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1 Introduction

Classically, a distinction is made in data analysis and machine learning between
supervised and unsupervised learning. In supervised learning, the data set is
composed of observations of the response variable and a list of input variables
for n individuals of some population. The problem is then to predict the value
of the response variable for a new individual. In unsupervised learning, no
response variable is observed, and the task is to find some underlying structure
in the data (such as a partition or a manifold).

In recent years, though, the distinction between supervised and unsuper-
vised learning has been blurred by the introduction of new paradigms that lie
between these two extremes. One of these paradigms is semi-supervised learn-
ing [4], in which the response variable is perfectly known for some individuals,
and totally unknown for others. An even more general paradigm is partially
supervised learning [11, 17, 24, 34, 6, 7], in which the values of the response
variable for learning instances is only assumed to be partially known or uncer-
tain, i.e., is subject to some hard or soft constraints. In [11], the author first
considered a type of classification problem in which partial knowledge about
class labels is expressed in the Dempster-Shafer (DS) framework by belief func-
tions [9, 42]: we can then speak of soft labels [6]. The interest of DS theory
in this context relies on the generality of belief functions, which encompass
probabilities, sets and possibility measures as special cases: using belief func-
tions to label training data thus allows us to encode various pieces of evidence
about class labels. In particular, soft labels typically occur when no ground
truth about class labels is available and data have to be labeled by experts or
using some indirect method, or when the presence of noise casts doubt on the
observations of the response variable. In these cases, using soft labels makes it
possible to model the available side knowledge regarding the class information
to be predicted. Due to the generality of the DS framework, the concept of
soft label allows us to express uncertainty about class labels in a variety of
ways, including sets, possibility distributions or probability distributions.

To learn from data with soft labels, nonparametric techniques such as the
evidential k-nearest neighbor rule [11] and decision trees [16, 20, 46] have first
been proposed. A general mechanism for parametric inference in the presence
of uncertain data (of which soft labels are a special case) was later introduced
in [12]. In this approach, uncertain class information is represented by mass
functions. The notion of likelihood can be extended to such soft class labels: it
can be shown to depend on the contour functions associated with the uncertain
observations. Maximizing this generalized likelihood generally requires using
an iterative procedure. Such a procedure, called the Evidential EM (E2M)
algorithm, was introduced in [12]; it extends the Expectation-Maximization
(EM) algorithm [10] by allowing for maximum-likelihood estimation from par-
tially missing data. The E2M algorithm has been applied to a variety of tasks
and models, including partially supervised Independent Factor Analysis [5],
Hidden Markov Models with partially hidden states [39], fuzzy data clustering
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using Gaussian mixture models [38], decision trees [44, 45, 30], and mixture
models with progressively censored data [48].

Two types of parametric models are commonly used in classification: gen-
erative models describe the joint distribution of the input vector W and the
class label Z, while discriminative models represent the conditional distribu-
tion of Z given W . Generative models, such as Gaussian mixture models, are
suitable both for unsupervised learning (clustering) and for supervised classi-
fication. In contrast, discriminative models (such as logistic regression) cannot
be used in an unsupervised setting, because they need observations of the re-
sponse variable Y . However, they rely on fewer adaptive parameters and less
restrictive assumptions, which may result in better predictive performance in
supervised learning tasks, especially when class-conditional distributions are
misspecified [36][3, p. 204]. The question then arises of the relative perfor-
mances of generative and discriminative models in the presence of soft labels.
To the best of our knowledge, this question has not been addressed until now.
It will be investigated in this paper, with emphasis on linear classification. As
representatives of generative and discriminative classifiers, we will consider,
respectively, partially supervised Linear Discriminant Analysis (LDA), and
Logistic Regression (LR) based on the E2M algorithm. These two techniques
will be introduced and compared using simulated and real data with soft labels
obtained both by simulation, and from real experts. The objective of this paper
is to study the influence of label uncertainty on the performances of these two
classification models and, if possible, to formulate prescriptions regarding the
suitability of each of these two approaches in situations where class labels are
uncertain. Another problem addressed in this paper concern the assessment
of classifier performances based on partially labeled data, a problem which
had not received attention before. We propose a solution based on the notions
of lower and upper expected losses. This method is useful, in particular, for
model (e.g., classifier or feature) selection in presence of data with soft labels.

The rest of this paper is organized as follows. Background information
about the theory of belief functions and the E2M algorithm will first be recalled
in Section 2. Partially supervised LDA and LR will then be introduced in
Section 3. The issues of performance evaluation and model selection will be
addressed in Section 4, and experimental results will be presented in Section
5. Section 6 will conclude the paper.

2 Background

In order to make the paper self-contained, the basic concepts of Dempster-
Shafer theory will first be recalled in Section 2.1. The notion of evidential
likelihood and the E2M algorithm will then be described in Sections 2.2 and
2.3, respectively.
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2.1 Dempster-Shafer Theory

In Dempster-Shafer theory [42], uncertain knowledge about some variable X
taking values in a finite set X is described by a mass function, which is defined
as a mapping m from the power set 2X to [0, 1] verifying∑

A⊆X

m(A) = 1

and m(∅) = 0. The subsets A of X such that m(A) > 0 are called the focal sets
of m. A mass function m with a single focal set is said to be logical. Logical
mass functions are in one-to-one correspondence with the subsets of X . The
mass function m? such that m?(X ) = 1 is said to be vacuous; it represents
total ignorance.

From a mass functionm, we can compute a belief function and a plausibility
function, defined, respectively, as

Bel(A) =
∑
B⊆A

m(B)

and

Pl(A) =
∑

B∩A6=∅

m(B) = 1−Bel(A),

for all A ⊆ X . Functions Bel and Pl are, respectively, completely monotone
and completely alternating capacities [42]. When all the focal sets of m are
singletons, m is said to be Bayesian; Bel and Pl then boil down to the same
probability measure. When m is consonant, i.e., when its focal sets are nested,
then Pl is a possibility measure [47]: it verifies

Pl(A ∪B) = max(Pl(A), P l(B))

for all A,B ⊆ X . The mapping pl : X → [0, 1] defined by pl(x) = Pl({x})
for any x ∈ X is called the contour function of m. When m is consonant, the
following equalities hold,

Pl(A) = max
x∈A

pl(x)

for all A ⊆ X , and maxx∈ pl(x) = 1. When m is Bayesian, pl is a probability
mass function and

∑
x∈X pl(x) = 1.

