reda Bendraou,

Abstract—Modeling languages, just as all software artifacts, evolve. This poses the risk that legacy models of a company get lost,
when they become incompatible with the new language version. To address this risk, a multitude of approaches for metamodel-model
co-evolution were proposed in the last 10 years. However, the high number of solutions makes it difficult for practitioners to choose an
appropriate approach.
In this paper, we present a survey on 31 approaches to support metamodel-model co-evolution. We introduce a taxonomy of solution
techniques and classify the existing approaches. To support researchers, we discuss the state of the art, in order to better identify open
issues. Furthermore, we use the results to provide a decision support for practitioners, who aim to adopt solutions from research.

Index Terms—Survey, software engineering, metamodels, models, design notations and documentation

F

1 INTRODUCTION

IN the last decade, Model-Driven Engineering has proven
to be effective in the development and maintenance of

large scale and embedded systems [1], [2]. At the heart of
this vision is the notion of Metamodel, a formal definition
of the language that will be used to represent models of
the application’s domain. Raising the level of abstraction
from code to models combined with the promise of better
productivity and a shorter product development life-cycle,
have led to the emergence of an impressive number of
DSMLs (Domain Specific Modeling Languages). The use of
DSMLs would increase productivity between 200% (Adap-
tive Cruise Control) to 750% (Home automation, phone
switch features), according to [3]. Today, almost every busi-
ness and industrial domain has a dedicated DSML [4]
and plenty of tools are provided to help you design your
own modeling language, e.g. EMF1, OBEO Designer2, or
Metaedit3.

However, DSMLs do not come alone. Their productivity
is mainly ensured by the ecosystem that surrounds them.
This includes code generators, text and graphical editors,
e.g. Xtext [5] or GMF4, rule and constraints consistency
checker engines [6] [7], and many other artifacts that con-
stitute the development chain, spanning from modeling the
problem domain to the code of the future system. While
this development chain is effective and efficient, its Achilles
heel remains the metamodel. One can see it as the central
point of a dependency graph of artifacts and tools since

• R. Hebig is with the Chalmers | University of Gothenburg, Computer
Science and Engineering Göteborg, Västra Götaland County, Sweden.
D. Khelladi and R. Bendraou are with the Sorbonne Universités, UPMC
Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France.
E-mail: regina.hebig@lip6.fr, djamel.e.khelladi@gmail.com,
reda.bendraou@gmail.com

Manuscript received April 19, 2015;
1. Eclipse Modeling Framework http://www.eclipse.org/modeling/

emf/
2. OBEO Designer http://www.obeodesigner.com/
3. Metaedit http://www.metacase.com/products.html
4. GMF http://eclipse.org/modeling/gmf

any modification in the metamodel may impact all the
other artifacts i.e. editors, code generators, transformation
rules, consistency constraints, etc. [8]. In [9] authors reported
how difficult it can be to update a GMF-based graphical
editor after a metamodel evolution. Our industrial partner
KI5 reported that in the automotive domain, companies,
such as Renault, use DSMLs for modeling their products.
However, due to the competitive nature of this industrial
field, metamodels have to be extended and evolved almost
every two years to include new concepts from the problem
domain. This has an effect on the tedious task of not only
evolving the tooling chain but also model instances. Airbus6

and Thales7, which were involved with us in the research
projects MOVIDA8, ANR Galaxy9 and MeRGE10, mentioned
model instances with up to 500 000 model elements to be mi-
grated in some cases. Another example of artifacts that may
be impacted by metamodel evolution are OCL constraints.
The UML metamodel11 comes with more than 700 OCL
constraints which may be impacted in case of an evolution.
However, the UML metamodel evolved quite often in the
last decade12. BPMN evolved every three to four years since
it has been specified in 200413. Transformation rules are
also highly related to metamodel elements. Especially if you
are dealing with exogenous model transformation (source
and target metamodels are different). Every modification of
either source or target metamodels will impact the trans-
formation rules, sometimes hundreds of them, and requires
to manually or semi-automatically migrate them [10], [11],
[12].

5. KnowledgeInside http://www.k-inside.com/web/fr
6. Airbus http://www.airbus.com/
7. Thales https://www.thalesgroup.com
8. Movida http://www.agence-nationale-recherche.fr/?Projet=

ANR-08-SEGI-0011
9. ANR Galaxy http://www.galaxy.lip6.fr
10. MeRGE http://www.merge-project.eu/
11. UML standard http://www.omg.org/spec/UML/
12. For an overview of different versions of the UML see http://

www.omg.org/spec/UML/
13. BPMN http://www.omg.org/spec/BPMN/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.obeodesigner.com/
http://www.metacase.com/products.html
http://eclipse.org/modeling/gmf
http://www.k-inside.com/web/fr
http://www.airbus.com/
https://www.thalesgroup.com
http://www.agence-nationale-recherche.fr/?Projet=ANR-08-SEGI-0011
http://www.agence-nationale-recherche.fr/?Projet=ANR-08-SEGI-0011
http://www.galaxy.lip6.fr
http://www.merge-project.eu/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/BPMN/

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 2

The examples given above highlight the importance of
dealing with metamodels evolution especially with the wide
spread of DSMLs. Some companies are already facing this
problem. Through KI we know that Renault has invested
money and time to build DSMLs while underestimating the
cost of co-evolving the related tools and model instances
every time the metamodel is impacted. We believe that in
the near future, this problem, if not handled, can be an
obstacle to the adoption and use of DSMLs.

Metamodels co-evolution has already been identified as
a main issue in the literature [13], [14], [15]. The evolution
between two versions of the same metamodel may consist of
hundreds of additions, deletions, and changes of elements.
For example, during the evolution of UML Class Diagrams
from UML version 1.5 to 2.0 a total of 238 language elements
where added, deleted, or changed [16]. For the evolution
from GMF version 1.0 to 2.0, 136 changes have been identi-
fied by Herrmannsdoerfer et al. [13].

In the last decade, the literature introduced 31 ap-
proaches that focus exclusively on the co-evolution of mod-
els when the metamodel is evolved. These 31 approaches
differ in the way they solve the involved tasks which are
a) the identification of metamodel changes and b) the co-
evolution of model instances. Thus, it is a challenge for
the users to identify which approach can best fit their
needs. Indeed, from the user’s perspective these approaches
may differ significantly. The trade-off between correctness
and automation could be one way to compare them. Fully
automated approaches make it easier to handle huge sets
of models while it might not be possible to guarantee
that the resulting models conform to the required outcome.
Approaches that provide more control for the user while
performing the co-evolution might be preferable when some
adaptation and customizations are required. Besides, some
implicit prerequisites, such as required skills or language’s
ownership, need to be identified and considered before
deciding which would be the appropriate co-evolution ap-
proach to be used. For example, some co-evolution ap-
proaches require that specific editors are used for the evolu-
tion of the metamodel. Wrong usage of these editors, even
if not visible in the resulting metamodel, can impact the
correctness of the result of the co-evolution (as explained
further in Section 3.2.2).

This paper aims at helping companies and users in
choosing and comparing this jungle of proposed approaches
for metamodel-model co-evolution (MM-M co-evolution)
according to their needs and constraints. It does so by
providing a survey and a detailed catalog of existing co-
evolution approaches and their technical properties. Fur-
thermore, we want to provide researchers with a framework
for comparing their works and enable them to identify
open research needs. Therefore, we provide a taxonomy of
metamodel-model co-evolution. We present the taxonomy
in Section 3. The method used to select and analyze the
existing approaches for this survey is then presented in
Section 2. Further, we classify existing approaches regard-
ing this taxonomy, to compare their potential and current
limitations (Section 4). In Section 5, we discuss the results
and provide decision support for practitioners. In Section
6 we discuss related surveys on approaches and tools for
MM-M co-evolution and conclude in Section 7.

2 METHOD

In this section, we describe how we identified and analyzed
the approaches considered within this survey.

2.1 Exclusion Criteria for Supporting Approaches

This survey includes approaches for co-evolution that either
support the identification of metamodel changes as an input
for model resolution or propose model resolutions in form
of more generic strategies or model specific resolutions.
To make this survey feasible and keep the comparison
meaningful, we excluded supporting approaches that might
be used to perform co-evolution manually or that are a
standard inbuilt part of co-evolution approaches today.

There are approaches for conformance checking, such as
discussed by Paige et al. [17] or the approach of Iovino
et al. [18]. Similarly, there are a multitude of approaches
that allow to check for constraints on models, e.g. using
Answer Set Programming (ASP [19]) or the Epsilon Vali-
dation Language14. All of these approaches can help a user
to identify what elements of a model are broken with regard
to a new metamodel version. However, we do not include
these approaches in this survey, as they do not lead to an
automated resolution support.

Naturally, all approaches that consume metamodel
changes for the co-evolution rely on tools to identify these
changes. These can be tools used to retrieve model differ-
ences, such as EMF compare15, or tools to record changes
online, such as the seminal work of Alan and Porres [20]
or Praxis [6]. Thus, the identification of atomic changes, i.e.
the creation, deletion or modification of single metamodel
elements, can be considered as being well established and
is included in most approaches today. In the remainder
of this survey we therefore do not address these works
as standalone approaches. However, we explicitly address
approaches for the detection of complex changes, which
consist of multiple changes, since this is still a challenge
and not included in all co-evolution works.

2.2 Identification Method

The first goal was to capture all relevant approaches that
support the different co-evolution tasks. Therefore, we
performed a systematic literature search as described by
Kitchenham [21]. We defined a set of keywords that we
used for a systematic search, starting independently from
three different types of entry points. The keywords that
we used were: “metamodel”, “evolution” or “co-evolution”,
“model” (optional), “adaptation” (optional) and “migra-
tion” (optional).

As a primary type of entry points we used the big online
libraries: IEEE Xplore digital library, ACM digital library,
Wiley Online Library, Springer Link, and ScienceDirect. As
a second type of entry points we used proceedings of confer-
ences and workshops, as well as journals that address topics
of modeling or language evolution, e.g. the MODELS, the

14. EVL http://www.eclipse.org/epsilon/doc/evl/
15. EMF Compare https://www.eclipse.org/emf/compare/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

http://www.eclipse.org/epsilon/doc/evl/
https://www.eclipse.org/emf/compare/

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 3

ECMFA, the ME workshop, and the SoSyM journal16. As a
third entry point we used Google Scholar, which we used to
identify papers that included our keywords within the title
or abstract. Further, we combined this literature search with
the strategy to follow references found in already identified
papers, as it was also done by Cornelissen et al. [22].

This process led to the identification of more than 130 pa-
pers. In a next step we reexamined these papers to exclude
irrelevant candidates. This was done independently by two
authors in order to reduce mistakes. We excluded, e.g.,
papers that focused on the co-evolution of metamodels with
artifacts other than models. Note that papers addressing co-
evolution in a more generalized form were not excluded, if
they also covered models. We did not exclude such papers
that introduced approaches for complex change detection
in metamodels, even if these had not been motivated by co-
evolution of models. Further, we did exclude papers that did
not present approaches that support MM-M co-evolution.
This includes overview papers, which serve as related work
for this survey.

We agreed to include 56 papers, that belong to 31 differ-
ent approaches, into our survey.

2.3 Identified Approaches

Table 1 summarizes the 31 identified approaches and further
indicates if implementations exist for the approaches and if
they are publicly available. These approaches can be divided
into six groups:

Resolution Strategy Languages The first group contains
transformation languages that are specialized in the specifi-
cation of strategies to co-evolve (resolve) models for given
metamodel changes. We identified 7 such languages, that
have been introduced by Sprinkle et al. [24], Wimmer et al.
[25], Di Ruscio et al. (EMFMigrate) [8], [26], [27], [28], Krause
et al. [29], Levendovszky et al. (Model Change Language
(MCL)) [30], [31], [32], and Rose et al. (Epsilon Flock) [33],
[34], [35]. A special case was proposed by Vermolen &
Visser in 2008: an approach for the automated generation
of domain specific transformation languages that allow to
specify metamodel changes and resolution strategies for a
given metamodel [23].

Resolution Strategy Generation The second group con-
tains 6 approaches that allow the (partial) generation of
resolution strategies for a given metamodel change. These

16. Used conference-, workshop-, and journal entry points: Inter-
national Conference on Software Engineering (ICSE), International
Conference on Model Driven Engineering Languages and Systems
(MODELS), Workshop on Models and Evolution (ME), Workshop on
Model-Driven Software Evolution (MoDSE), European Conference on
Modelling Foundations and Applications (ECMFA), International Con-
ference on Automated Software Engineering (ASE), Symposium on the
Foundations of Software Engineering (FSE), International Conference
on Software Language Engineering (SLE), International Conference
on Fundamental Approaches to Software Engineering (FASE), Work-
shop on the Analysis of Model Transformations (AMT), International
Workshop on Model Comparison in Practice (IWMCP), Workshop on
Comparison and Versioning of Software Models, European Conference
on Object-Oriented Programming (ECOOP), International Conference
on Model Transformations (ICMT), Software and Systems Modeling
Journal (SoSyM), Journal of Software: Evolution and Process (JSEP),
Journal of Software Maintenance and Evolution: Research and Practice
(JSME), Journal of Systems and Software (JSS), & Journal on Object
Technology.

approaches have been presented by Didonet et al. [36], de
Geest et al. [37], Garcés et al. [38], [39], Meyers et al. [40],
Mantz & Taentzer et al. [41], [42], [43], [44], [45], [46], and
Anguel et al. [47]. Note that the approach of Didonet et al. is
not dedicated to metamodel-model co-evolution, but to the
generation of model transformations in general [36].

Predefined Resolution Strategies The third group con-
tains approaches that provide automation by applying pre-
defined resolution strategies, where possible. We identified
8 of these approaches and proposals presented by Hößler et
al. [48], Florez et al. (ASIMOV) [49], [50], Wachsmuth [51],
Cicchetti et al. [9], [15], [52], Brand et al. [53], Gruschko
et al. [14], [54], Wittern [61], and Herrmannsdoerfer et al.
(COPE/Edapt) [13], [55], [56], [57], [58], [60], [73].

Resolution Strategy Learning A paper that forms its
own group proposes to learn resolution strategies that are
specified by users. These learned strategies should later
be applied automatically, if possible, so that the need to
specify new resolution strategies is reduced over time. This
proposal is called CBRMig and was published in 2013 by
Anguel et al. [62].

