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Abstract

The problem of di�raction by slanted lamellar dielectric and metallic

gratings in classical mounting is formulated as an eigenvalue eigenvector

problem. The numerical solution is obtained by using the moment method

with Legendre polynomials as expansion and test functions which allows

to enforce in an exact manner the boundary conditions which determine

the eigen-solutions. Our method is successfully validated by comparison

with other methods including in the case of highly slanted gratings.

Index terms� Di�raction and gratings, Computational electromagnetic
methods, Electromagnetic optics.

1 Introduction

Di�raction gratings and other periodic structures play important roles in pho-
tonics [1][2]. Slanted lamellar gratings are a particular example of such struc-
tures. They have application for blazing or for in and out coupling of light.
Here, we are concerned with the electromagnetic analysis of dielectric and metal-
lic gratings with slanted walls. Slanted lamellar grating have previously been
treated using the rigorous coupled wave approach [3] [4] the fast Fourier factor-
ization method [5] or a coordinate transformation method [6] [7]. More recently,
Campbell et al developed the Di�erential modal method (DMM)[8] where a
slanted lamellar grating is considered as a stack of N individual lamellar grat-
ings whose modes are coupled using a Bloch mode-matching technique. In this
paper, we develop a modal method for di�raction by slanted lamellar gratings.
First, as was done in [6], a coordinate transformation is introduced in the grat-
ing region so that the lamellar structure becomes translation invariant along
one direction which also means that the dielectric constant depends only on one
spatial coordinate. It becomes then straightforward to give the problem a modal
formulation. Many methods exist to solve it numerically. The accuracy of the
solution is linked with the treatment of the transverse boundary conditions that
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the electromagnetic �eld has to satisfy at the interface between the di�erent
dielectrics or metals. Using polynomials expansions within each domain of the
lamellar gratings allows to express rigorously the di�erent continuity relations
that determine the eigenvalue problem and thus leads to exponential conver-
gence for the eigenvalues and eigenvectors as was shown by Morf [9]. Recently,
the polynomial modal method was revisited and Gegenbaueur polynomials were
introduced [10][11] whereas Morf only used Legendre and Tchebyche� polyno-
mials. The case of conical incidence was also investigated in [12] using the same
approach as Morf. The goal of the present paper is to generalize the use of
polynomial expansions for slanted lamellar gratings. The paper is organized
as follows: in section 2, we present the slanted lamellar grating problem and
its spectral formulation in an inclined coordinate system. In section 3, by us-
ing the Galerkin method with Legendre polynomial expansion, we derive the
matrix eigenvalue equation. In our formulation, the polarization is taken into
account thanks to a connection matrix which expresses explicitly the transverse
boundary conditions. In section 4, we validate our method by comparison with
already published data.

2 Presentation of the problem

The slanted lamellar grating di�raction problem is depicted in �g 1. This struc-
ture is illuminated from an homogeneous medium with optical index ν1 by a
monochromatic plane wave with a wavelength λ and an angular frequency ω.
The wave vector k forms an angle θ with respect to the axis y axis. Hence its
Cartesian coordinates are kx = kα0 = kν1 sin(θ) and ky = kβ0 = −kν1 cos(θ)
with k = 2π/λ the wavenumber. The exp(iωt) time dependence will be omit-
ted throughout this paper. The grating region separates the incident medium
from a substrate with refractive index ν3. The grating layer with thickness h, is
characterized by a piecewise homogeneous permittivity function ε(x, y) that is
periodic in the x direction with period d. The side walls of the di�erent materi-
als of the grating are inclined at an angle φ with respect to the vertical axis. In
the Cartesian coordinates (x, y) the permittivity function depends on the two
variables x and y. However it is easy to �nd a new coordinate system in which
the side walls �t a coordinate surface. One such coordinate system (x1, x2, x3)
is described by:

x1 = x− tan(φ)y, x2 = y, x3 = z (1)

The Jacobian matrix of this transformation is:

J =

 ∂x
∂x1

∂x
∂x2

∂x
∂x3

∂y
∂x1

∂y
∂x2

∂y
∂x3

∂z
∂x1

∂z
∂x2

∂z
∂x3

 =

 1 tan(φ) 0
0 1 0
0 0 1

 (2)