The discounting operation [42] allows us to take into account the reliability
of a source of information. Assume that a source provides us with a mass
function m, and we have a degree of confidence 1− α in the reliability of the
source. We can then construct a new mass function αm defined as

αm = (1− α)m+ αm?. (1)

Parameter α is called the discount rate. If α = 0, the mass function is un-
changed. If α = 0, the discounted mass function is vacuous.
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Given two mass function m1 and m2, their orthogonal sum is defined as
the mass function m1 ⊕m2 such that (m1 ⊕m2)(∅) = 0 and

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C) (2)

for all A ⊆ X , A 6= ∅, where

κ =
∑

B∩C=∅

m1(B)m2(C) (3)

is called the degree of conflict between m1 and m2. The orthogonal sum of
m1 and m2 is well-defined as long as they are not totally conflicting, i.e., their
degree of conflict is strictly less than 1. Operation ⊕ is called Dempster’s rule
of combination. The contour function pl1 ⊕ pl2 of m1 ⊕m2 is proportional to
the product of the contour functions pl1 and pl2 associated with m1 and m2:
we have

(pl1 ⊕ pl2)(x) =
pl1(x)pl2(x)

1− κ
(4)

for all x ∈ X . The orthogonal sum of a Bayesian mass function m1 and an
arbitrary mass function m2 is Bayesian; the degree of conflict between m1 and
m2 can then be obtained from the contour functions as

κ = 1−
∑
x∈X

pl1(x)pl2(x). (5)

2.2 Evidential Likelihood

Let X be a discrete random vector with finite sample space X and probability
mass function pX(x; θ) assumed to be known up to a parameter θ ∈ Θ. After a
realization x of X has been observed, the (complete-data) likelihood function
is the mapping from Θ to [0, 1] defined by

Lc(θ) = pX(x; θ), ∀θ ∈ Θ. (6)

Let us now assume that x is not observed precisely, but we collect some ev-
idence about x. This evidence induces partial knowledge of x described by a
mass function m on X . The likelihood function (6) can then be generalized
[12] to

L(θ) =
∑
A⊆X

m(A)
∑
x∈A

pX(x; θ), ∀θ ∈ Θ, (7)

Function L(θ) defined by (7) is called the evidential likelihood function induced
by the uncertain data m. It must be emphasized that the notion of evidential
likelihood is a new concept. This concept is distinct from the classical one of
likelihood, because mass function m is not a realization of a random element.
See [12] for a detailed discussion on this issue, and [8] for alternative defini-
tions of likelihood in the case of imprecise observations. When m is logical
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with m(A) = 1 for some A ⊆ X , then L(θ) is simply the probability of the
event X ∈ A. The evidential likelihood function then becomes identical to
the likelihood function under the Coarsening at Random (CAR) assumption
[22]. However, we do not assume in our model that A is generated at random.
Instead, the mass function characterizes epistemic uncertainty about x. This
partial knowledge can be due to a indirect observation of the quantity of inter-
est, to the subjectivity of the information source, or to the presence of noise
with ill-known distribution. Whenever mass function m in (7) is certain, i.e.,
when m({x}) = 1, the evidential likelihood (7) coincides with the classical
likelihood (6), which only depends on the pdf pX modeling the random data
generating process.

By permuting the two summations in (7), we get another expression for
L(θ) as

L(θ) =
∑
x∈X

pX(x; θ)
∑
A3x

m(A) =
∑
x∈X

pX(x; θ)pl(x), (8)

where pl is the contour function associated to m. Comparing (8) and (5), we
can see that 1−L(θ) equals the degree of conflict between the uncertain data m
and the probability mass function p(x; θ). Maximizing L(θ;m) thus amounts
to minimizing the conflict between the data and the model.

Equation (8) also reveals that L(θ; pl) can alternatively be viewed as the
expectation of pl(X),

L(θ) = Eθ[pl(X)]. (9)

In the special case where X = (X1, . . . , Xn) is an independent sample, and
assuming that the contour function pl can be decomposed as

pl(x) = pl1(x1) . . . pln(xn), (10)

a property called cognitive independence by Shafer [42], (9) simplifies to

L(θ) =

n∏
i=1

Eθ[pli(Xi)]. (11)

Finally, we can remark that the normalized likelihood pl(θ) = L(θ)/L(θ̂),

where θ̂ is a maximizer of L(θ), and it is assumed that L(θ̂) < ∞, can be
interpreted as the contour function of a consonant belief function on Θ (or,
equivalently, as a possibility distribution on Θ) [13]. Equations (9) and (11)
can directly be extended to the case of continuous data.

2.3 E2M Algorithm

The E2M algorithm introduced in [12] is a generalization of the EM algorithm
[10], which allows one to maximize the evidential likelihood (7)-(9). Similarly
to the EM algorithm, each iteration q of E2M is composed of two steps:



Parametric Classification with Soft Labels using the Evidential EM Algorithm 7

1. The E-step requires the combination of pX(x; θ(q)), the probability mass
function of X for the current estimate θ(q) of θ, with the contour func-
tion pl. The result of this combination is a probability mass function
pX(·|pl; θ(q)) = pX(·; θ(q))⊕ pl, which can be computed as

pX(x|pl; θ(q)) =
pX(x; θ(q))pl(x)

L(θ(q); pl)
,

for all x ∈ X . Then, the expectation of the complete-data log-likelihood
`c(θ) = log pX(X; θ) with respect to p(x|pl; θ(q)) is calculated,

Q(θ, θ(q)) =

∑
x∈X `c(θ;x)pX(x; θ(q))pl(x)

L(θ(q); pl)
. (12)

2. The M-step then consists in maximizing function Q(θ, θ(q)) with respect
to θ, finding the new estimate θ(q+1) such that Q(θ(q+1), θ(q)) ≥ Q(θ, θ(q))
for all θ ∈ Θ.

The E- and M-steps are iterated until L(θ(q+1)) − L(θ(q)) ≤ ε for some arbi-
trarily small ε.

The E2M algorithm was shown in [12] to increase the evidential likelihood
as each iteration, i.e., to ensure that L(θ(q+1)) ≥ L(θ(q)) for all q. Consequently,
it converges to a local maximum of the evidential likelihood if this function is
bounded from above. When the contour function pl corresponds to a logical
mass function, i.e., when pl(x) = I(x ∈ A) for some A ⊂ X , where I(·) is the
indicator function, the evidential likelihood — and thus the expectation (12)
— coincide with their certain counterparts: the E2M algorithm then boils down
to the classical EM algorithm.