Constrained Model Search We identified 4 approaches
that do not use the metamodel change, but apply a
constrained-based search of valid model variants consid-
ering the original model and the new metamodel. In con-
sequence, these approaches support and partially automate
the resolution per model (and not per metamodel change).
These approaches are the Cross-Layer Modeler of Demuth
et al. [63], [64], GraCoT of Gomez et al. [65] , CARE of
Schoenboeck et al. [68] and the approaches of Kessentini
et al. [66], [67].

Identify Complex Changes 5 approaches do not fo-
cus on the resolution of changes, but are specialized on
identifying complex metamodel changes: the approaches
of Williams et al. [69], Vermolen et al. [70], and Langer et
al. [71]. Further, we identified one paper on metamodel-
transformation co-evolution that provides an approach for
the identification of complex changes: CO-URE from Garcı́a
et al. [10]. Finally, Müller et al. present an approach that
allows users to combine an automated detection of atomic
changes with a manual pre-definition of complex changes
[72].

2.4 Analysis Method

We analyzed the identified papers with 2 goals: providing
a consistent terminology about co-evolution techniques and
classifying existing approaches accordingly.

Existing terminology is inconsistent between approaches
and partially has flaws. For example, Hermannsdoerfer
et al. differentiate between state-based and operator-based
approaches for co-evolution [74]. The two terms distinguish
approaches purely on the basis of the identification of the
metamodel change and do not allow for many conclusions
about the applied model resolution. Furthermore, there are
approaches that already use strategies for the change iden-
tification, that are neither state-based nor operator-based.
Finally, the term state-based is typically associated with the
need for additional analysis techniques in order to identify
metamodel changes. It is thereby often overlooked that also
operator-based approaches can fail in recognizing changes,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

TABLE 1
Summary of identified approaches that support co-evolution of models with evolving metamodels

Group Approach Years Implementation
Resolution Strategy Languages Vermolen & Visser 2008 [23] 2008 available

Sprinkle et al. [24] 2004 exist
Wimmer et al. [25] 2010 available
EMFMigrate (Di Ruscio et al.) [8], [26], [27], [28] 2011-2012 available
Krause et al. [29] 2013 exist
MCL (Levendovszky et al.) [30], [31], [32] 2009-2014 exist
Epsilon Flock (Rose et al.) [33], [34], [35] 2009-2014 available

Resolution Strategy Generation Didonet et al. [36] 2007 exist
de Geest et al. [37] 2008 exist
Garcés et al. [38], [39] 2008-2009 exist
Meyers et al. [40] 2012 no
Mantz & Taentzer et al. [41], [42], [43], [44], [45], [46] 2012-2013 no
Anguel et al. 2014 [47] 2014 no

Predefined Resolution Hößler et al. [48] 2005 no
Strategies ASIMOV (Florez et al.) [49], [50] 2012-2013 exist

Wachsmuth [51] 2007 exist
Cicchetti et al. [9], [15], [52] 2008-2009 available
Brand et al. [53] 2011 available
Gruschko et al. [14], [54] 2007 exist
COPE/Edapt (Herrmannsdoerfer et al.) [13], [55], [56], [57], [58], [59], [60] 2008-2011 available
Wittern [61] 2013 exist

Resolution Strategy Learning CBRMig (Anguel et al. 2013) [62] 2013 no
Constrained Model Search Cross-Layer Modeler (Demuth et al.) [63], [64] 2013-2015 exist

GraCoT (Gomez et al.) [65] 2014 available
Kessentini et al. [66], [67] 2015-2016 exist
CARE (Schoenboeck et al.) [68] 2014 exist

Identify Complex Changes Williams et al. [69] 2012 exist
Vermolen et al. 2012 [70] 2012 available
Langer et al. [71] 2013 available
CO-URE (Garcı́a et al.) [10] 2013 available
Müller et al. [72] 2014 exist

when users are not using the tool correctly. Thus, additional
analysis techniques might be combined with both forms of
approaches.

While this is just one example, it already shows that the
current terminology is not sufficient to cover the state of
the art and to enable the identification of future potentials.
Therefore, our target is to unify and expand the existing
terminology, so that it enables a comparison of existing
approaches.

The second part of the analysis focusses on classifying
existing approaches accordingly.

2.4.1 Creating a Taxonomy
For the creation of the taxonomy we considered the 56 pa-
pers that belong to the identified approaches. In a first step,
we systematically read the papers and collected information
about proposed and applied techniques. By doing so, we
focused on the different tasks covered and the strategies and
features provided. In a next step, we discussed and reflected
upon the collected tasks, features, and strategies, focussing
on the following questions:

• Do tasks or parts of those tasks occur in some form
in all approaches or just in specific ones? If the latter:
can we characterize the circumstances for needing
these tasks using identified features and strategies?

• Can features or strategies be generalized?
• Do different identified features/strategies actually

reflect variants of the same feature or strategy? What
are differentiating sub-features? Do existing sub-
features cover the frame of possibilities or can they
be enhanced?

• Do features and strategies that were found together
need to occur together necessarily or could they be
reassembled with alternative features and strategies?

As a result, we gained a unified and overhauled taxon-
omy for the field, which is strong enough to cover tasks,
features, and strategies of existing approaches as well as
potential variations or approaches that provide alternative
strategies.

2.4.2 Classification

We analyzed and compared the approaches regarding the
question, which of the co-evolution tasks and features are
supported. Therefore, we thoroughly studied the identified
papers of each approach to systematically evaluate how
change collection, change identification, and resolution on
the model are addressed and which features described in the
taxonomy in Section 3 are manifested or supported. For each
approach we also carefully investigated the papers found
and the websites referenced for hints on whether an imple-
mentation of the approach has been created. Furthermore,
we tried to find if implementations are accessible. When
no statement about existing prototypes, evaluations of the
running system or implementations was made, we classified
this as “no implementation”. If a link for downloading or
accessing the implementation existed we classified this as
available. Please not that the maturity, e.g. fault tolerance
or platform independence, of the implementation was not
assessed. To ensure quality, the results were double checked
by two of the authors.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 5

2.5 Validity Threats
The first threat to the validity of a literature survey is the
completeness of the search results. To reduce the risk of
missing relevant approaches we combined three different
types of media search. During the selection of papers,
we needed to address the risk that relevant papers are
excluded. Therefore, this selection was performed by two
of the authors independently. Finally, there is always the
threat of making mistakes when analyzing and classifying
the approaches. Similarly, as for the paper selection, we
addressed this threat by ensuring that each paper was read
by two of the authors, who agreed on the final classification
shown in this paper. We consider the remaining risk of
missing or misclassifying approaches minimal.

3 A TAXONOMY

In this section, we introduce a new taxonomy of meta-
model changes and the three steps of metamodel-model co-
evolution. As described in Section 2.4.1 the taxonomy is the
result of our survey and our efforts to provide a consistent
terminology that captures existing concepts. These steps are
(1) collecting and (2) identifying metamodel changes, as well
as (3) resolving the models. We consider the techniques and
solutions involved in these tasks and start with providing
our definitions for the basic terminology on metamodel
changes.

3.1 Metamodel Changes
The evolution of two versions of a metamodel consists of
multiple metamodel changes. Basically, all elements of a meta-
model might be modified or deleted. Similarly, all possible
types of metamodel elements might be added.

3.1.1 Introduction to atomic and complex changes
The term atomic change is used to refer to a change, i.e.
addition, deletion, or modification, of a single metamodel
element. Examples are the addition of a new empty class,
the deletion of an attribute from a class, the change of the
name of a class, or the change of a property of a class
from abstract to non-abstract. In contrast, complex changes
consist of multiple atomic changes, including the additional
knowledge about the interrelation between these atomic
changes.

An example for a complex change is move property,
where a property is deleted from one and added to another
(related) class. The knowledge about that relation between
both atomic changes, delete property and add property, can
be used during the automated adaptation of models: by
moving the properties’ values from the deleted to the added
instance. Without knowledge about the complex change, the
delete property could be solved by removing the instance
values, while no knowledge on how to instantiate the newly
added property would be available. Thus, instance values
would get lost. The example shows that complex changes
can enable automated co-evolution.

3.1.2 Definitions
So far we introduced a rough picture of the ideas behind
metamodel changes. In the following, we present a more
specific terminology by providing our definitions of the
involved concepts:

3.1.2.1 Atomic change type: An atomic change type
denotes a set of changes that can happen to a metamodel,
defined by

• An editing action, i.e. delete, add, or modify.
• A meta-metamodel element, i.e. a type of elements

that might occur in a metamodel, such as meta-
property or meta-class (for simplicity referred to as
property and class in the remainder of this paper).
For example, the atomic change type “add property
to an abstract class” includes the editing operation
“add” and the meta-metamodel element “property”.

• Conditions defined on the metamodel, such as con-
straints on the atomic change’s metamodel element
(e.g. is a class abstract or not, is an attribute manda-
tory or not), relations to other elements (e.g. is a
class referenced by another class) and properties of
directly or indirectly related elements. E.g., change
type “add property to an abstract class” includes the
condition that the class to which the “property” is
added is abstract. It is possible that an atomic change
type defines no conditions.
3.1.2.2 Atomic change: An atomic change is the ap-

plication of the atomic change type’s editing operation on
a metamodel element that conforms to the atomic change
type’s meta-metamodel element, where the atomic change type’s
conditions are met.

3.1.2.3 Complex change type: A complex change type
denotes a set of changes that can occur to a metamodel,
defined by a set of atomic change types and constraints
on the relations between the respective atomic changes.
Included atomic change types can have a fixed or flexible
multiplicity. An example for a complex change type is “pull
property to an abstract superclass”. Included atomic change
types are “add property to an abstract class” (occurring
once) and “delete property” (which occurs one or more
times according to the number of subclasses). The relations
between the atomic changes are as follows: Each property
in the involved atomic changes “delete property” is deleted
from a class that is a subclass of the class where the property
from the atomic change “add property to an abstract class”
is added to. All involved properties have the same name
and type.

Note that complex change types can also include other
complex change types. We say that a complex change type
icct is included in a complex change type cct, when the set
of atomic changes and relations between atomic changes of
icct is a subset of the set of atomic changes and relations
between atomic changes of cct.

3.1.2.4 Complex change: A complex change consists
of a set of atomic changes that conform in number and
relation to the specification of the complex change type.

Examples for changes and change types:

Atomic change type: add property to an abstract class
Atomic change: add property “id:String” to abstract class “user”

Complex change type: pull property to an abstract superclass
Complex change: pull property “id:String” to abstract superclass
“user” from subclasses “basic-user” and “premium-user”

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 6

Change Collection

Offline Online

UI-Preserving
(trace based)

UI-Intrusive
(operator based)

Notation Key
optional alternative (xor)
mandatory or

Fig. 1. Feature model for collecting metamodel changes

3.2 Collecting Metamodel Changes

Collecting metamodel changes can happen offline or online
(see Figure 1).

3.2.1 Collecting offline changes
Offline change collection happens after the metamodel
change is performed. The collected change information con-
sists of the two metamodel versions only. Offline change
collection can happen independently of the modeling tool
that is used to edit the metamodel. However, changes are
not directly collected, but need to be identified in the next
step. In reference to the fact that this identification is often
done based on a comparison of the before and after state
of a metamodel (see below in Section 3.3), approaches that
are based on offline changes are sometimes referred to as
“state-based approaches” [74].

3.2.2 Collecting online changes
Online change collection happens while the changes on the
metamodel are performed. Here, the collected information
is a list of occurred changes. In general, online change
collection has the advantage that the captured changes are
chronologically ordered. However, online change collection
is only possible, if the organization that changes the meta-
model 1) applies tools that allow for online change collection
and 2) provides the outcome of the change collection to
the companies that are responsible for co-evolving existing
models.

Furthermore, we differentiated between UI-preserving
and UI-intrusive approaches.

UI-preserving approaches do not affect the front-end of the
editor that is used for changing the metamodel. Thus, they
do not affect the way the modeler changes the metamodel.
Collecting changes is done by observing/tracing the actions
performed in the editor, which leads to a list of ordered
atomic changes.

UI-intrusive approaches affect the editors front-end. In all
corresponding approaches that can be found in the literature
so far, this change of the editor happens by adding new
editing actions in form of operators, which are defined
by complex or atomic metamodel change. That is why
these approaches are often referred to as “operator-based
approaches” [74]. As a result, UI-intrusive change collection
approaches can record an ordered list of atomic and complex
changes as well.

However, the user who applies changes to the meta-
model has to use and be familiar with the operators, which
can be difficult since approaches can provide up to 60 or
more different operators. Furthermore, since atomic opera-
tions will not be disabled, users might use workarounds and

apply complex changes by using multiple atomic operations
instead of less familiar complex operators. Thus, there is no
guarantee that the additional operators are always used and,
with it, that the set of collected complex changes is complete.

A special detail about operators is that they enforce to
make decisions that concern the resolution of the models at
the moment of the metamodel change. With it, resolution
decisions are moved explicitly from the person responsible
for the models to the person who changes the metamodel.
These decisions are made via two mechanisms. First, this
is the choice of the operator. The strategy for the resolu-
tion of models is coupled to the operator and there can
be alternative operators for the same metamodel change.
Second, some operators consume additional information as
input. We call them outreaching operators. There, non-changed
metamodel elements might be consumed as additional input
to specify model elements that play a role during change
resolution. Furthermore, additional mapping information, e.g.
between different parameters, might be consumed to con-
figure the change resolution strategy. An example is the
operator “Replace Class”, provided by the Edapt Eclipse
Project17. It is an implementation for the metamodel change
of deleting a class and its properties. During model resolu-
tion of “Replace Class”, instances of the deleted class are not
deleted, but preserved by transforming them to instances
of another class. For that model resolution, the operator
consumes additional pieces of information, which are 1) the
class of the metamodel that will be used as new meta-class
for the instances of the deleted class (non-changed metamodel
element) and 2) a mapping of properties from the deleted
class to properties of the substituting meta-class, to indicate
how the class instances are migrated (mapping information).

3.3 Identifying Metamodel Changes

The goal of the change identification is to gain a precise list
of atomic and complex changes and their types that had
been applied to the metamodel. The more precise the detec-
tion of complex changes is, the better the automation and
correctness of the co-evolution will be. The tasks involved
in change identification depend on the kind and precision
of the information provided by collecting changes. Figure 2
summarizes the different variations of change identification.