In this coordinate system, the location of the side walls are given in terms of
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Figure 1: Geometry of the problem and illustration of the change of coordinates.
ε1 = ν21 , ε3 = ν23

the only x1 variable. Indeed we have:

ε(x1) =

{
ε21 for0 ≤ x1 ≤ w
ε22 forw ≤ x1 ≤ d

(3)

Thus, in the inclined coordinate system a binary grating �ts two domains Ω1 =
{x1, 0 ≤ x1 ≤ w} and Ω2 = {x1, w ≤ x1 ≤ d} The metric tensor gij of the new
coordinate system is obtained from the Jacobian matrix J and its transpose JT

by:
[gij ] = JTJ (4)

from which we deduce the conjugate metric tensor [gij ]:

[gij ] = [gij ]
−1 =


1

cos2(φ) − tan(φ) 0

− tan(φ) 1 0
0 0 1

 (5)

One could choose to solve the whole problem with the inclined coordinate sys-
tem. As far as we are concerned, we restrict its use to the grating region. It has
to be remarked that coordinates surfaces y = h and y = 0 are common to all
coordinate systems and that the only Cartesian component of a vector �eld A
a�ected by the change of coordinates is Ay. Indeed, the covariant components
of A are written in terms of the Cartesian components as follows:

A1 = Ax, A3 = Az, A2 = tan(φ)Ax +Ay (6)

So, whatever the coordinate system, we are led to calculate components A3 and
A1 in the three regions that de�ne the problem and to match them at y = h
and y = 0.
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3 Theory

3.1 MAXWELL'S EQUATIONS

In general curvilinear coordinates, with a time dependence of the form exp(iωt),
it is convenient to use covariant Maxwell equations written with the Einstein
convention as [13], [14]: {

ξijk∂jEk = −iωBi

ξijk∂jHk = iωDi
(7)

∂j denotes the partial derivative operator with respect to variable xj . ξijk de-
notes the Lévi-Cività indicator whose non-null components are:ξ1,2,3= ξ2,3,1=
ξ3,1,2= 1 and ξ1,3,2= ξ2,1,3= ξ3,2,1= −1. The geometry appears in the consti-
tutive relations along with the material's physical properties:{

Di = ε0ε
√
ggijEj

Bi = µ0
√
ggijHj

(8)

where ε is the real or complex relative permittivity. Since the structure is
translation invariant along the x3 direction, we have ∂3 = 0 and Maxwell's
equations decouple into two sets of independent �rst-order di�erential equations
corresponding to TE polarization and TM polarization:

TE polarization

∂2E3 = −iωµ0

(√
gg11H1 +

√
gg12H2

)
(9)

−∂1E3 = −iωµ0

(√
gg21H1 +

√
gg22H2

)
(10)

∂1H2 − ∂2H1 = iωε0εE3 (11)

TM polarization

∂2H3 = iωε0ε
(√
gg11E1 +

√
gg12E2

)
(12)

−∂1H3 = iωε0
(√
gg21E1 +

√
gg22E2

)
(13)

∂1E2 − ∂2E1 = −iωµ0H3 (14)

By eliminating H2 in 11 and E2 in 14 we get:

TE polarization

∂2

[
E3

H1

]
=  −g12

g22 ∂1 −iωµ0
1√
gg22

−iωε0
(
ε(x1)

√
gg33 + 1

k2 ∂1
1√
gg22 ∂1

)
∂1
−g21
g22

[E3

H1

]
(15)
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TM polarization

∂2

[
H3

E1

]
= −g12

g22 ∂1 iωε0ε(x
1) 1√

gg22

iωµ0

(√
gg33 + 1

k2 ∂1
1

ε(x1)
√
gg22 ∂1

)
∂1
−g21
g22

[H3

E1

]
(16)

Since the coe�cients of the above operators do not depend on x2, any com-
ponent of the �eld may be written as:

ψ(x1, x2) = φ(x1)exp(−ikβx2) (17)

which amounts to replace operator ∂2 by −ikβ. Hence, the systems of di�eren-
tial equations 15 and 16 become two eigenvalue equations which may be written
as:

TE polarization

β

[
E3(x1)
H1(x1)

]
= − i

k
g12

g22 ∂1 Z0
1√
gg22

1
Z0

(
ε(x1)

√
gg33 + 1

k2 ∂1
1√
gg22 ∂1

)
− i
k∂1

g21

g22

[E3(x1)
H1(x1)

