Thomas Brihaye
email: thomas.brihaye@umons.ac.be

Gilles Geeraerts

Hsi-Ming Ho
email: hsi-ming.ho@umons.ac.be

Benjamin Monmege
email: benjamin.monmege@univ-amu.fr

MightyL: A Compositional Translation from MITL to Timed Automata

Metric Interval Temporal Logic (MITL) was first proposed in the early 1990s as a specification formalism for real-time systems. Apart from its appealing intuitive syntax, there are also theoretical evidences that make MITL a prime real-time counterpart of Linear Temporal Logic (LTL). Unfortunately, the tool support for MITL verification is still lacking to this day. In this paper, we propose a new construction from MITL to timed automata via very-weak one-clock alternating timed automata. Our construction subsumes the well-known construction from LTL to Büchi automata by Gastin and Oddoux and yet has the additional benefits of being compositional and integrating easily with existing tools. We implement the construction in our new tool MightyL and report on experiments using Uppaal and LTSmin as back-ends.

Introduction

The design of critical software that respect real-time specifications is a notoriously difficult problem. In this context, verification of programs against formal specifications is crucial, in order to handle the thin timing behaviours. In the untimed setting, a logic widely used both in academia and industry is Linear Temporal Logic (LTL) [START_REF] Pnueli | The temporal logic of programs[END_REF]. A crucial ingredient of its success is the possibility to translate LTL formulae into (Büchi) automata. In the real-time counterpart, Metric Interval Temporal Logic (MITL) [START_REF] Alur | The benefits of relaxing punctuality[END_REF] has been introduced twenty years ago where it was established that it can be translated into (Büchi) timed automata (TA). Beyond verification of real-time software, there are numerous interests in MITL from other domains, e.g. automated planning and scheduling [START_REF] Zhou | Timed automata approach for motion planning using metric interval temporal logic[END_REF], control engineering [START_REF] Fu | Computational methods for stochastic control with metric interval temporal logic specifications[END_REF] and systems biology [START_REF] Bartocci | A temporal logic approach to modular design of synthetic biological circuits[END_REF]. The translation from MITL to TAs is complicated and has led to some simplified constructions, e.g. [START_REF] Souza | A clock-optimal hierarchical monitoring automaton construction for mitl[END_REF][START_REF] Maler | From MITL to timed automata[END_REF]. However, despite these efforts, the tool support for MITL is still lacking to this day. To the best of our knowledge, the only implementation of an automata-based construction is described in [START_REF] Brihaye | On MITL and alternating timed automata[END_REF][START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF], but is not publicly available. Since existing verification tools based on timed automata have been around for quite some time and have been successful (e.g. Uppaal [START_REF] Larsen | Uppaal in a nutshell[END_REF] first appeared in 1995), it would be preferable if such translation can be used with these tools.

In the present paper, we attempt to amend the situation by proposing a more practical construction from MITL to (Büchi) timed automata. Compared to [START_REF] Brihaye | On MITL and alternating timed automata[END_REF][START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF], our construction has the following advantages:

1. While we also use one-clock alternating timed automata (OCATA) [START_REF] Ouaknine | On the decidability and complexity of metric temporal logic over finite words[END_REF] as an intermediate formalism, our construction exploits the 'very-weakness' of the structure of OCATAs obtained from MITL formulae to reduce state space. In particular, our construction subsumes LTL2BA [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF] in the case of LTL. 2. The number of clocks in the resulting TA is reduced by a factor of up to two. This is achieved via a more fine-grained analysis of the possible clock values (see Section 5). 3. The construction is compositional : for each location of the OCATA A obtained from the input MITL formula, we construct a 'component' TA and establish a connection between the runs of A and the runs of the synchronous product of these components. Thanks to this connection, we can give the output TA in terms of components; this greatly simplifies the implementation, and speeds up its execution. 4. The construction is compatible with off-the-shelf model-checkers: our tool MightyL generates output automata in the Uppaal xml format which, besides Uppaal [START_REF] Larsen | Uppaal in a nutshell[END_REF] itself, can also be analysed by LTSmin [START_REF] Kant | LTSmin: High-performance language-independent model checking[END_REF] with opaal front-end, TiAMo [START_REF] Bouyer | Symbolic optimal reachability in weighted timed automata[END_REF], ITS-tools [START_REF] Thierry-Mieg | Symbolic model-checking using ITS-tools[END_REF], DiVinE [START_REF] Barnat | DivinE 3.0 -an explicit-state model checker for multithreaded C & C++ programs[END_REF], etc.

Related work.

There is already a number of MITL-to-TA constructions in the literature [START_REF] Alur | The benefits of relaxing punctuality[END_REF][START_REF] Souza | A clock-optimal hierarchical monitoring automaton construction for mitl[END_REF][START_REF] Maler | From MITL to timed automata[END_REF]. However, most of them interpret MITL over signals (i.e. the continuous semantics of MITL) and hence generate signal automata. This choice unfortunately hinders the possibility to leverage existing tools based on classical timed automata over timed words [START_REF] Alur | A theory of timed automata[END_REF] and is probably one of the reasons why the aforementioned constructions have never been implemented. 4 We, following [START_REF] Alur | Real-time logics: Complexity and expressiveness[END_REF][START_REF] Brihaye | On MITL and alternating timed automata[END_REF][START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF][START_REF] Wilke | Specifying timed state sequences in powerful decidable logics and timed automata[END_REF] (among others), interpret MITL over timed words (i.e. the pointwise semantics of MITL). Note that there have been some implementations that deal with peculiar specification patterns over timed words (e.g. [START_REF] Abid | A formal framework to specify and verify realtime properties on critical systems[END_REF]). For MITL, apart from [START_REF] Brihaye | On MITL and alternating timed automata[END_REF][START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF] that we mentioned earlier, we are only aware of implementations for rather restricted cases, such as the safety fragment of MITL 0,∞ [START_REF] Bulychev | Efficient controller synthesis for a fragment of MTL0,∞[END_REF] or MITL over untimed words [START_REF] Zhou | Timed automata approach for motion planning using metric interval temporal logic[END_REF]. Our construction subsumes all of these approaches.