3.3.1 Atomic change identification
Atomic changes need to be identified in case of offline change
collection, where change information is only provided in the
form of a pair of metamodel versions. The identification of
atomic changes happens on the basis of a diff of the two
metamodels. However, in the general case, the precision of
the results is not necessarily optimal for two reasons. First,
no information on the chronological order of the application
of the atomic changes is available. Second, it is possible that
effects are hidden, when multiple changes are applied. For
example, a change “move property y from class a to class b”
that is followed by a change “change property name y to x”
will occur as a group of two atomic changes only: “deletion
of y from a” and “addition of x to b”. The atomic changes
“add y to b” and “rename y to x” are hidden. Note, that in

17. see http://www.eclipse.org/edapt/operations.php

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

http://www.eclipse.org/edapt/operations.php

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

Notation Key
optional
mandatory
alternative (xor)
or

Change IdentificationChange Identification

Atomic Change IdentificationAtomic Change Identification Complex Change IdentificationComplex Change Identification Degree of automationDegree of automation

ManualManual Semi-AutomatedSemi-Automated AutomatedAutomatedUse of
chronological order

Use of
chronological order

Consideration of
incompleteness
Consideration of
incompleteness

Identification of
undo actions

Identification of
undo actions

Fig. 2. Feature model for identifying metamodel changes

Notation Key

optional

mandatory

alternative (xor)

or

Resolution on ModelResolution on Model

Manual solutions
encouraged

Manual solutions
encouraged

Supported benefit classesSupported benefit classesSolutions supportedSolutions supported

0:n0:n 1:n1:n 1:11:1Single solution
supported

Single solution
supported

Multiple solutions
supported

Multiple solutions
supported

ChronologicChronologic

Resolution orderResolution order

RandomRandomOptimizedOptimized

Fig. 3. Feature model for resolving models

special cases the used tool might capture enough metadata
to compensate these flaws.

3.3.2 Complex change identification

Complex changes help to increase the amount of automation
during model co-evolution, as explained above in Section
3.1. The identification of complex changes happens on the
basis of a list of atomic changes and optionally a list of
collected complex changes. The goal is to identify sets of
changes in these lists that together form a complex change.

Challengingly, the same list of atomic changes might
allow for alternative lists of complex changes. For example,
two changes “add property” and “delete property” might
be interpreted as “move property” or “pull property” (from
subclass to metaclass). Thus, during complex change iden-
tification it is not sufficient to only search for combinations
of changes that might form a complex change. Rather, it
needs to be estimated how probable the correctness of the
alternative identified complex changes is.

Use of chronological order: The chronological distance
of atomic changes might be considered as a factor when
estimating the probability if changes belong to the same
complex change or not. Note that information about the
chronological order is only available when online change
collection was used.

Consideration of incompleteness: Further, some algo-
rithms that require an atomic change identification are able to
take into account that the identified atomic changes can be
incomplete due to hidden effects, as explained in Section
3.3.1.

Identification of undo actions: Approaches that are
based on a complete list of atomic changes need to deal
with a different problem: change traces also include actions
that have been canceled. For example, when the modeler
accidentally deletes a property and adds it again to correct
this action, this might be counted as two changes, namely
“delete property” and “add property”. However, just ap-
plying co-evolution to both changes can be harmful, since

co-evolution of the deletion leads to loss of information in
the models. For example, when the accidental deletion and
re-addition concern an optional property x, the application
of the co-evolution on models would mean to first delete
instances of that property, including their values. The re-
addition of the property to the metamodel would not lead
to any automated action on the models, since the property is
optional. Thus, while the user who changed the metamodel
performed an undo, property values get lost within the
models. Therefore, approaches that are based on a complete
list of atomic changes need to identify and filter changes
that belong to canceled/undone actions.

3.3.3 Degree of automation

Change identification can be done manually, semi-
automated, or fully automated. While a full automation
would be ideal, it is hardly possible to exclude impreci-
sion. The following example illustrates the basic problem
of change identification: Within the metamodel a composite
pattern [75] might be used. During the change, it might
be decided to pull a property from the composite to the
component (so that it is available in instances of both,
composite and leaf). In terms of atomic changes, this pull
property occurs as delete property and add property. However,
during complex change identification the algorithm might
not detect a pull property, but instead a move property, since
the property might as well be moved via the children
relation of the component and the composite. To cope with
such problems, semi-automated approaches rely on final
user decisions.

3.4 Resolving Models

Based on the identified changes, the actual task of model co-
evolution can be performed. Two central concepts for this
are “resolution technique” and “resolution strategy”.

A resolution strategy specifies how a model should be
resolved for a given change.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

In contrast, a resolution technique is an overall approach to
create and apply resolution strategies. Resolution techniques
differ in the order of change resolution, the way users can
control the enactment of resolution strategies, and the ratio
between manual effort and automation (see Figure 3).

3.4.1 Resolution order
Metamodel evolution often includes changes that can be
more or less independent of each other. The resolution
strategies for these changes might be applied in a different
order to the models. Changes might be addressed in exactly
the chronological order in which they occurred. However, in
case of offline change collection, information on this order
is not available. Here, a resolution technique might either
apply a random order or retrieve an order that is optimal
for the resolution, e.g. by reducing the manual effort. For
example, a metamodel might be evolved by, first, adding a
mandatory property to a class and, second, deleting one of
the subclasses of this class. Adding property instances might
require human decisions on each added instance value. It
would be a waste of effort to first add property values to
instances of the deleted subclass, since these instances will
be deleted during resolution of the second change. In this
case, the chronological order would not be optimal for the
resolution.

3.4.2 Supported Benefit Classes
A relevant factor, besides the discussed strategies to allow
user control, is the ratio between the effort a user invests to
specify a resolution strategy and the set of models that can
be addressed with that strategy. In this survey, we consider
this ratio in the simplified form of three “benefit classes”18:

1:1 A manual decision, such as configuring or selecting
a resolution strategy, is required per model.

1:n One manual decision, such as the specification of a
project specific resolution strategy, is required. This
decision can be applied to all models to be migrated
(e.g. within a company).

18. Please note that the degree of automation is in literature often
addressed with a classification of change types into “non-breaking”,
“breaking and resolvable” and “breaking and non-resolvable” change
types. However, during this survey and a related one [76] we found
some serious flaws in that classification and its application that made
us reconsider its use.

The distinction between breaking and non-breaking is meaningful
and clear. Nonetheless, there seem to be common sources of error,
when assessing whether a change type is breaking or non-breaking.
For example, in [76] we found that misclassifications seem to stem
from situations where special cases of change types are not considered.
In consequence, we found change types that are treated by some
approaches as non-breaking while other approaches treated them as
breaking and provided resolution strategies [76] .

Our skepticism with the distinction between resolvable and non-
resolvable goes further. Given a precise enough restriction of the
domain, each change type might be addressed with reusable and
automated resolution strategies. For example, Cope/Edapt (https://
www.eclipse.org/edapt/operations.php) [73] offers a configurable and
automated operator that allows for resolution of the addition of string
attributes to a metamodel (Split String Attribute), including mandatory
string attributes. However, this is in contrast to most literature that
considers the addition of mandatory attributes to be non-resolvable. For
example, Burger and Gruschko [77] classify the addition of obligatory
attributes as non-resolvable.

In consequence, we decided to not use this terminology and instead
substitute it with the more precise notion of benefit classes, which
concerns the resolution strategies instead of the change types.

0:n No manual decision has to be made to resolve all
models to be migrated. This happens during reuse
of existing rules that are independent of concrete
metamodels.

Which benefit classes can be supported by an approach
depends on the implemented techniques for solution sup-
port. Therefore, we will later (in Section 4) investigate in
detail how the different approaches support these benefit
classes.

3.4.3 Solutions supported

Per change type, a resolution technique might support one
or multiple resolution strategies for a metamodel change. A
strategy is applicable to all changes conforming to its change
type.

Single solution supported: There are two situations,
where approaches in literature support only a single so-
lution for a metamodel change. First, this often happens
when approaches predefine a resolution strategy that does
not include human intervention. Alternatively, approaches
might (partially) generate a solution. Thus, single solutions
are only supported in benefit class 0:n.

As a general advantage, single solution approaches en-
able a full automation of the resolution. However, the res-
olution results are not guaranteed to be the one desired for
the concrete models at hand. For example, when a model
is used as input of a code generation, automatically added
instances with default values (as it is often done when at-
tributes are added to metaclasses) can become problematic.

Multiple solutions supported: To give users a better
control over the result, some approaches support multiple
solutions per change. The first strategy is to allow users
to freely specify new resolution strategies, which then might
be applied to single or multiple models, e.g. that belong to
the same project or company. Second, a set of alternative
resolution strategies might be presented to the user to select
from. Third, a provided resolution strategy might require
a configuration of specified parameters. Multiple solutions
can be supported in all benefit classes.

The gained control comes at the cost that user interaction
is required during the resolution (leading to a reduced
degree of automation). A way to improve the degree of
automation is to make the user interaction optional, allowing
to reduce the number of user decisions, without abandoning
user control. This can be done by providing a solution
strategy that can optionally be adapted. Finally, there is the
special case of operator based approaches, especially the
ones that work with outreaching operators. Here, the decision
about the resolution strategy as well as configurations are
moved to the moment where the metamodel change is ap-
plied. By providing different operators, multiple resolution
strategies per metamodel change can be supported. After
the metamodel change the model resolution requires no
further decisions.

Manual solutions encouraged: Besides the two forms
mentioned above, some approaches do not present single or
multiple solutions, but encourage and allow for a manual
creation of a resolution for a model. This approach is placed
in benefit class 1:1.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

https://www.eclipse.org/edapt/operations.php
https://www.eclipse.org/edapt/operations.php

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 9

4 CLASSIFICATION OF APPROACHES

In this Section, we summarize and compare how the ap-
proaches of the different families support change collection,
change identification and model resolution. Therefore, the
taxonomy presented in Section 3 is applied.

4.1 Change Collection

As summarized in Column 3 in Table 2, 22 approaches
address the challenge of change collection. The other 9 ap-
proaches are based on the assumption that a list of changes
is given. Most of the approaches work with offline change
collection. The exception are 5 online change collection
approaches: The Cross-Layer Modeler uses a UI-preserving
logging to get information about atomic changes [63], [64].
Further, the Cross-Layer Modeler relies on the approach of
Iovino et al. to identify the impact of the metamodel change
on the models [18]. Further 4 approaches (Krause et al. [29],
ASIMOV [49], [50], Wittern [61], and COPE/Edapt [55]- [60])
are operator-based and, thus, UI-intrusive. For COPE/Edapt
also an offline collection is possible [60].

Finally, one approach (Didonet et al. [36]) performs an of-
fline matching of metamodels, without identifying changes
subsequently.

4.2 Change Identification

In the following, existing proposals for change identification
are discussed. Columns 4-6 in Table 2 summarize the results.
Note that for approaches that do not support change identi-
fication the fields are empty (marked with “-”).

One approach that is based on an offline collection of
metamodels, but does not provide mechanisms for change
identification, is the one of Didonet et al. [36]. In contrast to
other approaches, Didonet et al. use the offline comparison
of metamodels to identify similarities (and not differences).
These similarities are used as the basis for the generation of
the transformation.

4.2.1 Atomic change identification
Most (14) of the 15 approaches that allow for offline change
collection also enable atomic change detection ([9], [10],
[28], [32], [37], [39], [47], [53], [56], [62], [69], [70], [71],
[72], see Table 2). To achieve that, most approaches (12
of 14) propose a calculation of the difference between the
original and the evolved version of the metamodel, e.g.
by using EMF Compare19 (as in EMFMigrate [8], [26], [27],
[28], Anguel et al. [47], and CBRMig [62]). Two approaches
(Williams et al. [69] and MCL [30], [31], [32]) join atomic
with complex change identification (as explained below).

4.2.2 Complex change identification with offline collection
We found 7 approaches that deal with automated or semi-
automated identification of complex changes. In contrast,
the approaches of Müller et al. [72] and COPE/Edapt,
explicitly support the user in manually identifying com-
plex changes. Many of the remaining approaches use com-
plex changes, but do not specify appropriate identification
mechanisms. In one case, it was not possible to determine

19. EMF compare http://www.eclipse.org/emf/compare/

whether complex changes are addressed: Brand et al. pro-
vide an explicit list of “detectable changes” that only in-
cludes atomic changes, but claim in their evaluation section
that two complex changes had been identified [53].

Identification techniques: Complex change identifica-
tion is mostly based on pattern detection, using patterns to
define which constellations of atomic changes conform to a
complex one. Patterns can also occur in form of “predicates”
(CO-URE [10]) or “heuristics” (Garcés et al. [39]).

Williams et al. propose a search-based technique ([78]) to
identify atomic and complex changes. The algorithm looks
for different paths of possible changes to identify those
paths that can lead from the initial to the new metamodel
version [69].

Finally, two approaches from the family of resolution
strategy languages do not provide extra mechanism to iden-
tify complex changes, but reuse the transformation lan-
guage’s or formalism’s mechanism for rule application:
the underlying graph formalism in MCL [32] and ATL in
EMFMigrate [26]. While this approach seems natural, it
reduces the control, since these reused mechanisms include
a) no concepts for prioritization between contradicting com-
plex changes and b) do not support manual choices.

Prioritization and correction: Three of the approaches
address the need to prioritize between contradicting inter-
pretations of complex changes in a list of atomic changes:
Williams et al. propose the use of fitness functions [69], CO-
URE prioritizes detected changes by size [10] and Vermolen
et al. request a final decision from the user [70]. In con-
trast to a prioritization or choice between detected changes,
Garcés et al. and COPE/Edapt allow for manual correction
and enrichment of the set of detected complex changes (
[39], [60]). Thus, only 4 approaches for complex change
identification rely on user decisions. These are surprisingly
few, considering the associated challenges and uncertainties
discussed in Section 3.3.3.

Consideration of incompleteness: Only two approaches
consider a possible incompleteness of the list of atomic
changes derived by model differencing: the approaches pre-
sented by Vermolen et al. [70] and Garcés et al. [39] allow for
detection of complex changes, even if parts of their effects
are hidden by other changes.