The E2M algorithm has been applied to several Machine Learning prob-
lems. A first category of application concerns problems in which we want to
exploit some information about variables that are usually considered as la-
tent: we can then speak of “partially latent” variables. For instance, in [5], the
authors consider an Independent Factor Analysis model in which the discrete
latent variables represent the states of railway track circuits, about which par-
tial knowledge is elicited from experts. In [39], the authors apply the E2M
algorithm to estimate the parameter of a Hidden Markov Model in which the
hidden state variable is not totally “hidden”, but partially observed; they de-
scribe an application to machine condition monitoring. A second category of
applications concerns the problem of learning from uncertain data. For in-
stance, Sutton-Charani et al. [44, 45] and Ma et al. [30] applied the E2M
algorithm to decision tree inference from data with uncertain attributes, while
the problem of clustering data with fuzzy attributes was considered by Quost
and Denœux in [38]. In [48], the authors considered the modeling of lifetime
data using mixture models and progressively censored observations. The task
of learning a classifier from partially labeled data also belongs to this second
category. This problem will be addressed in the next section.



8 Benjamin Quost et al.

3 Application to Linear Classification Models

In this section, the complete data are assumed to consist in an i.i.d. sample
X = {(Wi, Zi)}ni=1f from (W,Z), where W is a d-dimensional random input
vector and Z is the class variable, taking values in a finite set Z = {1, . . . ,K}.
The complete dataset x = {(wi, zi)}ni=1 is a realization from X. The notion
of soft label will first be introduced in Section 3.1. The application of the
E2M algorithm to estimate the parameter of LDA and LR using uncertain
class information will then be described, respectively, in Section 3.2 and 3.3.
The complexity of partially supervised LDA and LR will then be discussed in
Section 3.4.

3.1 Soft Labels

In some applications, class information is uncertain. This is the case, in par-
ticular, when the class labels cannot be observed directly and have to be
inferred by an unsupervised learning algorithm (see, e.g., [18, 28, 29]) or by
any other indirect method. Sometimes, class labels are assessed subjectively
by an expert, a group of experts (as in the two examples described in Section
5.2), or even by a large number of individuals through crowdsourcing (see, e.g.
[1, 2]). In the multiple-expert case, the more discordant the opinions are, the
more doubt can be cast on the class information that would be obtained, for
instance, by majority voting.

Rather than using crisp but possibly erroneous class information zi, soft
class labels may be used, so as to reflect the degree of confidence in each of the
possible classes. Figure 1 illustrates the advantage of soft labels over crisp, but
potentially erroneous labels. In this toy example, two doubtful instances have
a strong influence on the decision boundary. By expressing lack of confidence
in the class membership of these instances using soft labels, we decrease their
influence on the classifier. When information about the class labels of some
instances is not reliable, it is preferable to take this uncertainty into account,
in order to decrease the influence of the most doubtful patterns on the deci-
sion rule. In this paper, we consider the representation of uncertainty in the
Dempster-Shafer framework. A soft label for instance i is defined as a mass
function mi on the set Z of classes. An n-tuple (m1, . . . ,mn) of mass functions
for n learning instances is called a credal partition [15]. As noted in [14], the
notion of credal partition subsumes most other soft clustering notions. For
instance, if mass functions mi are consonant, they define possibility distribu-
tions and, equivalently, fuzzy subsets of Z. If mass functions are logical (i.e.,
if they verify mi(Ai) = 1 for some Ai ⊆ Z), then we can define the lower and
upper approximations of each class k as, respectively, the set of instances for
which Ai = {k}, and the set of instances for which k ∈ Ai. We then recover
notions from rough classification and clustering [35].

Because the E2M algorithm described in Section 2.3 uses only the con-
tour functions, we can equivalently represent soft labels by the plausibilities
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(a)	 (b)	

doubful		
instances	

Fig. 1: Effect of soft labels. Left: crisp labels; two wrongly labeled instances
result in an incorrect decision boundary. Right: soft labels; the influence of
doubtful instances is decreased.

plik = pli(k) of each class k, where pli is the contour function of mi. Partially
supervised learning is then defined as the task of learning a classifier from a
learning set {(wi, pli)}ni=1 with soft labels. We can remark that the partially
supervised paradigm encompasses most of the classical learning frameworks.
Fully supervised learning is recovered when there is no uncertainty on class
labels, i.e., when we have, for all i, plik = 1 for some k ∈ {1, . . . ,K} and
pli` = 0 for all ` 6= k. Unsupervised learning corresponds to the situation
where the soft labels are vacuous, i.e., plik = 1 for all i and all k. When
some labels are crisp and some are vacuous, we get the semi-supervised learn-
ing paradigm. It is clear, however, that soft labelling goes much further than
these classical formalisms, by allowing the user to specify numerical degrees
of plausibility for each class and each learning instance. Induction strategies
may then be adapted to such soft labels in order to avoid learning a biased
model by attaching too much importance to doubtful information.

In the sequel, we will consider the application of the E2M algorithm to
estimate the parameter of two models: LDA and LR using data with soft
labels.

3.2 Linear Discriminant Analysis

LDA is based on the assumption that the conditional distribution of W given
Z = k is multivariate normal with mean µk and covariance matrix Σ indepen-
dent on k:

W |(Z = k) ∼ N (µk, Σ), k = 1, . . . ,K.

Let πk be the marginal probability that Z = k, and

θ = (µ1, . . . , µK , Σ, π1, . . . , πK−1)
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the parameter vector. The complete-data likelihood is

Lc(θ) =

n∏
i=1

p(wi|Zi = zi)p(zi) (13a)

=

n∏
i=1

K∏
k=1

φ(wi;µk, Σ)zikπzikk , (13b)

where φ(·;µk, Σ) is the multivariate normal density,

φ(w;µk, Σ) =
1

(2π)d/2|Σ|1/2
exp

{
−1

2
(w − µ)TΣ−1(w − µ)

}
,

and zik is a binary class indicator variable, such that zik = 1 if zi = k and
zik = 0 otherwise.

Under the assumption of cognitive independence (10), the contour function
on X is pl(x) =

∏n
i=1 pli(xi), with

pli(xi) =

{
plik if xi = (wi, k) for some k = 1, . . . ,K

0 otherwise.