Using alternating automata as an intermediate formalism is a standard approach in LTL model-checking [START_REF] Vardi | An automata-theoretic approach to linear temporal logic[END_REF]. However, the translation from alternating automata to Büchi automata may incur an exponential blow-up if the output automaton is constructed explicitly [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF]. For this reason, an on-the-fly approach is proposed in [START_REF] Hammer | Truly on-the-fly LTL model checking[END_REF], but it requires a specialised model-checking algorithm. Alternatively, [START_REF] Bloem | Symbolic implementation of alternating automata[END_REF] gives a symbolic encoding of alternating automata which can be used directly with NuSMV [START_REF] Cimatti | NuSMV2: An opensource tool for symbolic model checking[END_REF], but minimality of transitions (which may potentially improve the performance of verification algorithms, cf. [START_REF] Hammer | Truly on-the-fly LTL model checking[END_REF]) is difficult to enforce in this setting (see also [START_REF] Claessen | A circuit approach to LTL model checking[END_REF][START_REF] Rozier | A multi-encoding approach for LTL symbolic satisfiability checking[END_REF]). Our construction combines the advantages of these approaches-it can be regarded as a symbolic encoding of OCATAs in TAs, enforcing some minimality criteria on transitions for efficiency (see Section 6)-and provides compatibility with existing tools that construct state spaces on-the-fly. By contrast, [START_REF] Souza | A clock-optimal hierarchical monitoring automaton construction for mitl[END_REF][START_REF] Maler | From MITL to timed automata[END_REF], not based on OCATAs, also give the resulting automaton in terms of smaller component automata, but they have to use specialised product constructions to synchronise the components.

Apart from automata-theoretic approaches, [START_REF] Bersani | A tool for deciding the satisfiability of continuous-time metric temporal logic[END_REF] considers 'bounded modelchecking' which encodes the satisfiability problem for MITL (in the continuous semantics) into an SMT problem (Satisfiability Modulo Theories) [START_REF] De Moura | Satisfiability modulo theories: introduction and applications[END_REF]. This approach is complete when very large bounds (numbers of regions of equivalent TA) are used, but such bounds are clearly impractical for current SMT solvers.

Outline. Section 2 starts with preliminary definitions of timed logics and (alternating) timed automata. Sections 3, 4 and 5 then give our new translation from formulae to generalised Büchi (timed) automata for LTL, MITL 0,∞ (a fragment of MITL where only intervals of the form [0, a], [0, a), [a, +∞), or (a, +∞) are allowed), and full MITL, respectively. We report on our OCaml implementation MightyL and some promising experiments on several benchmarks in Section 6.

2 Timed logics vs (alternating) timed automata Timed languages. Let AP be a finite set of atomic propositions, and

Σ = 2 AP . A timed word over Σ is an infinite sequence ρ = (σ 1 , τ 1)(σ 2 , τ 2) • • • over Σ × R +
with (τ i) i≥1 a non-decreasing sequence of non-negative real numbers. We denote by T Σ ω the set of timed words over Σ. A timed language is a subset of T Σ ω . Timed logics. We consider the satisfiability and model-checking problem of Metric Interval Temporal Logic (MITL), an extension of Linear Temporal Logic (LTL) in which temporal operators can be labelled with non-singular timed intervals (or [0, 0], which is the only singular interval we allow). Formally, MITL formulae over AP are generated by the grammar

ϕ := p | ϕ ∧ ϕ | ¬ϕ | X I ϕ | ϕ U I ϕ
where p ∈ AP and I is either a non-singular interval over R + with endpoints in N ∪ {+∞} or [0, 0]. To simplify our explanations, we will only consider closed non-singular intervals in the sequel, i.e. intervals of the form [a, b] or [a, +∞), with 0 ≤ a < b < +∞. We let |I| be the length of the interval

I: |[a, b]| = b -a for 0 ≤ a < b < +∞ and |[a, +∞)| = +∞.
We consider the pointwise semantics and interpret MITL formulae over timed words. The semantics of a formula ϕ in MITL is defined inductively:

given ρ = (σ 1 , τ 1)(σ 2 , τ 2) • • • ∈ T Σ ω , and a position i ≥ 1, we let -(ρ, i) |= p if p ∈ σ i ; -(ρ, i) |= ϕ 1 ∧ ϕ 2 if (ρ, i) |= ϕ 1 and (ρ, i) |= ϕ 2 ; -(ρ, i) |= ¬ϕ if (ρ, i) |= ϕ; -(ρ, i) |= X I ϕ if (ρ, i + 1) |= ϕ and τ i+1 -τ i ∈ I; -(ρ, i) |= ϕ 1 U I ϕ 2 if there exists j ≥ i, (ρ, j) |= ϕ 2 , τ j -τ i ∈ I, and, for all i ≤ k < j, (ρ, k) |= ϕ 1 .
We derive other Boolean operators with the following macros: ϕ 1 ∨ ϕ 2 ≡ ¬(¬ϕ 1 ∧ ¬ϕ 2), ≡ p ∨ ¬p, ⊥ ≡ ¬ , and ϕ 1 ⇒ ϕ 2 ≡ ¬ϕ 1 ∨ ϕ 2 . We also define other temporal operators as usual: the 'eventually' operator F I ϕ ≡ U I ϕ, the 'globally' operator G I ϕ ≡ ¬F I ¬ϕ, the 'release' operator ϕ 1 R I ϕ 2 ≡ ¬((¬ϕ 1)U I (¬ϕ 2)), and the 'dual-next' operator X I ϕ ≡ ¬X I ¬ϕ (contrary to LTL, it is not true that ¬X I ϕ ≡ X I ¬ϕ). With the release and dual-next operators, we can transform every formula ϕ into negative normal form, i.e. formulae using only predicates of AP, their negations, and the operators ∨, ∧, U I , R I , X I , and X I . To help the understanding, let us detail the semantics of ϕ 1 R I ϕ 2 :

-(ρ, i) |= ϕ 1 R I ϕ 2 if for all j ≥ i such that τ j -τ i ∈ I, either (ρ, j) |= ϕ 2 , or there exists i ≤ k < j such that (ρ, k) |= ϕ 1 .
We say that ρ satisfies the formula ϕ, written ρ |= ϕ if (ρ, 1) |= ϕ, and we denote by ϕ the set of all timed words satisfying ϕ. When writing formulae, we omit the trivial interval [0, +∞). LTL is the fragment of MITL where all operators are labelled by [0, ∞); and MITL 0,∞ is the fragment where, in all intervals, either the left endpoint is 0 or the right endpoint is +∞. Timed automata. Let X be a finite set of real valued variables, called clocks. The set G(X) of clock constraints g over X is defined by g := | g ∧ g | x c, where ∈ {≤, <, ≥, >}, x ∈ X and c ∈ N. A valuation over X is a mapping v : X → R + . We denote by 0 the valuation that maps every clock to 0, and we write the valuation simply as a value in R + when X is a singleton. The satisfaction of a constraint g by a valuation v is defined in the usual way and noted v |= g, and we denote by g the set of valuations v satisfying g. For t ∈ R + , we let v + t be the valuation defined by (v + t)(x) = v(x) + t for all x ∈ X. For R ⊆ X, we let v[R ← 0] be the valuation defined by