4.2.3 Complex change identification with online collection
From the 5 approaches that are based on online change
collection, only one addresses the identification of addi-
tional complex changes: COPE/Edapt [60] allow the user
to manually correct the change lists. An explicit support for
undo operations is given to relieve the user of manually
searching these undos in the list of atomic changes (see
discussion in Section 3.3.2). However, there is so far no
approach for complex change detection that benefits from
knowledge about the chronological order of changes.

4.3 Resolving Models
In this Section we summarize, which resolution orders are
used and how benefit classes are supported by the different
co-evolution approaches. Table 3 summarizes the results.
Note, that also in this table some approaches have empty
fields only (indicated by “-”). This is the case when ap-
proaches do not support the resolution of models directly.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

http://www.eclipse.org/emf/compare/

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

TA
B

LE
2

S
um

m
ar

y
of

ch
an

ge
co

lle
ct

io
n

an
d

ch
an

ge
id

en
tifi

ca
tio

n
of

th
e

di
ffe

re
nt

ap
pr

oa
ch

es
.

G
ro

up
A

pp
ro

ac
h

C
ha

ng
e

C
ol

le
ct

io
n

C
ha

ng
e

Id
en

ti
fic

at
io

n
A

to
m

ic
C

.I
.

C
om

pl
ex

C
ha

ng
e

Id
en

ti
fic

at
io

n
D

eg
re

e
of

A
ut

om
a-

ti
on

R
es

ol
ut

io
n

Ve
rm

ol
en

&
V

is
se

r
20

08
-

-
-

-
St

ra
te

gy
Sp

ri
nk

le
et

al
.

-
-

-
-

La
ng

ua
ge

s
W

im
m

er
et

al
.

-
-

-
-

EM
FM

ig
ra

te
of

fli
ne

X
M

M
-D

iff
X

re
us

e
of

tr
an

sf
or

m
at

io
n

te
ch

no
lo

gy
’s

ap
pl

ic
at

io
n

de
ci

si
on

s
•

no
n-

co
m

pl
et

en
es

s
N

O
T

co
ns

id
er

ed
au

to
m

at
ed

K
ra

us
e

et
al

.
on

lin
e

(U
I-

in
tr

us
iv

e)
-

-
-

M
C

L
of

fli
ne

X
re

us
e

of
tr

an
sf

or
m

at
io

n
te

ch
no

lo
gy

’s
ap

pl
ic

at
io

n
de

ci
si

on
s

•
no

n-
co

m
pl

et
en

es
s

N
O

T
co

ns
id

er
ed

au
to

m
at

ed

Ep
si

lo
n

Fl
oc

k
-

-
-

-
R

es
ol

ut
io

n
D

id
on

et
et

al
.

of
fli

ne
-

-
-

St
ra

te
gy

G
en

er
at

io
n

de
G

ee
st

et
al

.
of

fli
ne

X
M

M
-D

iff
-

se
m

i-
au

to
m

at
ed

G
ar

cé
s

et
al

.
of

fli
ne

X
M

M
-D

iff
X

Pa
tt

er
n

D
et

ec
ti

on
•

no
n-

co
m

pl
et

en
es

s
N

O
T

co
ns

id
er

ed
se

m
i-

au
to

m
at

ed

M
ey

er
s

et
al

.
-

-
-

-
M

an
tz

&
Ta

en
tz

er
et

al
.

-
-

-
-

A
ng

ue
le

ta
l.

20
14

of
fli

ne
X

M
M

-D
iff

-
au

to
m

at
ed

Pr
ed

efi
ne

d
H

öß
le

r
et

al
.

-
-

-
-

R
es

ol
ut

io
n

A
SI

M
O

V
on

lin
e

(U
I-

in
tr

us
iv

e)
-

-
-

St
ra

te
gi

es
W

ac
hs

m
ut

h
-

-
-

-
C

ic
ch

et
ti

et
al

.
of

fli
ne

X
M

M
-D

iff
-

au
to

m
at

ed
Br

an
d

et
al

.
of

fli
ne

X
M

M
-D

iff
?

au
to

m
at

ed
G

ru
sc

hk
o

et
al

.
-

-
-

-
C

O
PE

/E
da

pt
on

lin
e

(U
I-

in
tr

us
iv

e)
&

-
X

op
ti

on
al

m
an

ua
lu

ni
fic

at
io

n
of

at
om

ic
ch

an
ge

s
•

in
pu

ti
s

co
m

pl
et

e
•

in
pu

ti
s

or
de

re
d

•
ex

pl
ic

it
ch

an
ge

un
do

su
pp

or
te

d

m
an

ua
l

of
fli

ne
X

M
M

-D
iff

X
m

an
ua

la
ss

ig
nm

en
to

fc
om

pl
ex

ch
an

ge
s,

•
no

n-
co

m
pl

et
en

es
s

N
O

T
co

ns
id

er
ed

at
om

ic
:

au
to

m
at

ed
,

co
m

pl
ex

:m
an

ua
l

W
it

te
rn

on
lin

e
(U

I-
in

tr
us

iv
e)

-
-

-
R

es
ol

ut
io

n
St

ra
te

gy
Le

ar
ni

ng
C

BR
M

ig
of

fli
ne

X
M

M
-D

iff
-

au
to

m
at

ed

C
on

st
ra

in
ed

M
od

el
C

ro
ss

-L
ay

er
M

od
el

er
on

lin
e

(U
I-

pr
es

er
vi

ng
)

-
-

-
Se

ar
ch

C
A

R
E

of
fli

ne
-

-
-

K
es

se
nt

in
ie

ta
l.

of
fli

ne
-

-
-

G
ra

C
oT

of
fli

ne
-

-
-

Id
en

ti
fy

C
om

pl
ex

C
ha

ng
es

W
ill

ia
m

s
et

al
.

of
fli

ne
X

Se
ar

ch
-B

as
ed

Te
ch

ni
qu

e
•

no
n-

co
m

pl
et

en
es

s
co

ns
id

er
ed

•
pr

io
ri

ti
za

ti
on

:fi
tn

es
s

fu
nc

ti
on

au
to

m
at

ed

Ve
rm

ol
en

et
al

.2
01

2
of

fli
ne

X
M

M
-D

iff
X

Pa
tt

er
n

D
et

ec
ti

on
•

no
n-

co
m

pl
et

en
es

s
co

ns
id

er
ed

•
pr

io
ri

ti
za

ti
on

:b
y

us
er

de
ci

si
on

se
m

i-
au

to
m

at
ed

La
ng

er
et

al
.

of
fli

ne
X

M
M

-D
iff

X
Pa

tt
er

n
D

et
ec

ti
on

•
no

n-
co

m
pl

et
en

es
s

N
O

T
co

ns
id

er
ed

au
to

m
at

ed

C
O

-U
R

E
of

fli
ne

X
M

M
-D

iff
X

Pa
tt

er
n

D
et

ec
ti

on
•

no
n-

co
m

pl
et

en
es

s
N

O
T

co
ns

id
er

ed
•

pr
io

ri
ti

za
ti

on
:’

bi
gg

es
t’

co
m

pl
ex

ch
an

ge
s

au
to

m
at

ed

M
ül

le
r

et
al

.
of

fli
ne

X
M

M
-D

iff
X

m
an

ua
la

ss
ig

nm
en

to
fc

om
pl

ex
ch

an
ge

s,
•

no
n-

co
m

pl
et

en
es

s
N

O
T

co
ns

id
er

ed
at

om
ic

:
au

to
m

at
ed

,
co

m
pl

ex
:m

an
ua

l

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 11

TA
B

LE
3

S
um

m
ar

y
of

m
od

el
re

so
lu

tio
n

su
pp

or
to

ft
he

di
ffe

re
nt

ap
pr

oa
ch

es
(n

.d
.=

re
so

lu
tio

n
or

de
ri

s
no

td
es

cr
ib

ed
;-

=
no

hi
nt

on
su

pp
or

ti
de

nt
ifi

ed
).

G
ro

up
A

pp
ro

ac
h

R
es

ol
ut

io
n

O
rd

er
0:

n
1:

n
1:

1
si

ng
le

so
lu

ti
on

m
ul

ti
pl

e
so

lu
ti

on
s

m
ul

ti
pl

e
so

lu
ti

on
s

m
ul

ti
pl

e
so

lu
ti

on
s

m
an

ua
l

so
-

lu
ti

on
s

R
es

ol
ut

io
n

Ve
rm

ol
en

&
V

is
se

r
20

08
n.

d.
-

-
st

ra
te

gy
sp

ec
ifi

ca
ti

on
-

-
St

ra
te

gy
Sp

ri
nk

le
et

al
.

op
ti

m
iz

ed
-

-
st

ra
te

gy
sp

ec
ifi

ca
ti

on
-

-
La

ng
ua

ge
s

W
im

m
er

et
al

.
n.

d.
cl

ea
n

up
on

ly
-

st
ra

te
gy

sp
ec

ifi
ca

ti
on

-
-

EM
FM

ig
ra

te
n.

d.
-

-
st

ra
te

gy
sp

ec
ifi

ca
ti

on
,f

re
e

st
ra

te
gy

m
an

ip
ul

at
io

n
-

-

K
ra

us
e

et
al

.
ch

ro
no

lo
gi

ca
l

-
-

st
ra

te
gy

sp
ec

ifi
ca

ti
on

-
-

M
C

L
n.

d.
sp

ec
ia

l
ca

se
s

(n
ot

ex
pl

ai
ne

d)
-

st
ra

te
gy

sp
ec

ifi
ca

ti
on

-
-

Ep
si

lo
n

Fl
oc

k
n.

d.
cl

ea
n

up
on

ly
-

st
ra

te
gy

sp
ec

ifi
ca

ti
on

-
-

R
es

ol
ut

io
n

St
ra

te
gy

D
id

on
et

et
al

.
al

la
to

nc
e

-
-

fr
ee

st
ra

te
gy

m
an

ip
ul

at
io

n
-

-
G

en
er

at
io

n
de

G
ee

st
et

al
.

n.
d.

ge
ne

ra
te

d
-

fr
ee

st
ra

te
gy

m
an

ip
ul

at
io

n
-

m
an

ua
l

us
er

ac
ti

on
G

ar
cé

s
et

al
.

n.
d.

ge
ne

ra
te

d
-

-
-

-
M

ey
er

s
et

al
.

ch
ro

no
lo

gi
ca

l
-

de
fa

ul
t

st
ra

te
gy

(o
pt

io
na

lc
he

ck
)

st
ra

te
gy

sp
ec

ifi
ca

ti
on

,f
re

e
st

ra
te

gy
m

an
ip

ul
at

io
n

st
ra

te
gy

co
nfi

gu
ra

ti
on

-

M
an

tz
&

Ta
en

tz
er

et
al

.
n.

d.
po

st
-p

ro
ce

ss
in

g
fo

r
m

ul
ti

pl
ic

it
y

ch
an

ge
s

de
fa

ul
t

st
ra

te
gy

(o
pt

io
na

lc
he

ck
)

fr
ee

st
ra

te
gy

m
an

ip
ul

at
io

n
-

-

A
ng

ue
le

ta
l.

20
14

n.
d.

-
de

fa
ul

t
st

ra
te

gy
(o

pt
io

na
lc

he
ck

)
-

st
ra

te
gy

co
nfi

gu
ra

ti
on

-

Pr
ed

efi
ne

d
R

es
ol

u-
ti

on
H

öß
le

r
et

al
.

n.
d.

pr
ed

efi
ne

d
st

ra
te

gy
-

-
-

-

St
ra

te
gi

es
A

SI
M

O
V

pa
rt

ly
ch

ro
no

lo
gi

-
ca

l,
pa

rt
ly

n.
s.

-
pr

ed
efi

ne
d

st
ra

te
gy

(o
pe

ra
to

r
se

le
ct

io
n)

-
st

ra
te

gy
sp

ec
ifi

ca
ti

on
-

W
ac

hs
m

ut
h

n.
d.

pr
ed

efi
ne

d
st

ra
te

gy
-

st
ra

te
gy

co
nfi

gu
ra

ti
on

-
-

C
ic

ch
et

ti
et

al
.

op
ti

m
iz

ed
pr

ed
efi

ne
d

st
ra

te
gy

-
st

ra
te

gy
co

nfi
gu

ra
ti

on
st

ra
te

gy
co

nfi
gu

ra
ti

on
-

Br
an

d
et

al
.

n.
d.

pr
ed

efi
ne

d
st

ra
te

gy
-

st
ra

te
gy

co
nfi

gu
ra

ti
on

-
m

an
ua

l
us

er
ac

ti
on

G
ru

sc
hk

o
et

al
.

n.
d.

pr
ed

efi
ne

d
st

ra
te

gy
-

st
ra

te
gy

sp
ec

ifi
ca

ti
on

,
st

ra
te

gy
co

nfi
gu

ra
ti

on
-

-

C
O

PE
/E

da
pt

on
lin

e:
ch

ro
no

lo
gi

-
ca

l,
of

fli
ne

:r
an

do
m

-
pr

ed
efi

ne
d

st
ra

te
gy

(o
pe

ra
to

r
se

le
ct

io
n)

st
ra

te
gy

sp
ec

ifi
ca

ti
on

st
ra

te
gy

co
nfi

gu
ra

ti
on

-

W
it

te
rn

ch
ro

no
lo

gi
ca

l
-

pr
ed

efi
ne

d
st

ra
te

gy
(o

pe
ra

to
r

se
le

ct
io

n)
st

ra
te

gy
sp

ec
ifi

ca
ti

on
-

-

R
es

ol
ut

io
n

St
ra

te
gy

Le
ar

ni
ng

C
BR

M
ig

n.
d.

au
to

m
at

ic
se

le
ct

io
n

-
st

ra
te

gy
sp

ec
ifi

ca
ti

on
,f

re
e

st
ra

te
gy

m
an

ip
ul

at
io

n
-

(m
en

ti
on

ed
po

ss
ib

il-
it

y
of

st
ra

te
gy

co
nfi

g-
ur

at
io

n)

-

C
on

st
ra

in
ed

M
od

el
Se

ar
ch

C
ro

ss
-L

ay
er

M
od

el
er

n.
d.