]
(18)

TM polarization

β

[
H3(x1)
E1(x1)

]
= − i

k
g12

g22 ∂1 − 1
Z0
ε(x1) 1√

gg22

Z0

(√
gg33 + 1

k2 ∂1
1

ε(x1)
√
gg22 ∂1

)
− i
k∂1

g21

g22

[H3(x1)
E1(x1)

]
(19)

where Z0 is the vacuum impedance. Since we consider binary gratings, it has
to be observed that operators ε(x1)∂1

1
ε(x1)∂1 and ∂1∂1 have the same form. In

addition, we have g = 1, g22 = 1 and g12 = − tanφ. Hence, it is possible to
write TE and TM matrix eigen-equations under the same form:

β

[
F
G

]
=

[
tanφ ik∂1 1

ε(x1) + 1
k2 ∂1∂1 tanφ ik∂1

] [
F
G

]
(20)

with

TE −→
[
F
G

]
=

[
E3

Z0H1

]
TM −→

[
F
G

]
=

[
Z0H3

−ε(x1)E1

]
(21)
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3.2 SOLUTION BY POLYNOMIAL EXPANSION

3.2.1 Polynomial expansion

In this section, we solve numerically the spectral problem using the moment
method with Legendre polynomials as expansion and test functions. We follow
the very same lines which were previously used in ref [10] and in ref [12] �n this
approach, a period of the binary grating is �rst considered as a juxtaposition
of homogeneous sub-domains in which we apply the moment method. In a
second step, some boundary conditions have to be applied at the border of the
sub-domains giving rise to a connection matrix. Indeed, the main di�erence
between the present paper and the previous ones lies in the connection matrix.
Because the coordinate system is non orthogonal, we have to enforce additional
boundary conditions. In each region, the coordinate surfaces, x11 = 0, x12 = w
and x13 = d de�ne two domains Ω1 and Ω2 in which the permittivity function
is constant. Whatever the region, in the interval x1l ≤ x1 ≤ x1l+1 any function
φ(x1), its �rst derivative φ′(x1) and its second derivative φ”(x1) are represented
as: 

φ(l)(x1) =
∑
m φ

(l)
m Pm(ξ)

φ′
(l)

(x1) =
∑
m φ
′(l)
m Pm(ξ)

φ”(l)(x1) =
∑
m φ”

(l)
m Pm(ξ)

x1l ≤ x1 ≤ x1l+1, l = 1, 2

(22)

the superscript l refers to the domain. The reduced variable

ξ =
2x1 − (x1l+1 + x1l )

∆(l)
, ∆(l) = x1l+1 − x1l (23)

results from the mapping of the interval [xl xl+1] onto the unit interval [−1 1]
on which the Legendre polynomials are orthogonal and complete:∫ 1

−1
Pm(ξ)Pn(ξ)dξ =

2

2m+ 1
δmn (24)

where Pm is the Legendre polynomial of degree m and δmn designates the Kro-
necker symbol.

In order to get a matrix eigen-equation, we use the Galerkin method with
Legendre polynomials as expansion and test functions. Since our problem con-
sists of homogeneous domains, we shall get as many matrices as domains. How-
ever, a period of a binary grating is de�ned on two domains. So, in order to
get the sought solution in terms of eigenmodes, we have to enforce some ad-
ditional constraints to the expansion coe�cients φ(l)m of functions φ(l)(x). The
observation of equation 20 shows that, apart from the identity operator, the
only operators are �rst and second derivatives.
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3.2.2 First and second derivative operators

The derivative of φ(l) with respect to x is expanded on Legendre polynomials
as:

dφ(l)

dx
=
dξ

dx

dφ

dξ
=

2

∆(l)

∑
m

φ(l)m
dPm(ξ)

dξ
=
∑
m

φ′
(l)
m Pm(ξ) (25)

The Legendre polynomials and their derivatives satisfy:∫ 1

−1

dPm(ξ)

dξ
Pn(ξ)dξ =

{
2 for m-n>0andm-nodd

0 otherwise
(26)

which allows to link the coe�cients φ(l)n of the function φ(l) with the coe�cients
φ′

(l)
m of its derivative dφ(l)/dx. Retaining M (l) coe�cients in the derivative, we

have
φ′(l)
m = D

(l)