(v[R ← 0])(x) = 0 if x ∈ R, and (v[R ← 0])(x) = v(x) otherwise.
We introduce the notion of generalised Büchi timed automaton (GBTA) as an extension of classical timed automata [START_REF] Alur | A theory of timed automata[END_REF] with a generalised acceptance condition (used by [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF] in the untimed setting). A GBTA is a tuple A = (L, Σ, 0 , ∆, F) where L is a finite set of locations, Σ is a finite alphabet, 0 ∈ L is the initial location, ∆ ⊆ L × Σ × G(X) × 2 X × L is the transition relation, and F = {F 1 , . . . , F n }, with F i ⊆ L for all 1 ≤ i ≤ n, is the set of sets of final locations. A timed automaton (TA), as described in [START_REF] Alur | A theory of timed automata[END_REF], is a special case of GBTA where F = {F } is a singleton (F contains the accepting locations of the TA). A state of A is a pair (, v) of a location ∈ L and a valuation v of the clocks in X. A run of A over the timed word

(σ 1 , τ 1)(σ 2 , τ 2) • • • ∈ T Σ ω is a sequence of states C 0 , C 1 , . . . where (i) C 0 = (0 , 0) and (ii) for each i ≥ 0 such that C i = (, v), there is a transition (, σ i+1 , g, R,) such that C i+1 = (, v), v + (τ i+1 -τ i) |= g (assuming τ 0 = 0) and v = (v + (τ i+1 -τ i))[R ← 0]
. By the generalised Büchi acceptance condition, a run is accepting if and only if the set of locations that it visits infinitely often contains at least one location from each set F i , for all 1 ≤ i ≤ n. We let A be the set of timed words on which there exist accepting runs of A.

Synchronisation of timed automata. In the following, we will consider GBTAs described by synchronous products of several components. More precisely, given two GBTAs A 1 = (L 1 , Σ, 1 0 , ∆ 1 , F 1) and A 2 = (L 2 , Σ, 2 0 , ∆ 2 , F 2) over disjoint sets of clocks, we define the GBTA A 1 × A 2 = (L, Σ, 0 , ∆, F) obtained by synchronising A 1 and A 2 . Its set of locations is L = L 1 × L 2 , with 0 = (1 0 , 2 0). The acceptance condition is obtained by mimicking a disjoint union of the generalised Büchi conditions: assuming

F 1 = {F 1 , . . . , F n } and F 2 = {G 1 , . . . , G m }, we let F = {F 1 × L 2 , . . . , F n × L 2 , L 1 × G 1 , . . . , L 1 × G m }. Finally, ((1 1 , 2 1), σ, g, R, (1 2 , 2 2)) ∈ ∆ if there exists (1 1 , σ, g 1 , R 1 , 1 2) ∈ ∆ 1 and (2 1 , σ, g 2 , R 2 , 2 2) ∈ ∆ 2 such that g = g 1 ∧ g 2 and R = R 1 ∪ R 2 .
This definition can be extended for the synchronisation of a set of GBTAs {A i | i ∈ I}: the product is then written as i∈I A i .

One-clock alternating timed automata. One-clock alternating timed automata (OCATA) [START_REF] Ouaknine | On the decidability and complexity of metric temporal logic over finite words[END_REF] extend (non-deterministic) one-clock timed automata by adding conjunctive transitions. Intuitively, a conjunctive transition spawns several copies of the automaton that run in parallel from the targets of the transition. A word is accepted if and only if all copies accept it. An example is shown in Fig. 1, where the conjunctive transition is the hyperedge starting from 0 .

Formally, we consider a single clock x and, for a set L of locations, let Γ (L) be the set of formulae defined by

γ := | ⊥ | γ ∨ γ | γ ∧ γ | | x c | x.γ
where c ∈ N, ∈ {≤, <, ≥, >}, and ∈ L. Compared to the clock constraints defined above for TAs, Γ (L) allows non-determinism (∨ operator), locations as atoms, and expressions of the form x.γ (meaning that x is reset in γ). An OCATA is a tuple A = (L, Σ, 0 , δ, F) where L is a finite set of locations, Σ is a finite alphabet, 0 ∈ L is the initial location, δ : L × Σ → Γ (L) is the transition function, and F ⊆ L is the set of final locations. A state of A is a pair (, v) of a location in L and a valuation of the single clock x. Models of the formulae in Γ (L), with respect to a clock valuation v ∈ R + , are sets of states M :

-M |= v ; M |= v if (, v) ∈ M ; M |= v x c if v c; M |= v x.γ if M |= 0 γ; -M |= v γ 1 ∧ γ 2 if M |= v γ 1 and M |= v γ 2 ; -M |= v γ 1 ∨ γ 2 if M |= v γ 1 or M |= v γ 2 . A set M of states is said to be a minimal model of the formula γ ∈ Γ (S) with respect to a clock valuation v ∈ R + if and only if M |= v γ and there is no proper subset M ⊂ M with M |= v γ. A run of A over a timed word ρ = (σ 1 , τ 1)(σ 2 , τ 2) • • • ∈ T Σ ω is a rooted directed acyclic graph (DAG) G = (V, →)
with vertices of the form (, v, i) ∈ L × R + × N, (0 , 0, 0) as root, and edges as follows: for every vertex (, v, i), we choose a minimal model M of the formula

0 ∧ 1 Σ \ Σp Σp \ Σq Σp ∩ Σq x := 0 Σ x ≤ 1, Σq Fig. 1. An OCATA accepting the language of G(p ⇒ F [0,1] q). (0, 0, 0) (0, 0.42, 1) (0, 0.42, 2) (1, 0 , 2)
(0, 0.7, 3) . . . δ(, σ i+1) with respect to v + (τ i+1 -τ i) (again, τ 0 = 0), and we have an edge (, v, i) → (, v , i + 1) in G for every state (, v) appearing in model M . Such a run is accepting if and only if there is no infinite path in G that visit final locations only finitely often. We let A be the set of timed words on which there exist accepting runs of A.