The evidential likelihood (11) is thus

L(θ) =

n∏
i=1

K∑
k=1

plikφ(wi;µk, Σ)πk. (14)

We can remark that, when there is no uncertainty, i.e., when plik = zik for all
(i, k), we have

K∑
k=1

plikφ(wi;µk, Σ)πk =

K∏
k=1

φ(wi;µk, Σ)plikπplikk ,

and the evidential likelihood (14) becomes identical to the complete-data like-
lihood (13b). When, on the other hand, uncertainty is maximal, i.e., class
labels are completely unknown, then plik = 1 for all (i, k), and the evidential
likelihood (14) becomes

L(θ) =

n∏
i=1

K∑
k=1

φ(wi;µk, Σ)πk,

which is the likelihood function corresponding to the unsupervised case.
In the E-step of the E2M algorithm for this model, we compute the expec-

tation of the complete-data log-likelihood

`c(θ) =

n∑
i=1

K∑
k=1

zik [log φ(wi;µk, Σ) + log πk]
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with respect to the combined probability mass function

pX(x|pl; θ(q)) =

n∏
i=1

p(xi|pli; θ(q)),

with

p(xi|pli; θ(q)) =


plikπ

(q)
k φ(wi;µ

(q)
k , Σ(q))∑

` pli`π
(q)
` φ(wi;µ

(q)
` , Σ(q))

if xi = (wi, k) for some k

0 otherwise.

We get

Q(θ, θ(q)) =

n∑
i=1

K∑
k=1

ζ
(q)
ik [log φ(wi;µk, Σ)πk + log πk] , (15)

with

ζ
(q)
ik = E(Zik|pl; θ(q)) =

plikπ
(q)
k φ(wi;µ

(q)
k , Σ(q))∑

` pli`π
(q)
` φ(wi;µ

(q)
` , Σ(q))

. (16)

We can remark that the function Q(θ, θ(q)) defined by (15) has exactly
the same form as the function computed in the E-step of the EM algorithm
applied to the normal mixture model in the unsupervised case (see, e.g., [33,
pages 81-83]). When class labels are completely unknown, i.e., plik = 1 for all i

and k, then ζ
(q)
ik defined by (16) becomes equal to the conditional expectation

of Zik given Wi = wi, and E2M boils down to the classical EM algorithm.
Because of the formal similarity with the EM algorithm, the parameter

values maximizing Q(θ, θ(q)) can be readily obtained as

π
(q+1)
k =

1

n

n∑
i=1

ζ
(q)
ik , µ

(q+1)
k =

∑n
i=1 ζ

(q)
ik wi∑n

i=1 ζ
(q)
ik

, (17a)

Σ(q+1) =
1

n

n∑
i=1

K∑
k=1

ζ
(q)
ik (wi − µ(q+1)

k )(wi − µ(q+1)
k )T . (17b)

3.3 Logistic Regression

In contrast with LDA, LR starts with a model of the conditional distribution
of Z given W = w. Specifically, assume that the conditional probabilities of
each class given W = w are given by

pk(w; θ) =
exp(βTk w̃)

1 +
∑K−1
`=1 exp(βT` w̃)

, k = 1, . . . ,K − 1 (18a)

pK(w; θ) =
1

1 +
∑K−1
`=1 exp(βT` w̃)

, (18b)
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where pk(w; θ) is a notation for Pr(Z = k|W = w; θ), βk is a p+1-dimensional
vector of coefficients, θ = (βT1 , . . . , β

T
K−1)T is the vector of all parameters in

the model, and w̃ = (1, wT )T is an extended input vector. Logistic regression
proceeds by maximizing the conditional likelihood

Lc(θ) =

n∏
i=1

Pr(Zi = zi|wi; θ) (19a)

=

n∏
i=1

K∏
k=1

pk(w; θ)zik . (19b)

After plugging the expression of the conditional class probabilities (18) into
(19b), and taking the logarithm, we obtain the following expression for the
complete-data conditional log-likelihood,

`c(θ) =

n∑
i=1

{
K−1∑
k=1

zikβ
T
k w̃i − log

(
1 +

K−1∑
k=1

βTk w̃i

)}
. (20)

Under the same cognitive independence assumption (10) as before, the
evidential likelihood is

L(θ) =

n∏
i=1

K∑
k=1

plikpk(wi; θ). (21)

We can easily check that L(θ) = Lc(θ) whenever plik = zik for all (i, k), i.e.,
when there is no label uncertainty. On the other hand, in case of maximal
uncertainty, i.e., when plik = 1 for all (i, k), we have L(θ) = 1 for all θ, and
the model parameters can no longer be estimated.

The E2M algorithm for the maximization of the evidential likelihood (21)
can be described as follows [37]. In the E-step, we compute the expectation of
the complete-data log-likelihood (20) with respect to the combined probability
mass function

pZ(z|pl; θ(q)) =

n∏
i=1

pZi(zi|pli; θ(q)),

with

pZi
(k|pli; θ(q)) =

plikpk(wi; θ
(q))∑

` pli`p`(wi; θ
(q))

, k = 1, . . . ,K.

We get

Q(θ, θ(q)) =

n∑
i=1

{
K−1∑
k=1

ζ
(q)
ik β

T
k w̃i − log

(
1 +

K−1∑
k=1

βTk w̃i

)}
, (22)

with

ζ
(q)
ik = E(Zik|pl; θ(q)) =

plikpk(wi; θ
(q))∑

` pli`p`(wi; θ
(q))

. (23)
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The maximization of (22) cannot be performed in one step and requires
an iterative optimization procedure, such as the Newton-Raphson (NR) algo-
rithm. It is actually not necessary to maximize function Q(θ, θ(q)): we may
simply make a step uphill, i.e., find some new estimate θ(q+1) such that
Q(θ(q+1), θ(q)) > Q(θ(q), θ(q)). Such a procedure is classically called a Gen-
eralized EM algorithm [32, page 24]. An uphill step starting from the previous
estimate θ(q) can be made by carrying out one iteration of the NR algorithm
with line search, i.e., by using the following update rule,

θ(q+1) = θ(q) − η
[
∂2Q(θ, θ(q))

∂θ∂θT

]−1
θ=θ(q)

∂Q(θ, θ(q))

∂θ

∣∣∣∣
θ=θ(q)

, (24)

where η is the step size. Typically, η is initially set to 1 and, if the objective
function has not increased, it is repeatedly cut by two until an uphill step
is achieved. The gradient vector and Hessian matrix can be computed using
matrix operations as in standard LR (see, e.g., [21, 27] for details).

3.4 Complexity

Since partially supervised learning is a more difficult problem than fully su-
pervised learning, we can expect partially supervised LDA or LR to require
more computational resources than their classical counterparts. Yet, partially
supervised learning algorithm have roughly the same complexity as the corre-
sponding supervised learning procedures.