-
-

-
st

ra
te

gy
se

le
ct

io
n

id
en

ti
fic

at
io

n
of

ac
ti

on
ne

ed
C

A
R

E
al

la
to

nc
e

-
-

-
st

ra
te

gy
se

le
ct

io
n

-
K

es
se

nt
in

ie
ta

l.
al

la
to

nc
e

-
-

-
st

ra
te

gy
se

le
ct

io
n

-
G

ra
C

oT
ch

ro
no

lo
gi

ca
l

-
-

-
st

ra
te

gy
se

le
ct

io
n

-
Id

en
ti

fy
W

ill
ia

m
s

et
al

.
-

-
-

-
-

-
C

om
pl

ex
Ve

rm
ol

en
et

al
.2

01
2

-
-

-
-

-
-

C
ha

ng
es

La
ng

er
et

al
.

-
-

-
-

-
-

C
O

-U
R

E
-

-
-

-
-

-
M

ül
le

r
et

al
.

-
-

-
-

-
-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 12

4.3.1 Resolution Order

Most approaches do not specify a resolution order explicitly.
For example, the approach of Mantz & Taentzer et al. takes
the metamodel change specifications directly as input [46].
Nonetheless, it is not specified that this input needs to be
provided in chronological order.

However, some approaches are based on a chronological
order: Krause et al. [29], Wittern [61], Meyers et al. [40], and
GraCoT [65]. Further, ASIMOV seems to apply a chronologi-
cal order, at least for the part of the changes that are resolved
automatically. COPE/Edapt implies a chronological order
when changes were collected online. For changes that had
been collected offline a user specified order is applied [60].
In contrast, Sprinkle et al. propose the use of an optimized
order [24] and Cicchetti et al. present an approach to analyze
the dependencies between changes to retrieve an order for
the resolution [15].

Finally, three approaches, CARE [68] and the ones by
Kessentini et al. [66], [67] and Didonet et al. [36], handle all
metamodel changes at once.

4.3.2 Benefit class 0:n

Model resolution happens in benefit class 0:n, when no
manual decisions are required for deriving a resolution
strategy for a metamodel change.

Approaches in the family of resolution strategy languages
usually do not support solutions in the benefit class 0:n.
However, 2 approaches provide an automated clean up by
automatically deleting model elements that are no longer
conform to the new metamodel version: Wimmer et al. [25]
and Epsilon Flock [33], [34], [35]. In both cases the clean
up is a result of the chosen resolution technique, where
model elements that should remain in the model need to
be handled explicitly. As a result, non-conform elements
are implicitly dropped. In addition, for MCL it is claimed,
without providing further explanations, that special simple
cases of atomic changes are solved automatically [32].

Geest et al. [37] and Garcés et al. [38], [39] are the
only resolution strategy generation approaches that propose
to generate a single supported migration strategy. All other
approaches for resolution strategy generation (Meyers et al.
[40], Mantz & Taentzer et al. [46], and Anguel et al. 2014
[47]) allow for the benefit class 0:n, by generating default
strategies that can optionally be checked and adapted. For
the special case of changing multiplicities of references in
the metamodel Mantz & Taentzer et al. provide an approach
that supports a single solution only. They use an instance
generation technique to create missing reference instances
during a post processing step [46].

Non-operator based approaches with predefined resolution
strategies, support benefit class 0:n with single solutions per
metamodel change or operator (“predefined strategy”). Due to
the fact that a metamodel change can be supported by mul-
tiple operators, operator-based approaches with predefined
resolution strategies, support benefit class 0:n with multiple
solutions. Since the metamodel change includes the choice
of the operators, the actual co-evolution does not require
choices.

Finally, the resolution strategy learning approach CBR-
Mig [62] supports situations where a single solution is

automatically applied without user interaction. However,
not a predefined strategy is used, but a learned solution
that is selected from a list of previously applied solutions.

4.3.3 Benefit class 1:n
A resolution happens in benefit class 1:n, when after a
metamodel change a human decision is required to derive
or configure a resolution strategy that can then be used to
resolve all models to be co-evolved. We found approaches
using three different strategies to support this benefit class.

Strategy Specification: Free specification of migration
strategies is supported by all resolution strategy languages
[23], [24], [25], [28], [29], [32], [35] as well as by individual
approaches of other families: the resolution strategy genera-
tion approach of Meyers et al. [40], the predefined resolution
strategy approaches of Gruschko et al. [14] and Wittern [61]
as well as COPE/Edapt [60] and CBRMig [62].

Free Strategy Manipulation: Four approaches for resolution
strategy generation allow for a free manipulation of the gener-
ated default strategies: de Geest et al. [37], Meyers et al. [40],
Mantz & Taentzer et al. [46], and Didonet et al. [36]. While
the first three approaches generate these strategies based
on metamodel changes, the later approach uses information
about metamodel similarities to reach the same goal. Also
in the CBRMig approach some of the automatically selected
default strategies are to be manipulated, when only a subop-
timal match for a solution is found [62]. The same is true for
EMFMigrate [26]. Here, the manipulated resolution strategy
is manually selected from a library.

Strategy Configuration: Finally, some approaches with pre-
defined resolution strategies rely on restricted manipulations of
the resolution strategies: there, predefined parameters need
to be configured. This strategy configuration per metamodel
evolution is supported by Wachsmuth [51], Cicchetti et al.
[15], Brand et al. [53], and Gruschko et al. [14].

4.3.4 Benefit class 1:1
A resolution is in benefit class 1:1, when human decisions
are required for the resolution or each model.

Four approaches for resolution strategy generation and
with predefined resolution strategies allow a strategy configu-
ration that is valid per model: Meyers et al. [40], Anguel et
al. 2014 [47], Cicchetti et al. [15], and COPE/Edapt [60]. The
CBRMig approach [62] mentions the possibility to introduce
such a model specific strategy configuration.

Further, ASIMOV relies on strategy specification per
model [50]. In contrast, Brand et al. and de Geest et al.
allow manual changes on the models when no other solution
is possible [37], [53].

Finally, the approaches in the group “Constrained Model
Search” are specialized on supporting users in manual
migration. By reasoning on model constraints, alternative
versions for a model are generated. In the approaches of
this group, users select the right generated version. The
“constrained model search” approaches differ slightly in
the source of the constraints (ranging from the model-
metamodel conformance relationship to the reuse of existing
constraints as in Demuth et al. [63], [64]) and the applied al-
gorithms to identify usable models. For example, the Cross-
Layer Modeler proposes model resolutions with the help
of a reasoning mechanism that calculates variations of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

Automation Correctness

Organizational Constraints

Tool support

Fig. 4. Dimensions of the decision.

original models, so that they conform to the constraints. In
contrast, CARE calculates permutations of possible changes
and later excludes candidates that do not conform to the
constraints. In addition, in the Cross-Layer Modeler con-
straints are used as automated support for indicating to the
user the model parts that need to be adapted.

5 DECISION SUPPORT AND DISCUSSION

In this section, we aggregate the findings of the survey. Our
goal is to assist users in choosing between the existing ap-
proaches. We base this discussion on the trade-off between
desired correctness of the resulting models and automation
that we discussed in the introduction (illustrated in Figure
4). Besides this, trade-off decisions should also take tool sup-
port into account. Furthermore, there might be additional
constrains given by the organizational context, e.g. missing
control over the complete co-evolution process (e.g. in case
of evolving standards) or missing expertise of the employees
applying the co-evolution.

This decision support is a help for the user to navigate
between the different characteristics considered in the clas-
sification above. Based on the consequences or challenges of
the characteristics presented in the taxonomy, we identified
questions that potential users should consider. These ques-
tions concern the required result correctness, the required
degree of automation, the ability to expend effort on the
approach adoption and application, as well as the organiza-
tional constraints that might impact the applicability of an
approach. For each question, we propose criteria that can be
used to identify approaches that are good candidates.

Since some approaches focus on either resolution or
change identification only, we first of all summarize in
Figure 5 which approaches can be used alone and which
approaches should be combined. Please note, in most cases
the following holds: if an approach can be used standalone,
their change identification part can in theory be substituted
with dedicated approaches for change identification (even
thought it might require to implement an integration). How-
ever, for some approaches this is not possible: these are
the constrained model search approaches that simply do
not rely on metamodel changes. Furthermore, there are the
approaches of Krause et al., ASIMOV, MCL, and Wittern,
that inherently rely on the parallel application of metamodel
change and model change20.

20. This holds also for parts of the approach of COPE/Edapt. How-
ever, a variant of this approach allows for offline change collection. This
part may benefit from external change identification approaches.

Combination of approaches for complex change
identification and metamodel change-based resolution

Approaches that can be used without combination
 EMFMigrate, MCL, Garces et al., Krause et al.,

ASIMOV, COPE/Edapt, Wittern, CBRMig, de
Geest et al., Cicchetti et al., Anguel et al. 2014,
Brand et al., Cross-Layer Modeler, CARE,
Kessentini et al., GraCoT, Didonet et al.

 Williams et al.,
Vermolen et al.
2012, Langer et

al., CO-URE,
Müller et al.

Vermolen & Visser 2008, Sprinkle
et al., Wimmer et al.,
EMFMigrate, Epsilon Flock, de
Geest et al., Garces et al., Meyers
et al., Mantz & Taentzer et al.,
Anguel et al. 2014, Hößler et al.,
Wachsmuth, Cicchetti et al.,
Brand et al., Gruschko et al.,
COPE/Edapt, CBRMig

X

Fig. 5. Approaches that can be used alone or in combination.

In the remainder of this section, we go through the
dimensions shown in Figure 4 and discuss under what
circumstances different approaches might be preferable.

5.1 Correctness

Co-evolution can be performed with models at all stages
of their life cycle; from models that are part of a software
that is still subject to production or evolution, to models
that are part of a legacy software that is only preserved.
Depending on the point in the life cycle, there can be
different needs on the co-evolution. When models are no
more expected to be used as an input for code creation,
but just as a documentation, it might be sufficient to keep
models accessible, i.e. to ensure that a model is syntactically
conform to a new metamodel, so that it can be opened with
updated editors.

On the other hand, when models are still used as input,
e.g. for code generation, it might not be sufficient to simply
retrieve models that are conform to the syntax defined by
the new metamodel, but to retrieve a semantically “cor-
rect” model. For example, a variant of the approach by
Taentzer and Mantz creates references and objects, when
lower bounds of multiplicities are increased [43]. While
this can be required to make a model conform to a new
metamodel version, a random creation of new references
and objects might be harmful, when the model is used to
generate code afterwards.

Similarly, the answer to the question, what a seman-
tically “correct” model is, can differ from domain to do-
main, company to company, or even model to model. For
example, when a type restriction is applied to a property
in a metamodel, the generic solution implemented in the
approaches of Meyers et al. and Edapt would delete prop-
erty instances that are no longer conform. In contrast, the
approach of Wachsmuth would allow the user to specify
a type conversion. Thus, due to giving additional control to
the user, the property values can be preserved in the models.
Consequently, if there is the need for an outcome that
deviates from generic solutions, approaches are required to
provide the user with a certain amount of control about the
results of the resolution.

Required result correctness: Due to the observation that
approaches allow for different outcomes and different levels
of control, we propose to potential users to ask this ques-
tion: “Is a syntactical metamodel conformance a sufficient
outcome for the co-evolution case or not?” If it is sufficient,
all of the approaches presented above might be used.

However, as summarized in Figure 6, if a syntactical con-
formance is not sufficient, we suggest the user to consider

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 14

approaches that allow for a full control of the result. Based
on our classification this can be judged with 3 criteria:

1) Can the user reach each desired outcome, i.e. does he
have free choice? We consider this criterion to be fulfilled,
if the user can either choose freely from a complete set
of possible solutions or if the user can freely manipulate
a given solution or strategy, or specify a new resolution
strategy.

2) The approach should never enforce the application
of rules that have not been defined, selected, or been open
to change by the user. We consider this criterion to be not
fulfilled if an approach includes “single solutions” in benefit
class 0:n. An exception are cases of clean ups, since then only
non-conform elements will be deleted that have not been
processed otherwise before. Thus, the user is still free to
prevent this deletion.

3) When resolution strategies are applied, are they ap-
plied in the right situations? For approaches that use res-
olution strategies that are defined based on metamodel
changes (i.e. all approaches, except the group constraint
model search and the approach of Didonet et al. [36]),
this depends on the correctness of the identified (complex)
changes. We consider this criterion to be fulfilled if either of
the three conditions is fulfilled:

• No change information required: an approach does not
rely on metamodel change information (i.e. the group
constraint model search),

• Complex change collection: the person changing the
metamodel defines complex changes using online
UI-intrusive change collection, or

• Complex change identification: if the complex changes
are identified (semi-)automatically, the approach
should be able to consider that collected atomic
changes are potentially incomplete and/or allow the
user to correct/define the result.

Generalization opportunities: From the taxonomy we
know that there are different degrees of control in form of
the two benefit classes 1:n (control about the strategy, but
not per model) and 1:1 (control about the resolution per
model). When selecting an approach that requires specific
results the user should therefore consider what degree of
control is required. To guide this decision, we propose to
ask the following question: “Is it possible to generalize
resolution per metamodel change within the given domain,
company, or project?”

When such a generalization does not seem possible, we
propose to use those approaches that fit the above listed
criteria and allow for a free choice or manipulation of model
specific solutions. Approaches that fulfill these criteria are:
Cross-Layer Modeler [64], CARE [68], Kessentini et al. [67],
GraCoT [65], and ASIMOV [50].

If a generalization is possible, we propose to use those
approaches that fit the above listed criteria and allow for an
unrestricted specification of resolution strategies for meta-
model changes: Krause et al. [29], COPE/Edapt [60], Wittern
[61], and Didonet et al. [36], as well as the combinations of
the change identification approaches of Williams et al. [69],
Vermolen et al. [70], and Mü)ler et al. [72] with one of the
following resolution approaches: Vermolen & Visser 2008
[23], Sprinkle et al. [24], Wimmer et al. [25], EMFMigrate

Potential for free choice of model specific
solutions and no situations where the
approach enforces a solution
 Cross-Layer Modeler, CARE, Kessentini

et al., GraCoT, ASIMOV

Required result
correctness

No quality-based restriction
on approaches to be
selected.

Metamodel conformance
sufficient

Specific outcome that can deviate
from generic solution required

Domain, company, or project
specific generalizations for metamodel

change types possible?

• Unrestricted specification of resolution strategies
• No situations where the approach enforces a solution
• High quality complex change assessment/identification
 Krause et al., COPE/Edapt, Wittern, Didonet et al., Cross-

Layer Modeler, CARE, Kessentini et al., GraCoT, ASIMOV

Yes No

Williams et al.,
Vermolen et al.