It is also useful to see a run as a linear sequence of configurations (i.e. finite sets of states) which gather all states at a given DAG level. Formally, from a DAG G = (V, →) we extract the sequence of configurations K 0 , K 1 , . . . where

K i = {(, v) | (, v, i) ∈ V } for all i ≥ 0. 5
Example 1. Consider the OCATA of Fig. 1 on the alphabet Σ = 2 {p,q} . For each proposition π ∈ {p, q}, we write Σ π = {σ ∈ Σ | π ∈ σ}. A run over the timed word (∅, 0.42)({p}, 0.42)({q}, 0.7) • • • is depicted in Fig. 2. It starts with the DAG rooted in (0 , 0, 0) (initially, there is only one copy in 0 with the clock equal to 0). This root has a single successor (0 , 0.42, 1), which has two successors (0 , 0.42, 2) and (1 , 0, 2) (after firing the conjunctive transition from 0). Then, (1 , 0, 2) has no successor since the empty model is a minimal model of the next transition (the transition from 1 points to no location). The associated sequence of configurations starts by: {(0 , 0)}, {(0 , 0.42)}, {(0 , 0.42), (1 , 0)} • • • Each formula ϕ of MITL can be translated into an OCATA A ϕ that accepts the same language [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF][START_REF] Ouaknine | On the decidability and complexity of metric temporal logic over finite words[END_REF], and with a number of locations linear in the number of subformulae of ϕ. We recall the definition of A ϕ for the sake of completeness. The set of locations of A ϕ contains: (i) ϕ init ; (ii) all the subformulae of ϕ (that we suppose to be in negative normal form) whose outermost operator is U I or R I ; and (iii) ψ r for each subformulae ψ of ϕ whose outermost operator is X I or X I . Its initial location is ϕ init , and the accepting locations of F are all the subformulae of the form ϕ 1 R I ϕ 2 . Finally, δ is defined inductively:

-δ(ϕ init , σ) = x.δ(ϕ, σ), δ(, σ) = , and δ(⊥, σ) = ⊥; -δ(p, σ) = if p ∈ σ, δ(p, σ) = ⊥ otherwise; -δ(¬p, σ) = if p / ∈ σ, δ(¬p, σ) = ⊥ otherwise; -δ(ϕ 1 ∨ ϕ 2 , σ) = δ(ϕ 1 , σ) ∨ δ(ϕ 2 , σ), and δ(ϕ 1 ∧ ϕ 2 , σ) = δ(ϕ 1 , σ) ∧ δ(ϕ 2 , σ); -δ(ϕ 1 U I ϕ 2 , σ) = (x.δ(ϕ 2 , σ) ∧ x ∈ I) ∨ (x.δ(ϕ 1 , σ) ∧ ϕ 1 U I ϕ 2 ∧ x ≤ sup I); -δ(ϕ 1 R I ϕ 2 , σ) = (x.δ(ϕ 2 , σ) ∨ x / ∈ I) ∧ (x.δ(ϕ 1 , σ) ∨ ϕ 1 R I ϕ 2 ∨ x > sup I); -δ(X I ϕ, σ) = x.(X I ϕ) r , and δ((X I ϕ) r , σ) = x ∈ I ∧ x.δ(ϕ, σ); -δ(X I ϕ, σ) = x.(X I ϕ) r , and δ((X I ϕ) r , σ) = x / ∈ I ∨ x.δ(ϕ, σ).
As already noticed in [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF], the OCATA A ϕ produced from an MITL formula ϕ is very-weak [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF][START_REF] Kupferman | Weak alternating automata are not that weak[END_REF][START_REF] Muller | Alternating automata, the weak monadic theory of the tree, and its complexity[END_REF], i.e. it comes with a partial order on its locations such that all locations appearing in δ(, σ) are bounded above by in this order. For an OCATA A ϕ obtained from an MITL formula ϕ, the order is given by the subformula order: ϕ init is the greatest element in the order, and a location ψ is less than χ if ψ is a subformula of χ. We will also make use of the following properties of δ: (i) if appears in δ(, σ) then it is preceded by a clock reset if and only if = ; and (ii) each either has no parent or has a unique parent, i.e. there is a unique = such that appears in δ(, σ) for some σ.

Theorem 2 ([START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF]). For all formulae ϕ of MITL, A ϕ = ϕ . Remark 3. To ease the presentation, we use Boolean formulae over atomic propositions as transition labels. For instance, Σ \ Σ p will be written as ¬p.

Compositional removal of alternation

The current and next two sections are devoted to explaining the core idea of our construction: simulate the OCATA A ϕ obtained from an MITL formula ϕ by the synchronous product of component Büchi timed automata, one for each temporal subformula (i.e. a subformula whose outermost operator is temporal). The very-weakness of A ϕ is crucial for our construction to work: a run of A ϕ is accepting if and only if A ϕ does not get stuck at a non-accepting location in any branch. Therefore, we can keep track of each location with a separate component and simply define a suitable Büchi acceptance condition on each such component. 6 Our compositional construction preserves the structure of the formula, and thus we can hope that the model-checking tool (which is responsible for the composition) takes this into account. 7 At the very least, the modelchecking tool can use an on-the-fly approach in composition (as is indeed the case for Uppaal and LTSmin), which is often faster in practice: the explicit construction of the whole product can be avoided when there is an accepting run.

In what follows, let ϕ be an MITL formula over AP in negative normal form and A ϕ be the OCATA obtained from ϕ with the translation described earlier.

For the sake of simplicity, we make the following assumptions:

-X I and X I do not appear in ϕ; each temporal subformula ψ of ϕ appears only once in ϕ.

Let Φ be the set of temporal subformulae of ϕ. We introduce a new atomic proposition p ψ for each subformula ψ ∈ Φ (i.e. for each non-initial location of the OCATA A ϕ) and let AP ϕ be the set of these new atomic propositions. For each (not necessarily temporal) subformula ψ of ϕ, we denote by P ψ the set of atomic propositions p ξ ∈ AP ϕ such that ξ is a top-level temporal subformula of ψ, i.e. the outermost operator of ξ is U I or R I , yet ξ does not occur under the scope of another U I or R I . For instance, P pU I q∨rU I (sRt) = {p pU I q , p rU I (sRt) }.

Hintikka sequences and triggers. A Hintikka sequence of ϕ is a timed word ρ over 2 AP∪APϕ . Intuitively, Hintikka sequences can be regarded as an instrumented version of timed words, where the extra atomic propositions from AP ϕ are triggers that connect timed words to their runs in the OCATA A ϕ ; this is the central notion of our construction which, as we will prove, indeed simulates the runs of A ϕ . Pulling the trigger p ψ (i.e. setting p ψ to true) at some point means that ψ is required to hold at this point. However, the absence of a trigger p ξ does not mean that subformula ξ must not be satisfied-its satisfaction is simply not required at this point. We denote by proj AP (ρ) the timed word obtained by hiding all the atomic propositions in AP ϕ from ρ . We also let proj AP (L) = {proj AP (ρ) | ρ ∈ L} for a timed language L over 2 AP∪APϕ .

Formulae over AP ∪ AP ϕ . We now introduce some syntactic operations on Boolean combinations of atomic propositions in AP ∪ AP ϕ , that will be used to construct the component Büchi automata later. Specifically, for a subformula ψ of ϕ, we define formulae ψ, * ψ, ∼ψ, and ψ.