In classical LDA the maximum likelihood estimates (MLEs) have a closed-
form expression, whereas in presence of soft labels they are determined af-
ter repeatedly computing the expected labels (16) and the model parameters
(17a)-(17b) [38]. However, each iteration of the E2M algorithm has the same
complexity as that of the MLE calculation in classical LDA: consequently, the
running time of partially supervised supervised LDA is roughly equal to that
of classical LDA multiplied by the number of iterations of E2M.

Similarly, partially supervised logistic regression involves repeatedly esti-
mating the expected class labels (23) and the model parameters (24). However,
parameter estimation with classical LR already involves an iterative procedure
(the NR algorithm). As stated in Section 3.3, we can perform only one itera-
tion of the NR algorithm at each M-step of the E2M algorithm. Further, each
iteration of the NR algorithm has the same complexity as one iteration of
E2M. As a consequence, there is no significant difference between the running
times of classical and partially supervised LR.

4 Performance evaluation and model selection

Performance evaluation and model selection are fundamental issues when de-
signing classifiers. Typically, a loss function is defined, and the performance
of a classifier is measured by its expected loss, or risk. If the loss is assumed
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to be equal to 1 for misclassification and 0 in case for correct classification,
then the risk is the error probability. This probability may be estimated from
an independent test set, or using cross-validation when the amount of data at
hand is too low. In the case of data with soft labels, error (or risk) estima-
tion becomes more difficult, because the true class is uncertain. This issue is
addressed in this section.

4.1 Lower and upper expected loss

Assume that, for some test pattern i with soft label mi, we get the predicted
class ẑi. Let λ(ẑi, zi) denote the loss incurred if the true class is zi. The actual
loss is unknown, because we only have partial knowledge of zi, expressed by
mass function mi. However, we can compute lower and upper expected values
[9] as follows:

λ∗(ẑi,mi) =
∑
A⊆Z

mi(A) min
k∈A

λ(ẑi, k) (25a)

λ∗(ẑi,mi) =
∑
A⊆Z

mi(A) max
k∈A

λ(ẑi, k). (25b)

The lower and upper expected losses can be seen as, respectively, optimistic
and pessimistic assessments of the unknown loss λ(ẑi, zi). A trade-off between
these two assessments can be achieved by computing a convex sum

λρ(ẑi,mi) = ρλ∗(ẑi,mi) + (1− ρ)λ∗(ẑi,mi), (26)

where ρ ∈ [0, 1] is a pessimism index [25, 43]. Although the particular form
of Eq. (26) can be justified axiomatically [25], the theory tells us nothing
about the choice of ρ, which models the attitude of the decision maker. In the
absence of a better argument, we propose to fix ρ = 0.5, based on a symmetry
consideration.

In the special case where λ is the 0-1 loss function, defined by λ(ẑi, zi) =
I(ẑi 6= zi), we have

min
k∈A

λ(ẑi, k) =

{
0 if ẑi ∈ A
1 otherwise.

Consequently,

λ∗(ẑi,mi) =
∑

A⊆Z:ẑi 6∈A

mi(A) (27a)

= 1−
∑

A⊆Z:ẑi∈A

mi(A) (27b)

= 1− pli(ẑi). (27c)
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Similarly,

max
k∈A

λ(ẑi, k) =

{
0 if A = {ẑi}
1 otherwise.

Hence,
λ∗(ẑi,mi) = 1−mi({ẑi}). (28)

The width of the lower-upper expected loss interval reflects the imprecision
of the mass function mi. It is null if mi is Bayesian, and it is equal to one if
mi is vacuous.

We can also remark that the lower expected 0-1 loss criterion (27) has an
interesting alternative interpretation in terms of degree of conflict. Let m̂i be
the certain mass function defined by m̂i({ẑi}) = 1. The degree of conflict (3)
between m̂i and mi is

κi =
∑

B∩C=∅

m̂i(B)mi(C) (29a)

=
∑
C 63ẑi

mi(C) (29b)

= 1− pli(ẑi) = λ∗(ẑi,mi). (29c)

The lower expected loss is thus equal to the degree of conflict between the
prediction ẑi and the mass function mi representing one’s knowledge about
the true class.

4.2 Application to performance assessment

Given a test set of size nt, with soft labels {mi}nt
i=1, lower and upper test error

rates can be defined by averaging, respectively, the lower and upper expected
losses,

λ =
1

nt

nt∑
i=1

λ∗(ẑi,mi) = 1− 1

nt

nt∑
i=1

pli(ẑi) (30a)

λ =
1

nt

nt∑
i=1

λ∗(ẑi,mi) = 1− 1

nt

nt∑
i=1

mi({ẑi}). (30b)

These two quantities can be seen as, respectively, optimistic and pessimistic
assessments of the test error rate. In the fully supervised case with certain mass
function mi verifying mi({zi}) = 1, we have pli(ẑi) = mi({ẑi}) = I(zi = ẑi);
both λ and λ then boil down to the usual test error rate. In the unsupervised
case, we have λ = 0 and λ = 1, meaning that the error rate cannot be assessed.

Given a set of models (such as, e.g., LDA and LR with different subsets
of input variables), their performances can be assessed using cross-validation
estimates of the error rates. Typically, the learning set is partitioned into B
blocks of approximately equal size, and B classifiers are trained, leaving one
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Table 1: Real datasets used in Section 5.1.

dataset amount of instances number of classes dimension
Breastcancer 569 2 30
Ionosphere 350 2 34

Iris 150 3 4
Satimage 6435 6 36

Sonar 208 2 60
Vowel 990 11 10
Wine 178 3 13

of the B blocks aside. The classifier performance is then assessed from its
predictions on the block that was left aside. Lower and upper cross-validation

estimates λCV and λ
CV

can be obtained in this way.

Given two classifiers C1 and C2, and their lower and upper cross-validation

error rates {λ(i)CV , λ
(i)

CV }, i = 1, 2, maximality leads to considering classifier C1

as better than C2 if λ
(1)

CV < λ
(2)
CV . This criterion yields only a partial order over

classifiers. If a total order is needed, then we can base the comparison on the

weighted means (1 − ρ)λ
(i)
CV + ρλ

(i)

CV , after fixing the value of the pessimism
index ρ.

5 Experiments

In this section, we report on experiments with LDA and LR trained from data
with soft labels. In Section 5.1, we will first consider simulated and real data
in which noise has been artificially introduced in class labels. We will then
compare the performances of classifiers trained using the noisy labels, with
those of classifiers trained using soft labels encoding labeling uncertainty. In
Section 5.2, we will describe two real applications in which soft labels naturally
arise.