M(l),M(l)+1
φ(l)

n m ∈ [0M l − 1] n ∈ [0M (l)] (27)

where D(l)

M(l),M(l)+1
is a rectangular matrix withM (l) lines andM (l)+1 columns

whose non-null elements are the D(l)
mn such that:

D(l)
mn =

∆(l)

2

2m+ 1

2

[
1− (−1)n−m

]
n > m (28)

Let us now derive the matrix associated to the second derivative operator. Con-
sider the column vector φ”(l)

m formed by the �rst M l expansion coe�cients of
the second order derivative of φ(l)(x) on Legendre polynomials. We have:

φ”(l)
m = D

(l)

2,M(l),M(l)+2
φ(l)
n (29)

where
D

(l)

2,M(l),M(l)+2
= D

(l)

1,M l),M(l)+1
D

(l)

1,M l)+1,M(l)+2
(30)

is a rectangular matrix withM (l) lines and (M (l)+2) columns. First and second
derivative matrix operators are partitioned into the juxtaposition of a square
matrix and a one column matrix and of a square matrix and a two column
matrix respectively.

D
(l)

1,M(l),M(l)+1
= [D

(l)
1,SD

(l)
1,C ], D

(l)

2,M(l),M(l)+2
= [D

(l)
2,SD

(l)
2,C ] (31)

the subscripts S and C refer to the square part of the matrix and to the addi-
tional columns respectively.

3.2.3 Connection matrix

As is, the matrix associated to eigenvalue problem 20 is rectangular with more
columns than rows. Whatever the polarisation, within each domain, we have
two additional polynomial expansion coe�cients for F and one additional poly-
nomial expansion coe�cient for G. Hence, for the present problem with two
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domains, we need 6 more equations which can be easily obtained by enforcing
the boundary conditions at x = d and x = w. These boundary conditions are
the continuity and the pseudo-periodicity of H3, D1 and E2 for TM polarization
and of E3, B1 and H2 for TE polarization. They allow to derive the polarization
dependent connection matrix Cp such that



F
(1)
M1−1

F
(1)
M1

F
(2)
M2−1

F
(2)
M2

G
(1)
M1−1

G
(2)
M1


= Cp



F
(1)
0

...
F

(1)
M1−2

F
(2)
0

...
F

(2)
M2−2
G

(1)
0

...
G

(1)
M1−2

G
(2)
0

...
G

(2)
M2−2



(32)

Here, the subscript p refers to the polarization.

3.2.4 Matrix Operator

The matrix associated to equation 20, is the sum of two matrices. One is
the assembly of independent blocs which correspond to the sub-domains of the
grating. The other is a full matrix that takes into account the transversal
boundary conditions.

L = LS + LCCp (33)

The details of matrices LS , LC and Cp are given in appendix A

3.2.5 Summary

The whole solution requires solving an eigenvalue problem for each region. It
may seem surprising to numerically solve Maxwell's equations in homogeneous
regions 1 and 3 where solutions are already known. The reason for doing so
has been discussed in [12] and [15]. Hence, the solution in region 1 and 3
and consequently the computation of re�ected and transmitted e�ciencies is
identical to what was done in[12]. The homogeneous regions and the grating
regions are separated by coordinate surfaces y = cte which are common to
the Cartesian coordinate system and to the inclined coordinate system. So,
matching the computed components E3, H1 andH3, E1 is straightforward. This
is achieved by using the S matrix algorithm. The latter requires the separation of
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Table 1: Numerical comparison of e�ciencies of a metallic grating calculated
using the C method, DMM and the PMM.The number of plane waves and of
modes in DMM is 60. In this paper we have M (1) = M (2) = 25.

TM polarization
C Method DMM PMM

Di�raction Order E�ciency E�ciency E�ciency
R−1 0.2245 0.2247 0.2245
R0 0.3110 0.307 0.3113
T−1 0.2067 0.2075 0.2067
T0 0.2382 0.241 0.2381

solutions into forward waves and backward waves. In order to make this sorting
easy in the grating region, we always consider lossy materials. If necessary, we
make the grating region lossy by adding a very small negative imaginary part
to the dielectric constant. It is numerically observed that there are as many
forward waves as backward waves. The forward (respectively backward) waves
are those waves for which β has a negative (respectively positive) imaginary
part.