The formula ψ is obtained from ψ by replacing all top-level temporal subformulae by their corresponding triggers. Formally, ψ is defined inductively as follows (where p ∈ AP ∪ AP ϕ):

ψ 1 ∧ ψ 2 = ψ 1 ∧ ψ 2 ψ = ψ when ψ is or ⊥ or p or ¬p ψ 1 ∨ ψ 2 = ψ 1 ∨ ψ 2 ψ = p ψ when ψ is ψ 1 U I ψ 2 or ψ 1 R I ψ 2 .
The formula * ψ, read as "do not pull the triggers of ψ", will be used to ensure that our component automata only follow the minimal models of the transition function of A ϕ (we will see in Section 6 how crucial it is, for performance, to generate only minimal models). It is the conjunction of negations of all the atomic propositions in P ψ . As a concrete example, * ((¬p ∨ The formula ∼ψ asserts that ψ is false and none of its triggers are activated: ∼ψ = ¬ψ ∧ * ψ. Finally, the formula ψ is defined as mm(ψ) where mm(α) is defined inductively as follows:

ψ 1 U ψ 2) ∧ (q ∨ ψ 3 R (ψ 4 U ψ 5))) = ¬p ψ1Uψ2 ∧ ¬p ψ3R(ψ4Uψ5) . 1 0 ϕ * ϕ a) 0 1 pχ ∧ ϕ1 ∧ ∼ϕ2 ¬pχ ∧ * ϕ1 ∧ * ϕ2 pχ ∧ * ϕ1 ∧ ϕ2 * ϕ1 ∧ ϕ2 ϕ1 ∧ ∼ϕ2 b) 0 1 pχ ∧ ∼ϕ1 ∧ ϕ2 ¬pχ ∧ * ϕ1 ∧ * ϕ2 pχ ∧ ϕ1 ∧ ϕ2 ϕ1 ∧ ϕ2 ∼ϕ1 ∧ ϕ2 c)
mm(p) = p mm(¬p) = ¬p mm() = mm(⊥) = ⊥ mm(α 1 ∨ α 2) = mm(α 1) ∧ ∼α 2 ∨ mm(α 2) ∧ ∼α 1 ∨ (α 1 ∨ α 2) ∧ * α 1 ∧ * α 2 mm(α 1 ∧ α 2) = mm(α 1) ∧ mm(α 2) .
Intuitively, mm(α) is satisfiable if and only if α is satisfiable, but mm(α) only permits models of α that are minimal with respect to the triggers it contains: for mm(α 1 ∨ α 2) to be true, either mm(α 1) is true and α 2 does not hold, or vice versa, or α 1 ∨α 2 is indeed true, but not because of any of the triggers it contains.

Component Büchi automata for LTL. We are now ready to present the construction for the case that ϕ is an LTL formula. Instead of building a monolithic Büchi automaton B ϕ directly from the alternating automaton, as in [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF], we build small component Büchi automata that are language-equivalent to the automaton B ϕ , once synchronised. There is an initial component C init , and a component Büchi automaton C χ , for each χ ∈ Φ (see Fig. 3). Consider, for instance, the case χ = ϕ 1 U ϕ 2 . Component C χ has two locations 0 and 1 with the following intended meaning: C χ is in location 1 if and only if the trigger p χ has been pulled in the past by C init , in which case p χ ∈ P ϕ , or by a unique component C ψ1U I ψ2 (or C ψ1R I ψ2) such that p χ ∈ P ψ1 or p χ ∈ P ψ2 , and χ has not been satisfied yet. When component C χ is in location 1, we say that we have an obligation for χ. To satisfy this obligation, we must see a letter in the future where ϕ 2 holds. Thus, there is a self-loop on location 1 whose label ensures that ϕ 2 does not hold (because of ∼ϕ 2), while ϕ 1 still holds (this is ensured by ϕ 1 , which also pulls a minimal set of triggers for ϕ 1 to be satisfied). C χ moves back from 1 to 0 when ϕ 2 holds, while no trigger of ϕ 1 should be pulled at this instant (which is translated by * ϕ 1). From location 0, if we do not read trigger p χ , nothing has to be checked and we do not pull any trigger. However, if p χ is pulled, then, either ϕ 2 holds right away and the obligation is fulfilled immediately, or we jump to location 1. The component C χ for the case χ = ϕ 1 R ϕ 2 is based on a similar reasoning. We state the following proposition without proof as it will be superseded by a stronger proposition in the next section. 4 The case of MITL 0,∞

We now describe how to lift the translation we described earlier to the timed operators of MITL 0,∞ . The new components for U [0,a] , R [0,a] , and R [a,∞) are depicted in Fig. 5. They have the same shape as the components for untimed U and R (see Fig. 3); only the guards are changed to reflect the more involved semantics of the timed operators. Observe that these automata have only one clock. To understand why this is sufficient, consider the formula G(p ⇒ χ) with χ = pU [0,2] q. After reading ({p}, 0)({p}, 0.4)({p}, 1), the OCATA A ϕ reaches the configuration {(ϕ, 0), (χ, 0), (χ, 0.6), (χ, 1)}, meaning intuitively that, to satisfy the formula, one must fulfil three obligations related to χ: to see q's within 2, 1.4, and 1 time units, respectively. Hence, we can store the earliest obligation, corresponding to (χ, 1), only (as already observed in [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF]). Indeed, if the corresponding instance of χ is satisfied, it means that there will be a q occurring within less that 1 time unit, which will also satisfy all the other obligations. More generally, for operators U [0,a] and R [a,∞) , it is always the case that only the oldest obligation has to be stored, while for operators R [0,a] and U [a,∞) , only the earliest obligation has to be stored. This is translated in the components by the absence/presence of resets on transitions that leave state 1 (which is reached when an obligation is currently active) and read p χ . For χ = ϕ 1 U [a,∞) ϕ 2 , the situation is slightly more complicated, although one clock is again sufficient. The corresponding component is in Fig. 6 and has four locations. To understand why, consider the case when there is an obligation for χ associated with the current valuation v ≥ a of clock x (C χ is in location 1), the current letter contains p χ and satisfies both ϕ 1 and ϕ 2 . Since the trigger has been pulled, C χ should stay in the non-accepting location 1. On the other a) a)