2012, Müller et al.

Vermolen & Visser 2008,
Sprinkle et al., Wimmer et al.,
EMFMigrate, Epsilon Flock,
Meyers et al., Mantz &
Taentzer et al. (without post-
processing)

X

Fig. 6. Required correctness of the resulting models.

[28], Epsilon Flock [35], Meyers et al. [40], Mantz & Taentzer
et al. (without post-processing) [46]. However, even if a
generalization is possible, a company does not need to use
this. Thus, also the approaches Cross-Layer Modeler [64],
CARE [68], Kessentini et al. [67], GraCoT [65], and ASIMOV
[50] can be used.

5.2 Automation
The second major subject of trade-off when deciding be-
tween approaches is the automation support, since the
running costs of co-evolution are caused by the manual
effort that needs to be invested. For example, decisions that
are made per model allow a high control over the result.
However, making such individual decisions can turn out
to be infeasible, when hundreds of models need to be co-
evolved.

Therefore, we propose to ask the following question,
when selecting an approach: “Is the main priority to fully
automate the resolution if possible?”

If yes, approaches that should be adopted are those
that provide full automation for change identification and
include resolutions in the benefit class 0:n. These are the
approaches of Garcés et al. [39], ASIMOV [50], COPE/Edapt
[60], and Wittern [61]. Furthermore, the change identifica-
tion approaches of Williams et al. [69], Langer et al. [71],
and CO-URE [10] might be used in combination with the
following resolution approaches: de Geest et al. [37], Meyers
et al. [40], Mantz & Taentzer et al. [46], Anguel et al. 2014
[47], Hößler et al. [48], Wachsmuth [51], Cicchetti et al. [15],
Brand et al. [53], Gruschko et al. [14], COPE/Edapt [60], and
CBRMig [62].

Automation - support manual tasks: As mentioned
above, manual tasks during co-evolution determine the
running costs of applying an approach.

Therefore, even if a full automation is not necessarily
prioritized over correctness, when manual tasks are taken
into consideration, we propose to consider the following
question:: “Is support required to reduce manual effort?”
If yes, the user should take approaches into account that
help to reduce manual effort. In looking at the approaches in
our survey, we identified the following strategies to reduce
effort:

1) An approach might include full automation of change
identification or resolutions in benefit class 0:n.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 15

No effort-based
restriction on approaches

to be selected.

Full automation
prioritized

• Full automation in change identification
• Full automation in resolution
 Garces et al., ASIMOV, COPE/Edapt, Wittern

Yes No

Support
to reduce manual effort

required?

• Approaches with full automation or
• Support resolution by

• Proposition of (selectable/configurable) solutions
• Optimization of resolution orders
• Automated consideration of semantics

• Support change identification (proposition of identified changes)
 Garces et al., ASIMOV, COPE/Edapt, Wittern, EMFMigrate, Cross-

Layer Modeler, CARE, Kessentini et al., GraCoT, Didonet et al.

Yes No

Williams et al.,
Langer et al.,

CO-URE,

de Geest et al., Meyers et
al., Mantz & Taentzer et
al., Anguel et al. 2014,
Hößler et al., Wachsmuth,
Cicchetti et al., Brand et al.,
Gruschko et al.,
COPE/Edapt, CBRMig

X

Vermolen et al. 2012,
Williams et al., Langer

et al., CO-URE,

de Geest et al., Meyers et al., Mantz
& Taentzer et al., EMFMigrate,
Anguel et al. 2014, Hößler et al.,
Wachsmuth, Cicchetti et al., Brand
et al., Gruschko et al., COPE/Edapt,
CBRMig

X

Fig. 7. Automation and support for manual tasks

2) An approach might support the creation of resolu-
tion strategies or model resolutions by providing multiple
strategies/solutions that can be selected or single strategies
that only need to be configured. This way, also users who
are not familiar with a change specification language can be
enabled to specify their own strategies.

3) An approach can optimize the order of change resolu-
tions to save the user form unnecessary manual tasks.

4) An approach might consider, in addition to the meta-
model conformance, constraints arising from the model’s
context, in order to reduce the number of solutions that are
presented to the user for selection.

5) Finally, an approach for the identification of complex
changes might support the user by automatically proposing
a list of identified changes, from which the user can select.

These strategies can be found within the following ap-
proaches (as shown in Figure 7): Garcés et al. [39], ASI-
MOV [50], COPE/Edapt [60], Wittern [61], EMFMigrate
[28], Cross-Layer Modeler [64], CARE [68], Kessentini et
al. [67], GraCoT [65], and Didonet et al. [36]. Again, the
change identification approaches of Vermolen et al. 2012
[70], Williams et al. [69], Langer et al. [71], and CO-URE
[10] might be combined with the following resolution ap-
proaches: de Geest et al. [37], Meyers et al. [40], Mantz &
Taentzer et al. [46], EMFMigrate [28], Anguel et al. 2014
[47], Hößler et al. [48], Wachsmuth [51], Cicchetti et al. [15],
Brand et al. [53], Gruschko et al. [14], COPE/Edapt [60], or
CBRMig [62].

5.3 Tool Support

The approaches we surveyed have been partially imple-
mented already and some of these implementations have
even been made publicly available. When a company’s
ability to invest is low, the direct reuse of a tool might be
required, since an approach for which an implementation
can be reused is easier to adopt. Therefore, we propose to
ask the following questions when adopting an approach (as
summarized in Figure 8): “Can or should a proprietary tool
be built?”.

No tool-re-use
restriction on
approaches to

be selected.

Can/should
own tool be

built?

Approaches with available implementations:
 COPE/Edapt, EMFMigrate, Cicchetti et al.,

Brand et al., GraCoT

Reuse of existing tool Build own tool

Need to minimize risk
of failing implementation?

Approaches that are known to be implementable,
i.e. with non-available or available implementation:
 Krause et al., MCL, ASIMOV, COPE/Edapt,

Wittern, Cross-Layer Modeler, CARE, Kessentini
et al., GraCoT , Didonet et al.

Yes No

Can tool
integration be

realized?

Approaches with
available
implementations that
require no combination:
 COPE/Edapt,

EMFMigrate,
Cicchetti et al., Brand
et al., GraCoT

Yes No

Vermolen et al.
2012, Langer et

al., CO-URE,
Williams et al.,

Müller et al.

X

Vermolen & Visser 2008,
Sprinkle et al., Wimmer et
al., EMFMigrate, Epsilon
Flock, de Geest et al., Garces
et al., Wachsmuth, Cicchetti
et al., Brand et al., Gruschko
et al., COPE/Edapt

Vermolen et al.
2012, Langer

et al., CO-URE X

Vermolen & Visser
2008, Wimmer et al.,
EMFMigrate, Epsilon
Flock, Cicchetti et al.,
Brand et al.,
COPE/Edapt

Fig. 8. Tool support

In case an existing tool should be reused, the criterion for
the selection of approaches should be that implementations
are made available already21.

Tool support - integration: As mentioned above, only
some of the approaches can be used standalone. For situa-
tions where it is required to combine change identification
and resolution approaches, it is necessary to integrate these
tools, even if implementations already exist. Therefore, we
propose to further ask the refining question: “Can an inte-
gration of multiple tools be realized?”.

If an integration can be build, it is possible to use all
single approaches and combinations of change identification
and resolution approaches for which the above mentioned
criterion - that implementations are publicly available - is
fulfilled. Thus, the approaches COPE/Edapt [60], EMFMi-
grate [28], Cicchetti et al. [15], Brand et al. [53], or GraCoT
[65] might be used. Furthermore, the change identification
approaches by Vermolen et al. 2012 [70], Langer et al. [71],
or CO-URE [10] can be used in combination with one of the
following resolution approaches: Vermolen & Visser 2008
[23], Wimmer et al. [25], EMFMigrate [28], Epsilon Flock
[35], Cicchetti et al. [15], Brand et al. [53], and COPE/Edapt
[60].

However, if also the effort of building an integration
is not desired, we propose to focus on approaches that
can be used standalone and fulfill the above mentioned
criterion of having publicly available implementation. These
are: COPE/Edapt [60], EMFMigrate [28], Cicchetti et al. [15],
Brand et al. [53], GraCoT [65].

Tool support - risk of first implementation: Building
a tool for a research approach can be risky, especially when
the approach is of theoretical nature and has not been imple-
mented before. Therefore, we propose to ask the following
refining question, when it is decided that an own tool should
be build: “Is there a need to minimize the risk of failing the
attempt to implement the tool?”.

If there is this need, we propose to the user to consider
approaches that are at least known to be implementable,
i.e. for which an implementation is publicly available or
at least is mentioned or described in the corresponding
publications. Thus, one of the following approaches could
be used: Krause et al. [29], MCL [32], ASIMOV [50], Wittern

21. Of course, it is also a possibility to contact authors of other
approaches to request whether they are willing to make their imple-
mentations available. However, here we only consider approaches for
which these implementations are already published.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 16

[61], Cross-Layer Modeler [64], CARE [68], Kessentini et al.
[67], GraCoT [65], and Didonet et al. [36]. Alternatively, the
change identification approaches by Vermolen et al. 2012
[70], Langer et al. [71], or CO-URE [10], Williams et al.
[69], Müller et al. [72] could be used in combination with
one of the following resolution approaches: Vermolen &
Visser 2008 [23], Sprinkle et al. [24], Wimmer et al. [25],
EMFMigrate [28], Epsilon Flock [35], de Geest et al. [37],
Garcés et al. [39], Wachsmuth [51], Cicchetti et al. [15], Brand
et al. [53], Gruschko et al. [14], or COPE/Edapt [60].

5.4 Organizational Constraints
Finally, as illustrated in Figure 4, there are some organiza-
tional constraints that should be taken into account, in ad-
dition to the considerations about required correctness and
automation. As mentioned above, these constraints concern
the control about the co-evolution process as well as the
skills/expertise of the person performing the corresponding
activities.

Control about the process: One special characteristic of
the co-evolution of metamodels and models is that its sub-
tasks do not necessarily have to be performed within the
same organizational units or even company. Leading to the
situation that a company, which wants to co-evolve models
after a metamodel change, might not have any influence
on the decision on how the metamodel changes are applied
and, thus, on how the changes can be collected. For example,
when a metamodel is used that is changed outside a com-
pany (e.g. as for standards like BPMN), approaches that are
based on online change detection are often not applicable.

Consequently, if the metamodel change is not under the
control of the company, online change collection might not
happen22.

In consequence, a user should consider the following
question: “Are the metamodel changes performed under
the control of the company or will the results of the online
change collection be available?” If not, change identification
can only be performed with approaches that do not rely on
online change collection as summarized in Figure 9.

This means that the following approaches that use offline
change identification can be used: EMFMigrate [28], MCL
[32], de Geest et al. [37], Garcés et al. [39], Anguel et al. [47],
Cicchetti et al. [15], Brand et al. [53], COPE/Edapt (offline
change collection) [60], CBRMig [62], CARE [68], Kessentini
et al. [67], GraCoT [65], and Didonet et al. [36]. Furthermore,
combinations of approaches with the approaches from the
group “identify complex changes” (Williams et al. [69],
Vermolen et al. 2012 [70], Langer et al. [71], CO-URE [10],
Müller et al. [72]) can be used.

Skills of the person changing the metamodel: As
argued above, UI-intrusive change collection approaches
require the user who changes the metamodel to be aware
of up to 60 or more operators and to strictly apply them,
even though simpler valid ways of changing the metamodel
in the intended way might exists (e.g. by using atomic
operators instead of complex ones). However, mistakes in
the use of these approaches lead to wrong identification of

22. To the best of our knowledge, online change collection is so
far not happening (or results are not provided) for the big standard
metamodels UML and BPMN

Metamodel change is under
control of the company that evolves

the models?

No Yes

No organization-based
restriction on change

identification approaches to
be selected.

Approaches with offline change collection
 EMFMigrate, MCL, Garces et al., Anguel et al. 2014,

Cicchetti et al., Brand et al., COPE/Edapt (offline),
CBRMig, CARE, Kessentini et al., GraCoT, Didonet et al.

 Williams et al.,
Vermolen et al.
2012, Langer et

al., CO-URE,
Müller et al.

Vermolen & Visser 2008, Sprinkle
et al., Wimmer et al.,
EMFMigrate, Epsilon Flock, de
Geest et al., Garces et al., Meyers
et al., Mantz & Taentzer et al.,
Anguel et al. 2014, Hößler et al.,
Wachsmuth, Cicchetti et al.,
Brand et al., Gruschko et al.,
COPE/Edapt, CBRMig

X

Fig. 9. Organizational Constraints: control about the process.

Metamodel change is
performed by a specialist?

No Yes

No skill-based restriction
on change identification

approaches to be selected.

Approaches with UI-preserving or offline change collection
 EMFMigrate, MCL, de Geest et al, Garces et al., Anguel

et al. 2014, Cicchetti et al., Brand et al., COPE/Edapt
(offline), CBRMig, Cross-Layer Modeler, CARE,
Kessentini et al., GraCoT, Didonet et al.

 Williams et al.,
Vermolen et al.
2012, Langer et

al., CO-URE,
Müller et al.

Vermolen & Visser 2008, Sprinkle
et al., Wimmer et al.,
EMFMigrate, Epsilon Flock, de
Geest et al., Garces et al., Meyers
et al., Mantz & Taentzer et al.,
Anguel et al. 2014, Hößler et al.,
Wachsmuth, Cicchetti et al.,
Brand et al., Gruschko et al.,
COPE/Edapt, CBRMig

X

Fig. 10. Organizational Constraints: skills of person changing the meta-
model.

changes and in consequence to the application of model
resolution rules that are not the intended ones (leading to
a lower correctness of the result).

Therefore, we propose to ask the following question
(as summarized in Figure 10): “Is the person who is
changing the metamodel an expert in the considered co-
evolution approach?” If not, we propose to prefer offline
or UI-preserving change identification approaches over UI-
intrusive change collection approaches.

In consequence, following approaches that are based on
offline or UI-preserving change collection can be applied:
EMFMigrate [28], MCL [32], de Geest et al. [37], Garcés et
al. [39], Anguel et al. [47], Cicchetti et al. [15], Brand et al.
[53], COPE/Edapt (offline change collection) [60], CBRMig
[62], Cross-Layer Modeler [64], CARE [68], Kessentini et
al. [67], GraCoT [65], and Didonet et al. [36]. Again, also
combinations of approaches with the approaches from the
group “identify complex changes” (Williams et al. [69],
Vermolen et al. 2012 [70], Langer et al. [71], CO-URE [10],
Müller et al. [72]) can be used.