4 Numerical results

In this section, we validate our code by comparing our results with already pub-
lished data which was obtained with the Di�erential Modal Method (DMM)in
[8] and the C method in [6]. In fact, as outlined in [7], the factorization rules
were not implemented correctly in [6] for TM Polarization. We corrected the
problem, and the results obtained with C-method given in the present paper
are slightly di�erent from those of [6] .

4.1 Metallic grating

The �rst case concerns a metallic grating with d = 1µm, fd = 0.5µm, h =
0.2µm, slant angle φ = 10o. The incident wavelength and incident angle are
λ = 1µm and θ = 30o, respectively. The optical indices are ν1 = 1(ε1 = 1),
ε22 = 1, ε21 = (.22− i× 6.71)2 = −44.9757− 2.9524i) and ε3 = 1.452 = 2.1025.
Table 1 and table 2 give the numerical values obtained with the C method,
the DMM, and the Polynomial Modal Method (PMM). It is observed that all
results coincide remarkably well even though a very slight discrepancy occurs
in TM polarization for DMM. For the same case, �gures 2 and 3 illustrate
the convergence of the re�ected e�ciencies in TM polarization. In order to
better show how fast the numerical convergence is and also the stability of the
method, the horizontal axis scales as the inverse of the truncation number which
is the rank of the matrix from which eigenvectors are sought. It is seen that
convergence is very fast and that no instabilities occur.
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Table 2: Numerical comparison of e�ciencies of a metallic grating calculated
Using the C method, DMM and the PMM. The number of plane waves and of
modes in DMM is 50. In this paper we have M (1) = M (2) = 25
.

TE polarization
C Method DMM PMM

Di�raction Order E�ciency E�ciency E�ciency
R−1 0.2358 0.2359 0.2358
R0 0.4268 0.4267 0.4268
T−1 0.1646 0.1646 0.1646
T0 0.1556 0.1557 0.1556

0 0.05 0.1

Inverse of truncation order

0.221

0.222

0.223

0.224

0.225

M
in

u
s
 o

n
e
 r

e
fl
e
c
te

d
 o

rd
e
r

Figure 2: Convergence plot of the minus one re�ected order of a metallic grating
in TM polarization
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Figure 3: Convergence plot of the specular re�ected order of a metallic grating
in TM polarization
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Table 3: Numerical comparison of e�ciencies of a dielectric grating calculated
Using the C method, DMM and the PMM.The number of plane waves and of
modes in DMM is 30. In this paper we have M (1) = M (2) = 14
.

TM polarization
C Method DMM PMM

Di�raction Order E�ciency E�ciency E�ciency
R−1 0.0231 0.0231 0.0231
R0 0.0011 0.0011 0.0011
T−1 0.0227 0.0227 0.0227
T0 0.9531 0.9531 0.9531

Table 4: Numerical comparison of e�ciencies of a dielectric grating calculated
Using the C method,the DMM and the PMM.The number of plane waves and
of modes in DMM is 30. In this paper we have M (1) = M (2) = 14.

TE polarization
C Method DMM PMM

Di�raction Order E�ciency E�ciency E�ciency
R−1 0.0179 0.0179 0.0179
R0 0.0137 0.0137 0.0137
T−1 0.0399 0.0398 0.0399
T0 0.9286 0.9286 0.9286

4.2 Dielectric grating

Let us consider a dielectric grating with d = 1µm, fd = 0.5µm, h = 0.2µm,
slant angle φ = 10o. The incident wavelength and incident angle are λ = 1µm
and θ = 30o, respectively. The optical indices are ν1 = 1(ε1 = 1), ε22 = 2.25 and
ε3 = 1.452 = 2.1025. Table 3 and table 4 give the numerical values obtained
with the C method,the DMM, and the PMM. Once more, all three methods
give the same values.