1 0 pϕ ¬pϕ 0 1 pϕ ∧ (¬p ∧ ¬p Fq ∨ p ∧ p Fq) ¬pϕ ∧ ¬p Fq ¬p ∧ ¬p Fq ∨ p ∧ p Fq 0 1 p Fq ∧ ¬q ¬p Fq p Fq ∧ q q ¬q ⇓ b) 100 010 011 pϕ ∧ pFq ∧ p ∧ ¬q pϕ ∧ ¬p ∧ ¬pFq pϕ ∧ p ∧ pFq ∧ q ¬p ∧ ¬pFq p ∧ pFq ∧ q pFq ∧ p ∧ ¬q ¬q ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq) q ∧ (¬p ∧ ¬pFq ∨ p ∧ pFq) ⇓ c) ¬p ∨ p ∧ q p ∧
0 1 pχ ∧ ϕ1 ∧ ∼ϕ2, x := 0 ¬pχ ∧ * ϕ1 ∧ * ϕ2, x := 0 pχ ∧ * ϕ1 ∧ ϕ2, x := 0 * ϕ1 ∧ ϕ2 ∧ x ≤ a, x := 0 ϕ1 ∧ ∼ϕ2 ∧ x ≤ a b) 0 1 pχ ∧ ∼ϕ1 ∧ ϕ2, x := 0 ¬pχ ∧ * ϕ1 ∧ * ϕ2, x := 0 pχ ∧ ϕ1 ∧ ϕ2, x := 0 ¬pχ ∧ * ϕ1 ∧ * ϕ2 ∧ x > a, x := 0 ¬pχ ∧ ϕ1 ∧ ϕ2 ∧ x ≤ a, x := 0 pχ ∧ ϕ1 ∧ ϕ2, x := 0 ¬pχ ∧ ∼ϕ1 ∧ ϕ2 ∧ x ≤ a pχ ∧ ∼ϕ1 ∧ ϕ2, x := 0 c) 0 1 pχ ∧ ∼ϕ1 ∧ * ϕ2, x := 0 ¬pχ ∧ * ϕ1 ∧ * ϕ2, x := 0 pχ ∧ ϕ1 ∧ * ϕ2, x := 0 ϕ1 ∧ * ϕ2 ∧ x < a, x := 0 ϕ1 ∧ ϕ2 ∧ x ≥ a, x := 0 ∼ϕ1 ∧ * ϕ2 ∧ x < a ∼ϕ1 ∧ ϕ2 ∧ x ≥ a Fig. 5. One-clock TA for the subformulae: a) χ = ϕ1 U [0,a] ϕ2, b) χ = ϕ1 R [0,a] ϕ2, and c) χ = ϕ1 R [a,∞) ϕ2.
hand, the pending obligation has also been fulfilled, and an accepting location should be visited. So, instead of staying in 1, C χ moves to 1 in this case: 1 is a copy of 1 as far as transitions are concerned, but it is accepting. The location 1 is used to deal with the situation where p χ is launched infinitely often but no two occurrences of p χ are separated by more than a time units; in this case, we non-deterministically move to 1 and add a new obligation (by resetting x) after the current obligation has been verified. Notice that this problem cannot occur for ϕ 1 U ϕ 2 , or ϕ 1 U [0,a] ϕ 2 : in these cases, the new obligation is immediately fulfilled, and the automaton moves to the initial, accepting, location. We now present the extension of Proposition 4 to the case of MITL 0,∞ . The proof relies on a function that, given a formula γ = δ(, σ) (where δ is the transition function of A ϕ , is a location of A ϕ , and σ ∈ Σ = 2 AP) and a minimal model M of γ with respect to a clock valuation v ∈ R + , recovers the set of triggers activated. Formally, we write trig ϕ (M, γ, v) for the subset of AP ϕ inductively defined by (the rule for x.γ where γ = δ(, σ) for some ∈ Φ has precedence over the rule for x.(γ 1 ∧ γ 2) and x.(γ 1 ∨ γ 2)):

-trig ϕ (M, γ 1 ∧ γ 2 , v) = trig ϕ (M, γ 1 , v) ∪ trig ϕ (M, γ 2 , v); -trig ϕ (M, γ 1 ∨ γ 2 , v) = trig ϕ (M, γ 1 , v) if M |= v γ 1 trig ϕ (M, γ 2 , v) otherwise; -trig ϕ (M, x.γ, v) = {p } ∪ trig ϕ (M, γ, 0) if γ = δ(, σ) for some ∈ Φ; -trig ϕ (M, x.(γ 1 ∧ γ 2), v) = trig ϕ (M, x.γ 1 , v) ∪ trig ϕ (M, x.γ 2 , v); -trig ϕ (M, x.(γ 1 ∨ γ 2), v) = trig ϕ (M, x.γ 1 , v) if M |= v x.γ 1 trig ϕ (M, x.γ 2 , v) otherwise; -trig ϕ (M, γ, v) = ∅ otherwise. Proposition 6. For all MITL 0,∞ formulae ϕ, proj AP (C init × χ∈Φ C χ) = ϕ . 0 1 1 1 pχ ∧ ϕ1 ∧ * ϕ2, x := 0 ¬pχ ∧ * ϕ1 ∧ * ϕ2, x := 0 ¬pχ ∧ * ϕ1 ∧ ϕ2 ∧ x ≥ a, x := 0 ¬pχ ∧ ϕ1 ∧ ∼ϕ2 ¬pχ ∧ ϕ1 ∧ * ϕ2 ∧ x < a pχ ∧ ϕ1 ∧ ∼ϕ2, x := 0 pχ ∧ ϕ1 ∧ * ϕ2 ∧ x < a, x := 0 pχ ∧ ϕ1 ∧ ∼ϕ2 pχ ∧ ϕ1 ∧ * ϕ2 ∧ x < a pχ ∧ ϕ1 ∧ ϕ2 ∧ x ≥ a, x := 0 ¬pχ ∧ * ϕ1 ∧ ϕ2 ∧ x ≥ a, x := 0 ¬pχ ∧ ϕ1 ∧ ∼ϕ2 ¬pχ ∧ ϕ1 ∧ * ϕ2 ∧ x < a pχ ∧ ϕ1 ∧ ∼ϕ2, x := 0 pχ ∧ ϕ1 ∧ * ϕ2 ∧ x < a, x := 0 ϕ1 ∧ ∼ϕ2 ϕ1 ∧ * ϕ2 ∧ x < a ϕ1 ∧ ϕ2 ∧ x ≥ a, x := 0 pχ ∧ ϕ1 ∧ ϕ2 ∧ x ≥ a, x := 0 Fig. 6. One-clock TA for the subformula χ = ϕ1 U [a,∞) ϕ2.
Proof (Sketch). Recall that Theorem 2 states that ϕ = A ϕ . Therefore, it suffices to relate the accepting runs of the synchronous product of all component Büchi timed automata C = C init × χ∈Φ C χ with the accepting runs of A ϕ . Let us consider a timed word ρ ∈ A ϕ and an accepting run G = (V, →) of A ϕ over ρ. Let K 0 , K 1 , . . . be the sequence of configurations associated with G.