Skills of the person co-evolving the models: The res-
olution of models most often includes manual tasks, either
on the level of resolution strategy definitions or on the level
of decision making for single models. However, defining
resolution strategies for a domain or company requires a
basic understanding of the co-evolution approach. Similarly,
making resolution decisions per model requires knowledge
about the models as well as the software and the projects
they belong to.

Nonetheless, a domain expert who has to specify res-
olution strategies is not necessarily a specialist in model
resolution technologies and a developer who performs the
model migration is not necessarily entirely familiar with the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 17

Is the manual resolution
performed by a specialist?

No Yes

No skill-based restriction
on resolution approaches

to be selected.

Support for manual strategy specification or manual per-
model resolution:
 EMFMigrate, de Geest et al., Cicchetti et al., Brand et al.,

CBRMig, Anguel et al. 2014, COPE/Edapt, Cross-Layer
Modeler, CARE, Kessentini et al., GraCoT, Didonet et al.

 Williams et al.,
Vermolen et al.
2012, Langer et

al., CO-URE,
Müller et al.

EMFMigrate, de Geest et al.,
Meyers et al., Mantz & Taentzer
et al., Anguel et al. 2014,
Wachsmuth, Cicchetti et al.,
Brand et al., Gruschko et al.,
COPE/Edapt, CBRMig

X

Fig. 11. Organizational Constraints: skills of the person co-evolving the
models.

original models.
Therefore, we propose to companies to consider the

question whether the persons applying or configuring the
approach have the above mentioned expertise. If not, we
propose to apply the following criteria when selecting an
approach:

1) For the need to define resolution strategies, ap-
proaches studied in this survey provide support by giving
default resolution strategies that can be configured or freely
manipulated.

2) For resolution decisions per model, we found support
given in 2 forms: (a) by providing resolution strategies that
can be configured per model, or (b) by providing a choice
between multiple resolutions per model.

The following approaches fulfill at least one of the two
criteria (summarized in Figure 11): EMFMigrate [28], de
Geest et al. [37], Cicchetti et al. [15], Brand et al. [53], CBR-
Mig [62], Anguel et al. [47], COPE/Edapt [60], Cross-Layer
Modeler [64], CARE [68], Kessentini et al. [67], GraCoT [65],
and Didonet et al. [36]. Furthermore, combinations can be
used that include the above mentioned or the following
additional approaches: Meyers et al. [40], Mantz & Taentzer
et al. [46], Wachsmuth [51], and Gruschko et al. [14].

5.5 How to use the questions for decision making?

To determine which approaches are good candidates for
the company’s or the project’s case, a user might take the
different decision diagrams shown in this section and walk
through the questions to get lists of approaches that fit his
constraints.

For example, consider the case of a (hypothetical) com-
pany that uses and maintains its own domain specific
modeling language (DSML). The metamodel change is per-
formed within the company by those experts that developed
the DSML, but who are not familiar with co-evolution tech-
nology. Model resolution is performed by the developers
that created the models and related software. Thus, the
company has one organizational constraint. In addition, the
language developers formulate the need for domain specific
resolutions, but also predict that common strategies can be
used for the whole language. While a full automation is not
the main priority, support for manual tasks is desired to
increase the degree of automation. Finally, the company is
willing to build a tool for the resolution, if it is shown that
the used techniques can be implemented.

In a second step, the user should compare the outcomes
of the different decision diagrams to identify approaches
that fit all his needs.

For our exemplary company, this would mean that the
approaches of Didonet et al., Cross-Layer Modeler, CARE,
Kessentini et al., and GraCoT could be used. An alternative
choice could be a combination of one of the change identifi-
cation approaches of Williams et al. and Vermolen et al. 2012
with the resolution parts of EMFMigrate or COPE/Edapt.

The result might also be used to reflect upon the question
whether compromises are required, e.g. if there is no or only
a, unsatisfying overlap between the approaches fulfilling the
different needs.

In the case of our exemplary company, the decision
makers might recognize that the list contains COPE/Edapt
only for its resolution part. This is the case, since the
developers of the DSML are not experts in co-evolution tech-
nologies. However, this is something that could be changed
by training these developers. This willingness to eliminate
this organizational constraint would allow the company to
add COPE/Edapt as a standalone approach to the list of
candidates as well as the approach of Wittern.

6 RELATED WORK

In the last 6 years, a handful of surveys focussing either on
approaches or tools for model migration, i.e. metamodel-
model co-evolution, have been published. In the following,
we give an overview of the goals and perspectives of these
surveys and explain how our survey complements these
existing overviews.

In 2009, Rose et al. presented a small summary of
approaches for model migration [79]. Already back then,
they identified that operator based approaches have to deal
with problems, such as the user’s challenge to find the
right operator and the need of an integration to editors.
They also discussed that per metamodel change alternative
migration strategies are feasible. Overall, the discussion
focusses mainly on the detection of changes.

A year later, Rose et al. presented a comparison of
four model migration tools [80]. The tools were applied
to example tasks, considering aspects as, e.g. conciseness
(i.e. the required number of operators and additional lines
of code), clarity (simplicity/understandability of migration
strategies), supported modeling technologies, e.g. Ecore or
XML, and performance of model migration execution. They
summarize whether a tool allows to change the offered
migration strategy, without discussing how this happens.
Similarly, they approach a first simple comparison of the
expressiveness of the different tools.

Another tool comparison was performed by a broader
team around Rose et al., as a contest of 9 different trans-
formation tools [81]. Besides tools for model and graph
transformations, only two of the considered tools where
specialized in providing model migration strategies for
metamodel changes. Again the comparison was performed
on examples of metamodel migrations and all participants
of the contest evaluated the tools. Some additional criteria
were considered, compared to [80], e.g. tool maturity and
the question to what extent the given benchmark problem
could be solved. The findings suggest that the participants

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 18

considered model migration tools more appropriate for the
given tasks than the transformation tools.

Herrmannsdoerfer and Wachmuth provide a survey on
10 approaches for the coupled evolution of metamodel and
models [82]. A focus is put on transformation characteristics,
such as the used transformation language and the ques-
tion whether the model migration is performed as an in-
place transformation. They distinguish between approaches
that allow to overwrite existing “couplings of metamodel
changes” with model migration rules (i.e. change a strategy)
and approaches that allow to “extend the set of couplings”
(i.e. that allow specification of migration rules for new meta-
model changes). Finally, they make a rough differentiation,
whether metamodel changes are defined by a user, recorded
directly, or detected.

Anguel et al. presented another overview paper in 2015,
comparing 8 approaches with regard to specification and
source of the evolution information, language of the resolu-
tion specification and extensibility [83].

Most recently, Paige et al. published a summary of state
of the art and future challenges in model evolution. In
contrast to the focused in-depth investigation in this paper,
Paige’s work gives a broader, high-level overview of diverse
topics around the evolution of models, e.g. including model
versioning [84]. Nonetheless, Paige et al. provide a nice short
summary of 9 approaches for co-evolution of models with
evolving metamodels. They differentiate between operator-
based and inference approaches, i.e. offline approaches.

To summarize, the existing surveys provide inter-
esting perspectives on approaches that directly support
metamodel-model co-evolution, but also on approaches that
might just be used to apply the co-evolution. However, the
following points are so far not addressed:

• Balance between degree of automation and user con-
trol: Existing surveys already address the question,
whether an approach allows for changes of reso-
lution strategies. However, until now there is no
overview on the techniques and abilities provided
by the different approaches to balance the degree
of automation and user control. Further, there is
so far no systematic summary of approaches and
techniques that also support the detection of complex
changes.

• Prerequisites: None of the surveys summarizes or
discusses the implicit prerequisites that techniques
define on skills and the organizational structure.
Thus, we have so far no support for determining the
applicability of approaches in industrial contexts.

None of the overview papers discussed here was created
based on a systematic literature review [21]. This is reflected
in the fact that the three papers that were published in 2014
and 2015 are outdated even for their time, since they include
no approaches that have been published after 2011. The set
of todays 31 existing approaches is nearly twice as big as
the set of approaches considered in the related work listed
above.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented an extensive taxonomy and
survey on approaches that support metamodel-model co-

evolution. 31 approaches from literature have been studied
and classified with respect to the taxonomy. Based on the
survey’s insights, we presented a decision support that
can be used by practitioners to choose the co-evolution
approaches that are good candidates for their case. Needs
for automation and user control are taken into account as
well as prerequisites that are implied by the approaches.
This decision support is summarized in Section 5.

Challenges: We observe that only 6 approaches address
all three benefit classes. However, none of the approaches
fully exploits the existing possibilities. It seems to still be an
open question how the different techniques to support the
three benefit classes can be combined into one approach.
We saw that the question whether a resolution strategy has
been generated or is predefined still plays an important role
when it comes to the way how user control and automation
are balanced. It still seems a challenge to provide optional
user interaction in approaches with predefined strategies.
A possible reason might be the missing ability to allow for
free strategy manipulation. It is an open question whether
strategies with configuration points can be generated and
whether such configurations might be optional. Future ap-
proaches might aim at overcoming these limitations.

Further, most approaches still focus on syntax in their
automation. Approaches that work towards improving the
automation, while not decreasing semantic quality, are still
rare. This remains a challenge for future work.

Perspectives: Providing open and accessible tools for the
generation of resolution strategies is a step that can change
the landscape of research on co-evolution in the future. Sim-
ilarly, it would be interesting to see first implementations
and more mature forms of approaches for the learning of
resolution strategy, as proposed in CBRMig [62].

We are aware that the evolution of metamodels also
requires the co-evolution of other artifacts, such as transfor-
mations or constraints. Our insights on metamodel change
collection and identification can definitely be useful for such
other cases of co-evolution on metamodels. In the future,
it might be interesting to investigate similarities between
resolution techniques for different artifacts. For example,
it will be useful to compare how different approaches to
metamodel-constraints and metamodel-transformation co-
evolution deal with resolution and whether there are simi-
larities with model-resolution strategies. Further, it would
be interesting to investigate whether these co-evolution
techniques might partially be reused for cases of software
evolution, i.e. when different software artifacts, such as
models and code, co-evolve.

In the decision support we propose to ask the ques-
tion “Is it possible to generalize resolution per metamodel
change within the given domain, company, or project?”
(Figure 6). In fact, it requires expert knowledge about the
domain, company, or project at hand to answer this ques-
tion. It would be interesting to see more studies in the future
that investigate for different domains, whether 0:n solutions
provided by the different approaches are sufficient to cover
most needs or not. This knowledge could further support
users in making their choice.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 19

REFERENCES

[1] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen,
“Empirical assessment of mde in industry,” in Proceedings of the
33rd International Conference on Software Engineering. ACM, 2011,
pp. 471–480.

[2] G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, “Assess-
ing the state-of-practice of model-based engineering in the embed-
ded systems domain,” in Model-Driven Engineering Languages and
Systems. Springer, 2014, pp. 166–182.

[3] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full
code generation. John Wiley & Sons, 2008.

[4] J.-P. Tolvanen and S. Kelly, “Metaedit+: defining and using in-
tegrated domain-specific modeling languages,” in Proceedings of
the 24th ACM SIGPLAN conference companion on Object oriented
programming systems languages and applications. ACM, 2009, pp.
819–820.

[5] H. Behrens, M. Clay, S. Efftinge, M. Eysholdt, P. Friese, J. Köhnlein,
K. Wannheden, and S. Zarnekow, “Xtext user guide,” https://
eclipse.org/Xtext/documentation/1 0 1/xtext.pdf , 2008.

[6] X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in
Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International
Conference on. IEEE, 2008, pp. 511–520.

[7] A. Reder and A. Egyed, “Incremental consistency checking for
complex design rules and larger model changes,” in Proceedings
of the 15th international conference on Model Driven Engineering
Languages and Systems. Springer-Verlag, 2012, pp. 202–218.

[8] D. Di Ruscio, L. Iovino, and A. Pierantonio, “Evolutionary to-
getherness: how to manage coupled evolution in metamodeling
ecosystems,” in Graph Transformations. Springer, 2012, pp. 20–37.

[9] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Au-
tomating co-evolution in model-driven engineering,” in Enterprise
Distributed Object Computing Conference, 2008. EDOC’08. 12th Inter-
national IEEE. IEEE, 2008, pp. 222–231.

[10] J. Garcı́a, O. Diaz, and M. Azanza, “Model transformation co-
evolution: A semi-automatic approach,” in Software Language En-
gineering. Springer, 2013, pp. 144–163.

[11] K. Garcés, J. M. Vara, F. Jouault, and E. Marcos, “Adapting trans-
formations to metamodel changes via external transformation
composition,” Software & Systems Modeling, vol. 13, no. 2, pp. 789–
806, 2014.

[12] A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Retschitzegger,
W. Schwinger, and J. Schonbock, “Consistent co-evolution of mod-
els and transformations,” in Model Driven Engineering Languages
and Systems (MODELS), 2015 ACM/IEEE 18th International Confer-
ence on. IEEE, 2015, pp. 116–125.

[13] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Cope-
automating coupled evolution of metamodels and models,” in
ECOOP 2009–Object-Oriented Programming. Springer, 2009, pp.
52–76.

[14] B. Gruschko, D. Kolovos, and R. Paige, “Towards synchronizing
models with evolving metamodels,” in Proceedings of the Interna-
tional Workshop on Model-Driven Software Evolution, 2007.

[15] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “Managing depen-
dent changes in coupled evolution,” in Theory and Practice of Model
Transformations. Springer, 2009, pp. 35–51.

[16] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais,
“Detecting complex changes during metamodel evolution,” in
Advanced Information Systems Engineering. Springer, 2015, pp. 263–
278.

[17] R. F. Paige, P. J. Brooke, and J. S. Ostroff, “Metamodel-based
model conformance and multiview consistency checking,” ACM
Trans. Softw. Eng. Methodol., vol. 16, no. 3, Jul. 2007. [Online].
Available: http://doi.acm.org/10.1145/1243987.1243989

[18] L. Iovino, A. Pierantonio, and I. Malavolta, “On the impact signifi-
cance of metamodel evolution in mde.” Journal of Object Technology,
vol. 11, no. 3, pp. 1–33, 2012.