4.3 Large slant angle

In [8], Campbell et al investigated the case where the slant angle becomes higher
and higher and tends to 90◦. In that case, they found that the grating behaves
as a multilayer stack with layers thinner and thinner. At the limit, when the
slant angle tends to 90◦, the grating can be considered as a slab with a pre-
mittivity equal to the average of the permittivities of the gratings. At normal
incidence, the re�ected and transmitted energy should be the same for TE and
TM polarizations. The plots in �gures 4 and 6 reproduce the results obtained
by Campbell et al and shown in Figures 5 and 6 of [8]. For the investigated
cases, we have sketched that the re�ected e�ciency computed with the largest
possible slant angle -that is 89.99◦ coincides with that of the corresponding ef-
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fective slab. It has to be noted that Campbell et al did not provide �gure 5.
They commented they had convergence problem for that case.
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Figure 4: Specular re�ected order versus slant angle for a dielectric grating
enlightened under normal incidence in TE polarization. w = 0.5, d = 1,h = 0.5,
λ = 1.1, ε21 = 1, ε22 = 25 − i0.0001.The grating is suspended in air. The
e�ective permittity is 13. The re�ectivity of the corresponding e�ective slab is
0.6191. We obtain the same value with a slant angle of 89.99◦

5 Conclusion

In this paper, we extended the polynomial modal method to the case of slanted
lamellar gratings. The formulation of the problem relies on the use of an inclined
coordinate system and of Maxwell's equations in covariant form. The novelty
of our work lies in the numerical solution. Solving the problem with polynomial
expansions amounts to using a multi-domain approach. The matrix from which
eigenvectors and eigenvalues are sought is the sum of a bloc diagonal matrix
independent of polarization and a full connection matrix that takes into account
polarization and boundary conditions at the border of the sub-domains. We have
successfully compared our new numerical method to previously published data
especially those of [8]. In particular, we were able to deal with slant angle as high
as 89.9◦ without facing neither convergence problem nor numerical instabilities.
In the future we will implement the method in the case of conical incidence.

Appendix A

In this appendix, we detail the construction of the connection matrix Cp. In
order to compute the solution of eigen value problem of, we have to enforce
some boundary conditions at coordinate surface x1 = w and x = d. First of all,
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Figure 5: Specular re�ected order versus slant angle for a dielectric grating
enlightened under normal incidence in TM polarization.w = 0.5, d = 1,h = 0.5,
λ = 1.1, ε21 = 1, ε22 = 25 − i0.0001. The grating is suspended in air. The
e�ective permittity is 13. The re�ectivity of the corresponding e�ective slab is
0.6191. We obtain the same value with a slant angle of 89.99◦
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Figure 6: Specular re�ected order versus slant angle for a dielectric grating
enlightened under normal incidence in TE polarization and in TM polarization.
w = 0.5, d = 1,h = 0.5, λ = 1.1, ε21 = 1, ε22 = (0.22 − i ∗ 6.71)2.The grating
is suspended in air. The e�ective permittity is −21.9878 − i × 1.4762. The
re�ectivity of the corresponding e�ective slab is 0.9731. We obtain the same
value with a slant angle of 89.99◦
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the �eld is pseudo periodic which means that every �eld component satis�es :

U(x1 + d) = τU(x1) (34)

where the coe�cient τ is given by:

τ = exp(−ikα0d) (35)

At x1 = w, D1, H3 and E2 are continuous in TE polarization, as well as B1,
E3 and H2 in TM polarization. Using polynomial expansions allows to enforce
in an exact manner these boundary conditions. From Maxwell's equations we
may derive the following expressions:

D1 = −g
12

g22
∂1H3 + iωε0ε(x

1)
1

√
gg22

E1 (36)

E2 =
i

ωε0ε(x1)
∂1H3 −

g21

g22
E1 (37)

B1 = −g
12

g22
∂1E3 − iωµ0

1
√
gg22

H1 (38)

H2 = − i

ωµ0
∂1E3 −

g21

g22
H1 (39)

The above expressions may be re-written in terms of F and G. For TM
polarization we have :

Z0D
1 = −g

12

g22
∂1F − ik

1
√
gg22

G (40)

E2 =
1

ε(x1)

(
i

k
∂1F −

g21

g22
G

)
(41)

and for TE we have:

B1 = −g
12

g22
∂1F − ik

1
√
gg22

G (42)

Z0H2 = − i
k
∂1F −

g21

g22
G (43)

Although we have put the TE and TM eigen equations under the same form
by introducing variable F and G, the solutions di�er because F and G do not
satisfy the same boundary conditions. Indeed as is shown by relations 41 and
43, the continuity of E2 for TM polarization and the continuity of Z0H2 for TE
polarization involve F and G di�erently. In order to have a single expression
for 41 and 43 let us introduce κf , κg such that:
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κf =