5.1 Simulations

Experimental procedure One synthetic dataset and seven real datasets are con-
sidered in this experiment. The synthetic dataset, synthetic with n = 200
instances was generated according to a Gaussian mixture model with g = 3
classes in proportions π1 = 0.45, π2 = 0.35 and π3 = 0.2 in a p = 2-dimensional
space, and

µ1 =

(
1
−1

)
, µ2 =

(
0
1

)
, µ3 =

(
−1
0

)
, Σ1 = Σ2 = Σ3 =

(
1 0
0 1

)
.
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The real datasets are classical datasets of the literature. Their main char-
acteristics are reported in Table 1. In these data sets, the true class label is
known for each learning instance. To study the influence of different levels of
label uncertainty on classifier performance, we need to artificially introduce
some uncertainty. For that purpose, we generated, for each instance, a prob-
ability pi at random according to a beta distribution with fixed variance (set
to 0.04) and expectation p set to 0.1, 0.2, . . . , 0.9 for the synthetic dataset,
and 0.1, 0.2, . . . , 0.7 for the others. Then, with probability pi, the label was
replaced with a label picked at random. This process simulates the fact that,
if the user only has partial information on class labels, but is forced to provide
crisp labels, then some errors will inevitably be introduced.

We then generated sets of labels according to four different strategies. The
first strategy is to ignore label uncertainty and consider the noisy labels as the
true ones. Another approach, referred to hereafter as adaptive semi-supervised
learning, is to discard the most uncertain labels; in our simulations, a label zi
was kept if pi ≤ 0.5, and the instance was considered as unlabeled otherwise.
The other two strategies use soft labels. In the first case, we consider that
the user knows each noise level pi. We then discount (see Eq. (1)) the label
information with a discount rate equal to pi. If k∗ is the observed label, we thus
set plik∗ = 1 and pli` = pi for all ` 6= k∗. The second strategy for generating
soft labels is similar, except that each pi is replaced by the average noise level p.
Thus, in this situation, only generic knowledge about the mislabeling process
is used, instead of specific information related to each instance. This strategy
uses less information, but we might argue that it is much easier to set up than
the previous one, which requires an expert to assess each probability pi of a
label being erroneous.

For the synthetic dataset, we used a test set of size 1000 from the same
distribution as the training data. For the real datasets, the classifiers were
trained using 2/3 of the instances picked at random, the remaining ones being
used for testing. Two classifiers were considered: LDA and LR. When fitting
LDA to the data, the “perfect” model (i.e., obtained from the data without
corrupted labels) was first determined, by considering ten different starting
points (the initial proportions were set to 1/g, the initial covariance matrices
to the identity matrix, and the expectations vectors were sampled at random
in the training set) and retaining the best solution (i.e., the one with the high-
est log-likelihood). The corresponding “actual” parameters were then used as
starting values for the four LDA corresponding to the various labeling strate-
gies mentioned above. For logistic regression, the initial parameter matrix was
set to the (p + 1) × (g − 1) null matrix, and we used quadratic penalization
with coefficient λ = 0.01. For each dataset, this whole procedure (training and
test instance selection, introduction of label noise, model training, and model
testing) was repeated 50 times, and average error rates and 95% confidence
intervals were computed.

Results and discussion Overall, taking into account label uncertainty almost
always significantly improves classification accuracy, as compared to noisy la-
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Fig. 2: synthetic (a, c, e) and breastcancer (b, d, f) data. Top: LDA, Middle: LR,
Bottom: LDA vs. LR. Black/o: noisy labels, blue/*: adaptive semi-supervised
learning, red/x: soft labels based on individual noise level pi, green/+: soft
labels based on mean noise level p; plain lines: LDA, dashed lines: logistic
regression.
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Fig. 3: ionosphere (a, c, e) and iris (b, d, f) data. Top: LDA, Middle: LR,
Bottom: LDA vs. LR. Black/o: noisy labels, blue/*: adaptive semi-supervised
learning, red/x: soft labels based on individual noise level pi, green/+: soft
labels based on mean noise level p; plain lines: LDA, dashed lines: logistic
regression.
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Fig. 4: sonar (a, c, e) and satimage (b, d, f) data. Top: LDA, Middle: LR,
Bottom: LDA vs. LR. Black/o: noisy labels, blue/*: adaptive semi-supervised
learning, red/x: soft labels based on individual noise level pi, green/+: soft
labels based on mean noise level p; plain lines: LDA, dashed lines: logistic
regression.
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Fig. 5: vowel (a, c, e) and wine (b, d, f) data. Top: LDA, Middle: LR, Bottom:
LDA vs. LR. Black/o: noisy labels, blue/*: adaptive semi-supervised learning,
red/x: soft labels based on individual noise level pi, green/+: soft labels based
on mean noise level p; plain lines: LDA, dashed lines: logistic regression.
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bels or the semi-supervised strategy. This is particularly true for LDA, where
the benefit of using soft labels is critical when the level of label noise is high.
For a majority of datasets, soft labels based on the average mislabeling rate
are almost as effective as those based on individual mislabeling rates (see, e.g.,
Figures 2(a), 2(b), 3(a)). For some datasets, however, there is a significant dif-
ference between both types of soft labels, the more informative one allowing
for better performances (see Figures 4(b), 5(a)).

The benefit of using soft labels together with LR also exists but it is less im-
portant than it is with LDA. Generally, soft labels make it possible to improve
classification accuracy, but the difference with the adaptive semi-supervised
strategy — and sometimes even noisy labels — is less remarkable, especially
when mislabeling probability is high. For most datasets, LR and LDA have
similar performances with low label noise, but LDA becomes superior when
mislabeling probability increases. This observation is consistent with our ini-
tial intuition exposed in Section 1, since a discriminative classifier such as LR
cannot handle unsupervised learning, in contrast with LDA, which is based
on a generative model. Two noticeable exceptions are the Satimage and Vowel
datasets, for which LR performs critically better than LDA, with both sets of
soft labels (Figures 4(f) and 5(e)). This result may be explained by a strong
departure from normality for these two datasets. To check this assumption,
we applied Mardia’s test of multivariate normality [31] to both datasets. The
results, reported in Tables 2 and 3, show that the departure from normality
is, indeed, highly significant in both cases. Overall, LDA tends to outperform
LR for a majority of datasets, especially when soft labels are highly uncertain.
However, LDA can also perform poorly in some cases. In real applications, it
is thus necessary to run both classifiers and select the best model using, e.g.,
cross-validation and the performance measures proposed in Section 4.