We first construct the instrumented timed word ρ over 2 AP∪APϕ from ρ and G by adding the triggers in AP ϕ according to the minimal models selected in G. More precisely, for all i ≥ 0, we associate with every state (, v) of K i the pair (γ ,v , M ,v) where γ ,v = δ(, σ i+1) and M ,v is the minimal model of γ ,v with respect to v + τ i+1 -τ i chosen in G. We then gather all the triggers in

Q i = (,v)∈Ki trig ϕ (M ,v , γ ,v , v +τ i+1 -τ i), and let ρ = (σ 1 ∪Q 1 , τ 1)(σ 2 ∪Q 2 , τ 2) • • • .
Then, it can be shown that each component has an accepting run over ρ . By definition, the generalised Büchi acceptance condition on C is fulfilled exactly when the Büchi acceptance condition on each of the components is fulfilled. It follows that C accepts ρ , and hence ρ ∈ proj AP (C). The other direction of the proof consists of building an accepting run G of A ϕ over proj AP (ρ) from an accepting run of C over ρ ∈ C . At each level of G, the truth values of the triggers in ρ are used to guide the construction of minimal models.

Handling full MITL

We can now extend our translation to full MITL, i.e. allowing operators U [a,b] and R [a,b] with 0 < a < b < +∞. For these two types of operators, we cannot rely on a single clock in the components anymore. For instance, consider the formula ϕ = G(p ⇒ χ) with χ = F [START_REF] Abid | A formal framework to specify and verify realtime properties on critical systems[END_REF][START_REF] Alur | A theory of timed automata[END_REF] q. Imagine that A ϕ reads the prefix ({p}, 0)({p}, 0.5). At this point, its configuration is {(ϕ, 0), (χ, 0), (χ, 0.5)}. It is not possible, as before, to drop one of the two states in location χ as the following futures can happen: if we read ({q}, 1), obligation (χ, 0) is fulfilled but not (χ, 0.5); if we read ({q}, 2.5) then the obligation (χ, 0.5) is fuilfilled but not (χ, 0). Therefore, we must keep track of the two obligations separately. It is, however, not clear how to find an a priori bound on the number of clocks. This is the role of the interval semantics introduced in [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF] for OCATAs resulting from MITL formulae over infinite words. In this interpretation of OCATAs, valuations of the clocks are no longer points but intervals meant to approximate sets of (singular) valuations: (, [α, β]) means that there are clock copies with valuations α and β in , yet there could be more copies in with valuations in (α, β). In this semantics, we can merge non-deterministically two copies (,

× pχ x1 := 0 τ1 [x1 = a τ1 + a] x1 = b τ1 + b × pχ x2 := 0 τ2 [x2 = a τ2 + a] x2 = b τ2 + b × pχ x3 := 0 τ3 [x3 = a τ3 + a] x3 = b τ3 + b Case 1: [ϕ2] Case 2: [ϕ2) (ϕ2] Case 3: [ϕ2) (ϕ2] Case 4: [ϕ2)(ϕ2]
[α 1 , β 1]) and (, [α 2 , β 2]) into a single copy (, [α 1 , β 2]) (assuming α 1 ≤ β 2)
, in order to keep the number of clock copies below a fixed threshold, and thus obtain an equivalent TA.

It has been shown in [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF] that, for the OCATA A ϕ , with ϕ ∈ MITL, the interval semantics is sufficient to retain the language of the formula, with TAs having at most M (ϕ) = |ϕ|×max I∈Iϕ (max(4× inf(I)/|I| +2, 2× sup(I)/|I| +2)) clocks, where I ϕ is the set of intervals that appear in ϕ: more precisely, each subformula with topmost operator U I (respectively, R I) contributes to 4 × inf(I)/|I| + 2 (respectively, 2 × sup(I)/|I| + 2) more clocks.

Our solution is twofold in this context: (i) we propose a better approximation by intervals that allows us to cut, up to a factor of two, the number of clock copies we must keep in memory; (ii) instead of a single TA, as in [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF], we provide a GBTA, with one component per temporal subformula of ϕ. The component TA are much more involved than for MITL 0,∞ , thus we do not give them explicitly, but rather explain the main ideas.

We start by developing our new merging strategy on an example, to explain how it is different from [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF]. Consider χ = ϕ 1 U [a,b] ϕ 2 with 0 < a < b < +∞ and the situation depicted in Fig. 7, where the trigger p χ is pulled at three positions of time stamps τ 1 , τ 2 , and τ 3 . We suppose that ϕ 1 holds at all three positions. The picture presents four different cases corresponding to the four possible situations where the occurrences of ϕ 2 fulfil the three pending obligations. Case 1 is when a position in [τ 3 + a, τ 1 + b] satisfies ϕ 2 , hence all three obligations are resolved at once. This case can be checked using only clocks x 3 and x 1 . In case 2, the first obligation is resolved by an occurrence of ϕ 2 with time stamp in [τ 1 + a, τ 2 + a), while the two others are resolved by an occurrence in (τ 1 + b, τ 2 + b]. Thus, case 2 can be checked using only clocks x 1 and x 2 . Now consider the remaining cases: if no occurrences of ϕ 2 appear in [τ 1 + a, τ 2 + a) ∪ [τ 3 + a, τ 1 + b], one occurrence of ϕ 2 must necessarily happen in [τ 2 + a, τ 3 + a), while the other should be in (τ 1 + b, τ 3 + b], which can only be checked using three clocks x 1 , x 2 and x 3 . We avoid this by splitting this case into two further cases (cases 3 and 4) that can be checked with only two clocks. Specifically, case 3 can be checked using only clocks x 2 and x 3 ; and case 4 using only clocks x 2 and x 1 .

Observe that these cases can be categorised into two groups: one where ϕ 2 should occur in a single interval whose endpoints use two distinct clocks (case 1), another where ϕ 2 should occur in two half-open intervals whose both endpoints use the same two distinct clocks (cases 2, 3 and 4). In each of the two groups, it must be understood how a new obligation (added by pulling the trigger p χ) modifies the situation. With only one interval, if a new obligation for ϕ 2 appear as a new interval [τ + a, τ + b], either the new obligation is implied by the current one, in which case we are done, or the two intervals intersect and we do a further split (non-deterministically) into cases 1, 3 and 4, or they are disjoint and we keep both intervals in memory. The latter situation cannot happen too often since intervals are non-singular; more precisely, this will happen at most (inf(I)/|I|) + 1 times (I = [a, b]). With two intervals, either the new obligation is already implied by current obligations, or [τ + a, τ + b] is not implied by the current obligations and we add this new interval in memory as before (again, this cannot happen more than (inf(I)/|I|) + 1 times).