{
1
ε for TM polarization

−1 for TE polarization

κg =

{
1
ε for TM polarization

1 for TE polarization
(44)

Then 41 as well as 43 reads:

E2 =
i

k
κfF −

g21

g22
κgG (45)

The Legendre polynomials Pm satisfy:

Pm(±1) = (±1)m P ′m(±1) = (±1)m+1m(m+ 1)

2
(46)

where P ′m denotes the derivative of Pm. Every region consists of the two domains
Ω1 and Ω2 such that Ω1 = {x1, 0 ≤ x1 ≤ w} and Ω2 = {x1, 0 ≤ x1 ≤ w}. We
refer to these two domains by the superscripts (1) and (2) respectively. Lastly,
let us introduce d(1)+m, d

(1)
−m, d

(2)
+m and d(2)−m de�ned by:

d
(1)
+m =

1

w

m(m+ 1)

2
d
(1)
−m = (−1)m

1

w

m(m+ 1)

2
(47)

d
(2)
+m =

1

d− w
m(m+ 1)

2
d
(2)
−m = (−1)m

1

d− w
m(m+ 1)

2
(48)

Taking into account g22 = 1, g21 = − tanφ, we are now ready to write the
six boundary conditions at x1 = w and x1 = d:

• Continuity of F

M(1)+1∑
m=0

F (1)
m −

M(2)+1∑
m=0

(−1)mF (2)
m = 0 (49)

• Pseudoperiodicity of F

M(1)+1∑
m=0

F (2)
m − τ

M(1)+1∑
m=0

(−1)mF (1)
m = 0 (50)

• Continuity of i
kκf∂1F + tanφκgG

κ
(1)
f

i

k

M(1)+1∑
m=0

d
(1)
+mF

(1)
m + κ(1)g tanφ

M(1)∑
m=0

G(1)
m

−κ(2)f
i

k

M(2)+1∑
m=0

d
(2)
−mF

(2)
m − (−1)mκ(2)g tanφ

M(1)∑
m=0

G(1)
m

= 0 (51)
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• pseudo periodicity of i
kκfF + tanφκgG

κ
(2)
f

i

k

M(1)+1∑
m=0

d
(2)
+mF

(2)
m + κ(2)g tanφ

M(1)∑
m=0

G(2)
m

−τκ(1)f
i

k

M(1)+1∑
m=0

d
(1)
−mF

(1)
m − τ(−1)mκ(1)g tanφ

M(1)∑
m=0

G(1)
m

= 0 (52)

• continuity of tanφ∂1F − ikG

tanφ

M(1)+1∑
m=0

d
(1)
+mF

(1)
m − ik

M(1)∑
m=0

G(1)
m

− tanφ

M(2)+1∑
m=0

d
(2)
−mF

(2)
m + (−1)mik

M(2)∑
m=0

G(2)
m = 0 (53)

• pseudo periodicity of tanφ∂1F − ikG

tanφ

M(1)+1∑
m=0

d
(2)
+mF

(2)
m − ik

M(2)∑
m=0

G(2)
m

−τ tanφ

M(1)+1∑
m=0

d
(1)
−mF

(1)
m + τ(−1)mik

M(1)∑
m=0

G(1)
m = 0 (54)

The derivation of matrix Cp from 49, 50, 51, 52 53 and 54 is straightforward
Finally matrices LS and LC write:

LS = 
i
k tanφD

(1)
1,S . . . I(1) . . .

. . . i
k tanφD

(2)
1,S . . . I(2)

ε(1)I(1) + D
(1)
2,S . . . i

k tanφD
(1)
1,S . . .

. . . ε(2)I(2) + D
(2)
2,S . . . i

k tanφD
(2)
1,S


(55)

LC =


i
k tanφD̃

(1)
1,C . . . . . . . . .

. . . i
k tanφD̃

(2)
1,C . . . . . .

1
k2D

(1)
2,C . . . i

k tanφD
(1)
1,C . . .

. . . 1
k2D

(2)
2,C . . . i

kD
(2)
1,C

 (56)
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For notation convenience we have introduced the matrix:

D̃1C = [D1C 0] (57)

which is the juxtaposition of the one column matrix D1C and of a one column
matrix �lled with zeros.
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