[19] V. Lifschitz, “What is answer set programming?.” in AAAI, vol. 8,
2008, pp. 1594–1597.

[20] M. Alanen and I. Porres, Difference and union of models. Springer,
2003.

[21] B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1–26, 2004.

[22] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension
through dynamic analysis,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 5, pp. 684–702, 2009.

[23] S. Vermolen and E. Visser, “Heterogeneous coupled evolution of
software languages,” in Model Driven Engineering Languages and
Systems. Springer, 2008, pp. 630–644.

[24] J. Sprinkle and G. Karsai, “A domain-specific visual language for
domain model evolution,” Journal of Visual Languages & Computing,
vol. 15, no. 3, pp. 291–307, 2004.

[25] M. Wimmer, A. Kusel, J. Schönböck, W. Retschitzegger,
W. Schwinger, and G. Kappel, “On using inplace transformations
for model co-evolution,” in Proceedings of the 2nd International
Workshop on Model Transformation with ATL (MtATL) at TOOLS,
vol. 10, 2010, pp. 65–78.

[26] D. Di Ruscio, L. Iovino, and A. Pierantonio, “What is needed
for managing co-evolution in mde?” in Proceedings of the 2nd
International Workshop on Model Comparison in Practice. ACM, 2011.

[27] J. Di Rocco, L. Iovino, and A. Pierantonio, “Bridging state-based
differencing and co-evolution,” in Proceedings of the 6th Interna-
tional Workshop on Models and Evolution. ACM, 2012, pp. 15–20.

[28] D. Wagelaar, L. Iovino, D. Di Ruscio, and A. Pierantonio, “Transla-
tional semantics of a co-evolution specific language with the emf
transformation virtual machine,” in Theory and Practice of Model
Transformations. Springer, 2012, pp. 192–207.

[29] C. Krause, J. Dyck, and H. Giese, “Metamodel-specific coupled
evolution based on dynamically typed graph transformations,” in
Theory and Practice of Model Transformations. Springer, 2013, pp.
76–91.

[30] A. Narayanan, T. Levendovszky, D. Balasubramanian, and G. Kar-
sai, “Automatic domain model migration to manage metamodel
evolution,” in Model Driven Engineering Languages and Systems.
Springer, 2009, pp. 706–711.

[31] D. Balasubramanian, T. Levendovszky, A. Narayanan, and G. Kar-
sai, “Continuous migration support for domain-specific lan-
guages,” in Proceedings of the 9th OOPSLA workshop on domain-
specific modeling, Orlando, vol. 2, 2009, pp. 311–322.

[32] T. Levendovszky, D. Balasubramanian, A. Narayanan, F. Shi,
C. van Buskirk, and G. Karsai, “A semi-formal description of mi-
grating domain-specific models with evolving domains,” Software
& Systems Modeling, vol. 13, no. 2, pp. 807–823, 2014.

[33] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. Polack, “Enhanced
automation for managing model and metamodel inconsistency,”
in Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM
International Conference on. IEEE, 2009, pp. 545–549.

[34] ——, “Model migration with epsilon flock,” in Theory and Practice
of Model Transformations. Springer, 2010, pp. 184–198.

[35] L. M. Rose, D. S. Kolovos, R. F. Paige, F. A. Polack, and S. Poulding,
“Epsilon flock: a model migration language,” Software & Systems
Modeling, vol. 13, no. 2, pp. 735–755, 2014.

[36] M. D. Del Fabro and P. Valduriez, “Semi-automatic model inte-
gration using matching transformations and weaving models,”
in Proceedings of the 2007 ACM symposium on Applied computing.
ACM, 2007, pp. 963–970.

[37] G. de Geest, S. Vermolen, A. van Deursen, and E. Visser, “Generat-
ing version convertors for domain-specific languages,” in Reverse
Engineering, 2008. WCRE ’08. 15th Working Conference on. IEEE,
2008, pp. 197–201.

[38] K. Garces, F. Jouault, P. Cointe, and J. Bézivin, “Adaptation of
Models to Evolving Metamodels,” inria, Research Report RR-6723,
2008. [Online]. Available: https://hal.inria.fr/inria-00338695

[39] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin, “Managing model
adaptation by precise detection of metamodel changes,” in Pro-
ceedings of the 5th European Conference on Model Driven Architecture-
Foundations and Applications. Springer, 2009, pp. 34–49.

[40] B. Meyers, M. Wimmer, A. Cicchetti, and J. Sprinkle, “A generic
in-place transformation-based approach to structured model co-
evolution,” Electronic Communications of the EASST, vol. 42, 2012.

[41] G. Taentzer, F. Mantz, and Y. Lamo, “Co-transformation of graphs
and type graphs with application to model co-evolution,” in Graph
Transformations. Springer, 2012, pp. 326–340.

[42] F. Mantz, S. Jurack, and G. Taentzer, “Graph transformation con-
cepts for meta-model evolution guaranteeing permanent type con-
formance throughout model migration,” in Applications of Graph
Transformations with Industrial Relevance. Springer, 2012, pp. 3–18.

[43] G. Taentzer, F. Mantz, T. Arendt, and Y. Lamo, “Customizable
model migration schemes for meta-model evolutions with mul-
tiplicity changes,” in Model-Driven Engineering Languages and Sys-
tems. Springer, 2013, pp. 254–270.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

https://eclipse.org/Xtext/documentation/1_0_1/xtext.pdf
https://eclipse.org/Xtext/documentation/1_0_1/xtext.pdf
http://doi.acm.org/10.1145/1243987.1243989
https://hal.inria.fr/inria-00338695

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 20

[44] F. Mantz, G. Taentzer, and Y. Lamo, “Customizing model mi-
grations by rule schemes,” in Proceedings of the 2013 International
Workshop on Principles of Software Evolution. ACM, 2013, pp. 1–10.

[45] ——, “Co-transformation of type and instance graphs supporting
merging of types with retyping,” GCM 2012, pp. 47–58, 2012.

[46] ——, “Well-formed model co-evolution with customizable model
migration,” Electronic Communications of the EASST, vol. 58, 2013.

[47] F. Anguel, A. Amirat, and N. Bounour, “Using weaving models
in metamodel and model co-evolution approach,” in Computer
Science and Information Technology (CSIT), 2014 6th International
Conference on. IEEE, 2014, pp. 142–147.

[48] J. Hößler, M. Soden, and H. Eichler, “Coevolution of models,
metamodels and transformations,” Models and Human Reasoning.
Wissenschaft und Technik Verlag, Berlin, pp. 129–154, 2005.

[49] H. Florez, M. Sánchez, J. Villalobos, and G. Vega, “Coevolution
assistance for enterprise architecture models,” in Proceedings of the
6th International Workshop on Models and Evolution. ACM, 2012,
pp. 27–32.

[50] H. A. F. Fernandez, “Adapting models in metamodels composition
processes,” Vı́nculos, vol. 10, no. 1, pp. 96–108, 2013.

[51] G. Wachsmuth, “Metamodel adaptation and model co-
adaptation,” in ECOOP 2007–Object-Oriented Programming.
Springer, 2007, pp. 600–624.

[52] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Meta-
model differences for supporting model co-evolution,” in Pro-
ceedings of the 2nd Workshop on Model-Driven Software Evolution-
MODSE, 2008.

[53] M. Van Den Brand, Z. Protić, and T. Verhoeff, “A generic solution
for syntax-driven model co-evolution,” in Objects, Models, Compo-
nents, Patterns. Springer, 2011, pp. 36–51.

[54] S. Becker, B. Gruschko, T. Goldschmidt, and H. Koziolek, “A
process model and classification scheme for semi-automatic meta-
model evolution,” in 1st Workshop MDD, SOA und IT-Management
(MSI), GI, GiTO-Verlag, 2007, pp. 35–46.

[55] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “Automatability
of coupled evolution of metamodels and models in practice,” in
Model Driven Engineering Languages and Systems. Springer, 2008,
pp. 645–659.

[56] M. Herrmannsdoerfer, “Operation-based versioning of metamod-
els with cope,” in Proceedings of the 2009 ICSE Workshop on Com-
parison and Versioning of Software Models. IEEE Computer Society,
2009, pp. 49–54.

[57] M. Herrmannsdoerfer and M. Koegel, “Semantics-preserving
model migration,” in International Workshop on Models and Evolu-
tion, 2010.

[58] M. Herrmannsdoerfer and D. Ratiu, “Limitations of automating
model migration in response to metamodel adaptation,” in Models
in Software Engineering. Springer, 2010, pp. 205–219.

[59] M. Herrmannsdoerfer and M. Koegel, “Towards a generic op-
eration recorder for model evolution,” in Proceedings of the 1st
International Workshop on Model Comparison in Practice. ACM, 2010,
pp. 76–81.

[60] M. Herrmannsdoerfer, “Cope a workbench for the coupled evolu-
tion of metamodels and models,” in Software Language Engineering,
B. Malloy, S. Staab, and M. van den Brand, Eds. Springer Berlin
Heidelberg, 2011, vol. 6563, pp. 286–295.

[61] H. Wittern, “Determining the necessity of human intervention
when migrating models of an evolved dsl.” in EDOC Workshops,
2013, pp. 209–218.

[62] F. Anguel, A. Amirat, and N. Bounour, “Towards models and
metamodels co-evolution approach,” in Programming and Systems
(ISPS), 2013 11th International Symposium on. IEEE, 2013, pp. 163–
167.

[63] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, “Co-evolution of
metamodels and models through consistent change propagation.”
in ME@MoDELS. Citeseer, 2013, pp. 14–21.

[64] A. Demuth, M. Riedl-Ehrenleitner, R. E. Lopez-Herrejon, and
A. Egyed, “Co-evolution of metamodels and models through
consistent change propagation,” Journal of Systems and Software,
vol. 111, pp. 281–297, 2016.

[65] P. Gomez, M. E. Sánchez, H. Florez, and J. Villalobos, “An ap-
proach to the co-creation of models and metamodels in enterprise
architecture projects.” Journal of Object Technology, vol. 13, no. 3,
pp. 1–29, 2014.

[66] W. Kessentini, “Automated metamodel/model co-evolution using
a multi-objective optimization approach,” in Proceedings of the

ACM Student Research Competition at MODELS 2015 co-located with
the ACM/IEEE 18th International Conference MODELS 2015, 2015.

[67] W. Kessentini, H. Sahraoui, and M. Wimmer, “Automated meta-
model/model co-evolution using a multi-objective optimization
approach,” in 12th European Conference on Modelling Foundations
and Applications (ECMFA 2016), 2016.

[68] J. Schoenboeck, A. Kusel, J. Etzlstorfer, E. Kapsammer,
W. Schwinger, M. Wimmer, and M. Wischenbart, “Care:
a constraint-based approach for re-establishing conformance-
relationships,” in Proceedings of the Tenth Asia-Pacific Conference on
Conceptual Modelling-Volume 154. Australian Computer Society,
Inc., 2014, pp. 19–28.

[69] J. R. Williams, R. F. Paige, and F. A. Polack, “Searching for
model migration strategies,” in Proceedings of the 6th International
Workshop on Models and Evolution. ACM, 2012, pp. 39–44.

[70] S. D. Vermolen, G. Wachsmuth, and E. Visser, “Reconstructing
complex metamodel evolution,” in Software Language Engineering.
Springer, 2012, pp. 201–221.

[71] P. Langer, M. Wimmer, P. Brosch, M. Herrmannsdörfer, M. Seidl,
K. Wieland, and G. Kappel, “A posteriori operation detection in
evolving software models,” Journal of Systems and Software, vol. 86,
pp. 551–566, 2013.

[72] K. Müller and B. Rumpe, “User-driven adaptation of model differ-
encing results,” in Proc. International Workshop on Comparison and
Versioning of Software Models (CVSM14), 2014.

[73] M. Herrmannsdoerfer, S. Benz, E. Juergens et al., “Cope: A lan-
guage for the coupled evolution of metamodels and models,” in
1st International Workshop on Model Co-Evolution and Consistency
Management, 2008.

[74] M. Koegel, M. Herrmannsdoerfer, Y. Li, J. Helming, and J. David,
“Comparing state-and operation-based change tracking on mod-
els,” in Enterprise Distributed Object Computing Conference (EDOC),
2010 14th IEEE International. IEEE, 2010, pp. 163–172.

[75] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[76] R. Hebig, D. E. Khelladi, and R. Bendraou, “Surveying the corpus
of model resolution strategies for metamodel evolution,” in Asia-
Pacific Software Engineering Conference (APSEC), 2015.

[77] E. Burger and B. Gruschko, “A change metamodel for the evolu-
tion of mof-based metamodels.” in Modellierung, 2010, pp. 285–300.

[78] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and software Technology, vol. 43, no. 14, pp. 833–839,
2001.

[79] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “An
analysis of approaches to model migration,” in Proceedings of the
Joint MoDSE-MCCM Workshop, 2009, pp. 6–15.

[80] L. M. Rose, M. Herrmannsdoerfer, J. R. Williams, D. S. Kolovos,
K. Garcés, R. F. Paige, and F. A. Polack, “A comparison of model
migration tools,” in Model Driven Engineering Languages and Sys-
tems. Springer, 2010, pp. 61–75.

[81] L. M. Rose, M. Herrmannsdoerfer, S. Mazanek, P. Van Gorp,
S. Buchwald, T. Horn, E. Kalnina, A. Koch, K. Lano, B. Schätz et al.,
“Graph and model transformation tools for model migration,”
Software & Systems Modeling, vol. 13, no. 1, pp. 323–359, 2014.

[82] M. Herrmannsdörfer and G. Wachsmuth, “Coupled evolution of
software metamodels and models,” in Evolving Software Systems,
T. Mens, A. Serebrenik, and A. Cleve, Eds. Springer Berlin
Heidelberg, 2014, pp. 33–63.

[83] A. A. Fouzia Anguel and N. Bounour, “Comparison study of
metamodels and models co-evolution approaches,” in Symposium
on Complex Systems and Intelligent Computing (CompSIC), 2015.

[84] R. F. Paige, N. Matragkas, and L. M. Rose, “Evolving models in
model-driven engineering: State-of-the-art and future challenges,”
Journal of Systems and Software, vol. 111, pp. 272–280, 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSE.2016.2610424