5.2 Real Applications

In this section, we present two real applications where class labels are elicited
from human subjects or “experts”. The first application described in Section
5.2.1 concerns the detection of K-complexes in EEG data. In this application,
the ground truth cannot be determined objectively and we need to have the
data labeled by physicians. Uncertainty is reflected by disagreement between
experts. The second application, described in Section 5.2.2, is about expres-
sion recognition in facial images. The expression on a face cannot always be
determined unambiguously by human subjects. Five subjects were asked to
rate the plausibility of each of the six basic expressions for each image, and
the resulting credal assessments were combined by Dempster’s rule. In each of
the two applications, we will compare the performances of LDA and those of
LR, both with soft labels and with crisp labels ignoring labeling uncertainty.
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Table 2: Results of Mardia’s test of multivariate normality to the each of the 11
classes in the Vowel dataset. The statistics are: Mardia’s multivariate skewness
statistic with its χ2 and p-values, and Mardia’s multivariate kurtosis statistic
with its z and p-values.

class skewness χ2-value p-value kurtosis z-value p-value
1 45.9 688 1.11e-49 116 -1.153 2.49e-1
2 42.0 631 2.70e-41 110 -3.182 1.46e-3
3 46.0 690 6.06e-50 113 -2.103 3.55e-2
4 42.5 638 2.30e-42 109 -3.267 1.09e-3
5 44.3 665 3.48e-46 114 -1.979 4.78e-2
6 47.2 707 1.53e-52 118 -0.588 5.56e-1
7 44.0 660 1.65e-45 109 -3.517 4.36e-4
8 36.0 539 7.91e-29 108 -3.608 3.09e-4
9 29.1 437 1.76e-16 109 -3.256 1.13e-3
10 44.4 666 2.52e-46 113 -2.296 2.17e-2
11 36.8 552 1.89e-30 115 -1.529 1.26e-1

Table 3: Results of Mardia’s test of multivariate normality to the each of the
6 classes in the Satimage dataset. The statistics are: Mardia’s multivariate
skewness statistic with its χ2 and p-values, and Mardia’s multivariate kurtosis
statistic with its z and p-values.

class skewness χ2-value p-value kurtosis z-value p-value
1 344 87861 0 2032 248.4 0
2 227 26561 0 1644 69.9 0
3 363 82257 0 2020 229.5 0
4 321 33475 0 1769 96.0 0
5 181 21357 0 1613 62.4 0
6 210 52795 0 1774 150.5 0

5.2.1 K-complex Detection in EEG Sleep Data

The methods introduced in this paper were applied to the problem of de-
tecting K-complexes in sleep EEG, using the data described in [40, 41]. The
K-complex is a transient EEG pattern which plays a major role in sleep stage
assessment. It has a duration of 500 to 1500 ms, and is characterized by a
sharp upward wave followed by a downward one. Its amplitude is three times
background activity [41]. The discrimination of K-complexes from background
activity is generally considered as a very complex pattern recognition problem.

The data used in this experiment consisted of 1178 EEG signals encoded
as 64-dimensional patterns. Some of these signals were negative examples con-
taining paroxysmal delta bursts, a phenomenon bearing some resemblance to
K-complexes. The other signals consisted of patterns which, after visual in-
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spection by five physicians, had been classified as containing aK-complex by at
least one of them. Among these examples, those categorized in the K-complex
class by a majority of experts were considered as positive examples, the others
as negative ones. Each example (positive or negative) was then assigned a soft
label consisting of a Bayesian mass function mi such that

mi({1}) = ki/5, mi({0}) = 1− ki/5, (31)

where 1 and 0 represent, respectively, the positive (K-complex) and negative
(delta wave) class, and ki denotes the number of experts who classified the
pattern as positive. The numbers of cases for each value of ki are shown in
Table 4. In total, 116 + 88 + 59 = 263 instances (22.33%) were classified as
positive by a majority of experts, while the remaining 915 instances (77.67%)
are almost certainly negative, or were not recognized as positive by a majority
of experts. Examples of signals with their classification by the five physicians
are shown in Figure 6.

Table 4: Sleep data: number of instances nk classified in the positive class by
k experts.

k 0 1 2 3 4 5
nk 397 340 178 116 88 59

Both LR and LDA were applied to these data. To reduce the input dimen-
sion, Principal Component Analysis (PCA) was first used as a preprocessing
step, and the number of components was varied between 1 and 20. The LR
and LDA classifiers were trained using three different sets of labels:

1. Soft labels (31), taking into account the proportion of experts in favor of
each class;

2. Crisp labels, corresponding to the majority decision;
3. “Semi-supervised labels”: instances classified as positive by two or three ex-

perts were considered as ambiguous and were labeled by the vacuous mass
function m?; the other instances were labeled unambiguously according to
the majority class.

The results were evaluated using two measures: the expected loss (30), and
the error rate, assuming the majority class to be the true class. We note that, as
mass functions mi are Bayesian, the lower and upper expected losses are equal
in this case. Again, since the data are randomly separated into training and
test instances, 10-fold cross-validation was used in order to compute average
error rates. The mean cross-validation expected loss and error rate with corre-
sponding 95% confidence intervals are represented as functions of the number
of principal components for the LR and LDA with the three sets of labels in
Figure 7. For LR, training the classifier with soft labels clearly improves the
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Fig. 6: Six examples of EEG signals. The figures above each plot indicates the
classification given of the five experts (1 for K-complex and 0 for delta-wave).

performances, according to both criteria (Figures 7(a) and 7(b)). For LDA,
this is true for 5 to 8 principal components, with non significant differences
for smaller or larger numbers of components (Figures 7(c) and 7(d)). For both
methods, the best results are obtained with 12 principal components. Figure
8 shows boxplots of expected losses and error rates for LR and LDA with 12
principal components, trained using with the three label sets. Logistic regres-
sion outperforms LDA for this dataset, and the best results are obtained when
training the classifier with soft labels, whatever the performance measure.

For this dataset, LR was thus clearly able to exploit the information con-
tained in soft labels to construct a better classifier. This phenomenon can be
explained by the fact that ambiguous patterns, which have a great chance of
being mislabeled, have less informative soft labels. Their influence on the final
parameter estimates is thus downweighted by the E2M algorithm.

5.2.2 Facial Expression Recognition

As another application of partially supervised learning with soft labels, we
considered the task of recognizing facial expressions from face images. Here,
soft labels may arise from the difficulty of labeling faces with a single expression
unambiguously. We considered 216 images data from the CMU-Pittsburgh
image database [26], with 36 images for each of the six basic expressions (see
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Fig. 7: Performances of LR (a, b) and LDA (c, d) for the sleep data, as a
function of the number of principal components. The criteria are the expected
loss (a,c) and the error rate taking the majority labels as ground truth (b, d).
In each graph, the three curves corresponds to three sets of labels: soft labels,
majority labels, and “semi-supervised” labels (see details in text).

Figure 9). Following [19], we used aligned and cropped versions of these images
of size 60× 70, corresponding to vectors of 4200 pixels.

The database was split into a learning set and a test set of 108 images each
(with 18 images per expression). Images in the learning set were viewed by
five subjects, who assigned a soft label to each image by assessing plausibil-
ities for each of the six expressions. Figure 10 shows two examples of images
with the corresponding plausibility assessments, for which there was some dis-
agreement between assessors. For instance, for the image of Figure 10(a), one
subject considered that it expresses disgust for sure (white horizontal bar),
while others hesitated between anger and disgust, or between disgust and sad-
ness. The assessments from the five experts were discounted [42] and combined
by Dempster’s rule using (4). For image i, the unnormalized contour function
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Fig. 8: Expected losses (a) and error rates (b) for classifiers trained with 12
principal components as input (sleep data). The classifiers are, from left to
right: LR with soft labels, majority labels and semi-supervised labels; LDA
with soft labels, majority labels and semi-supervised labels.
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Fig. 9: Examples of each of the six basic expressions.

pl∗i was thus

pl∗i (k) =

5∏
j=1

[0.1 + 0.9 plij(ωk)] , (32)

where plij(k) is the plausibility of expression k for image i assessed by sub-
ject j. The plausibilities were then normalized to ensure that maxk pli(k) = 1.
Figure 11 shows two examples of individual and combined plausibility as-
sessments. We can remark that combination rule (32) eliminates alternatives
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Fig. 10: Two examples of plausibility assessments provided by the five subjects.
The plausibility values are shown as horizontal bars next to each of the two
images, with one gray level for each subject.
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Fig. 11: Two examples of individual and combined plausibility assessments.

considered as impossible by most subjects, even if they were considered as
completely plausible by one assessor, such as anger in Figure 11(a) or sadness
in Figure 11(b).

As in Section 5.2.1, PCA was used to reduce the dimension of the data.
Logistic regression and LDA were then applied to the data with different num-
bers of principal components, and two sets of labels: the combined soft labels,
and crisp labels corresponding to the most plausible expression. For logistic
regression, we used quadratic penalization with coefficient λ = 10−4. The re-
sults are reported in Figure 12, which shows the test error rate as a function
of the number of components, for each of the two classifiers and the two sets
of labels. For this dataset, LDA clearly outperforms LR, with the lowest error
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Fig. 12: Facial expression data: test error rates vs. number of principal com-
ponents for LDA and LR, with soft and crisp labels.

rate obtained for around 30 principal components. For LDA, the best results
are obtained with the soft labels, which can be explained by the smaller im-
portance given to ambiguous cases. However, the LDA classifier trained with
soft labels is more prone to overfitting, as shown by the sharp increase of error
rate with the input dimension. In contrast, LR does not work too well for this
data, with a lowest error rate almost twice as large as that obtained by LDA.
For LR, there also seems to be some advantage of using soft labels for input
dimensions larger than 40, but this advantage is not so clear as it is for LDA.

This second experiment using a real data set with soft labels provides
additional evidence of the potential gain of using soft labels and confirms
similar findings reported in [5] or [39], for instance. As with the sleep data
analyzed in Section 5.2.1, this gain of performance can be explained by the
smaller influence of potentially mislabeled data on the final classifier.

6 Conclusions

Whereas a lot of methods exist for supervised or unsupervised classification,
we have seen in recent years a growing interest for more general forms of
learning tasks, in which information about the class of learning instances is
partial. In this paper, we have considered a very general framework for address-
ing such problems, which consists in representing partial class information by
Dempster-Shafer mass functions constituting soft labels. Two types of linear
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classifiers have been considered: LDA based on a generative model, and LR
based on a discriminative model. Both classifiers can be trained in a partially
supervised mode by maximizing an evidential likelihood function, which can
be done efficiently using the evidential EM algorithm.

As a generative model represents the joint distribution of the input vec-
tor and the response variable, it can be trained in an unsupervised setting;
consequently, it can be expected to perform well with scant class information.
In contrast, a discriminative model relies on weaker assumptions and can be
expected to perform better than a generative model when the model is in-
adequate, provided sufficient class information is available. Our experimental
results support these assumptions. Using artificial and real data for which
class labels have been perturbed by noise, we have shown that soft labels tak-
ing into account labelling uncertainty can be successfully exploited to achieve
significantly lower error rates, as compared to precise but noisy labels. Both
LDA and LR classifiers are able to exploit partial information contained in
soft labels. However, LDA usually performs better, especially when the misla-
beling probability is high, in which case the soft labels become very imprecise
and learning becomes almost unsupervised. However, LR outperforms LDA
for some datasets. It is thus necessary to consider several models and select
the best ones, which can also be done in a partially supervised setting using
lower and upper expected losses.

We have also considered two real applications in which soft labels natu-
rally arise from the absence of ground truth class information: detection of
K-complex in EEG sleep data and recognition of facial expressions in images.
In these two cases, soft labels have been shown to allow for better perfor-
mances, as compared to using the most plausible label for each instance and
ignoring labeling uncertainty. Whereas large amounts of unlabeled data (e.g.,
images) can be retrieved from the internet or can be generated by sensors,
reliably labeled data remain relatively scarce because of the cost of visually
inspecting the data to determine their class, when no ground truth is avail-
able. In this context, our results suggest that partial class information can be
useful, provided labeling uncertainty is suitably represented in the form of soft
labels.

Although linear classifiers have been exclusively considered in this study
for simplicity, there is obviously no conceptual difficulty with extending our
approach to non linear parametric classifiers such as, e.g., quadratic or mixture
discriminant analysis, generalized additive models, kernel logistic regression,
etc. More fundamentally, other likelihood-based approaches to inference from
uncertain data, such has proposed in [23] or [8], could be considered and com-
pared with our method. Finally, the elicitation of soft labels from single or
multiple experts is also an important topic that remains to be thoroughly
investigated.
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