In the end, following the same lines as [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF], we can build a component C χ for each subformula χ = ϕ 1 U [a,b] ϕ 2 with N (χ) = 2× (inf(I)/|I|)+1 +2 clocks (the two additional clocks are used to deal easily with some special cases), which is roughly half of the previous bound on the number of clocks [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF]. In the locations, we can handle the clocks in pairs and use a queue of size N (χ)/2 to keep track of which case we fall into and which clocks are used to represent the endpoints of intervals. It follows that the number of locations is exponential in N (χ). A similar construction, using 2 × (inf(I)/|I|) + 1 clocks, builds a component C χ for each subformula χ = ϕ 1 R [a,b] ϕ 2 . In this case, we have to consider unions of intervals, which are easier to deal with.

Theorem 7. For all MITL formulae ϕ, proj AP (C init × χ∈Φ C χ) = ϕ .
Proof (Sketch.). We follow the same lines of the proof of Proposition 6, i.e. relating the accepting runs of A ϕ with the accepting runs of C = C init × χ∈Φ C χ . To show that A ϕ ⊆ proj AP (C), we use the same construction of the Hintikka sequence over 2 AP∪APϕ . Note that we have the accepting run G, so that we know in advance how each obligation is to be fulfilled in the future. In particular, we use this knowledge to resolve the non-determinism in components of the form

C ϕ1U [a,b] ϕ2 or C ϕ1R [a,b] ϕ2
. The other direction is also similar.

Implementation

We have implemented our translation from MITL formulae to generalised Büchi timed automata in a tool called MightyL, written in OCaml. From a formula ϕ, it produces the GBTA C, described in previous sections, in the xml format used by Uppaal, as well as the generalised Büchi condition written as a very simple LTL formula. When the input formula is in MITL 0,∞ , the translation can be done in polynomial time. For the general case, it runs in exponential time (assuming a succinct encoding of constants, as is the case here). We can then use Uppaal [START_REF] Larsen | Uppaal in a nutshell[END_REF] to check the satisfiability of ϕ over finite timed words, or LTSmin [START_REF] Kant | LTSmin: High-performance language-independent model checking[END_REF] with opaal front-end to check satisfiability over infinite timed words. To maximise compatibility with model-checking tools, we use several helper variables in the output xml file, e.g. a Boolean variable for each atomic proposition and a loc variable in each component for the current location. The synchronisation is done in a round-robin fashion with a counter variable N: initially, N is set to 0, allowing the model (to be model-checked) to take a transition and set the truth values of the atomic propositions. Then, N loops from 1 to the number of components of C, allowing each component to read the atomic propositions and take a corresponding transition. Finally, N is set back to 0 and we start over again. For the finite-word case, this also enables to check that all components have been synchronised properly (N = 0) while in the final location. Our tool is publicly available, and can even be executed directly on the website http://www.ulb.ac.be/di/verif/mightyl Compared to the simplified version we studied in this article, MightyL also allows for (semi-)open intervals. Since it can also deal with next and dual-next operators, we can verify formulae like ¬X [START_REF] Abid | A formal framework to specify and verify realtime properties on critical systems[END_REF][START_REF] Alur | A theory of timed automata[END_REF] p. All the following tests have been performed on a MacBook Pro 2.7GHz with 8Go RAM.

We check the satisfiability of MITL formulae on examples, inspired by the benchmarks of [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF][START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF]. For k ∈ N and an interval I, we consider the satisfiable formulae:

F (k, I) = k i=1 F I p i , G(k, I) = k i=1 G I p i , U (k, I) = (• • • (p 1 U I p 2) U I • • •)U I p k , R(k, I) = (• • • (p 1 R I p 2)R I • • •)R I p k , and θ(k, I) = ¬((k i=1 GFp i) ⇒ G(q ⇒ F I r))
. We also consider an example inspired from motion planning problems via MITL specifications as in [START_REF] Karaman | Optimal Planning with Temporal Logic Specifications[END_REF][START_REF] Plaku | Motion planning with temporal-logic specifications: Progress and challenges[END_REF]. In this benchmark, a robot must visit some target points t 1 , t 2 , t 3 , . . . , t k within given time frames (in our case, t i must be seen in time frame [3(i -1), 3i]), while enforcing a safety condition G¬p. This specification is modelled by the satisfiable MITL formula µ

(k) = k i=1 F [3(i-1),3i] t i ∧ G¬p.
In Table 1, we report on the time taken by the execution of MightyL; LTSmin (split into the time taken by opaal front-end to translate the model into C++ code, the compilation time of the resulting Table 1. Execution time for the satisfiability check of benchmarks of [START_REF] Brihaye | On MITL and alternating timed automata of infinite words[END_REF][START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF]. For LTSmin, the three columns reported correspond to the translation into C++, the compilation and the actual model-checking, respectively. We also report on the benchmarks found in [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF], where the debugging of formal specifications of cyber-physical systems is reduced to MITL non-satisfiability. More precisely, we check formulae for validity and redundancy. In [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF], a formula ϕ is called valid (with respect to a specification goal) if ϕ is neither unsatisfiable nor a tautology, i.e. ϕ and ¬ϕ are both satisfiable. A conjunct ϕ 1 of formula ϕ = k i=1 ϕ i is redundant if and only if k i=2 ϕ i implies ϕ 1 . This is true if and only if ψ = k i=2 ϕ i ⇒ ϕ 1 is valid, i.e. if and only if ¬ψ is not satisfiable. For instance, F [0,30] p is redundant in F [0,30] p∧F [0,20] p, and G [0,20] F [0,20] p is redundant in G [0,20] F [0,20] p ∧ G [0,40] p ∧ F [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF]40] . We check the validity and redundancy of several formulae considered in [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF] and report the results in Table 2. For reference, we copy the execution time reported in [START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF] for these checks. 8 We also consider some new formulae specific to our pointwise semantics.

Finally, recall that one technical part of the constructions of component Büchi timed automata is the minimal model simplification mm(ϕ). Our components remain correct if we replace everywhere mm(ϕ) by ϕ (i.e. ϕ simply becomes ϕ). On some instances of the previous benchmarks, the influence on the execution time of the satisfiability checks is tremendous (differences on the execution time of MightyL negligible, since the tool always answers in less than a second). For instance, over F (5, [0, ∞)), LTSmin shows a 17% overhead. For F (5, [0, 2]), LTSmin experiences a 5% overhead, while Uppaal has a 12% overhead. For formulae F (5, [2, ∞)), F (3, [START_REF] Abid | A formal framework to specify and verify realtime properties on critical systems[END_REF][START_REF] Alur | A theory of timed automata[END_REF]), F (5, [START_REF] Abid | A formal framework to specify and verify realtime properties on critical systems[END_REF][START_REF] Alur | A theory of timed automata[END_REF]), the situation is even worse since Uppaal stops responding before the timeout of fifteen minutes. LTSmin also hangs on F (3, [START_REF] Abid | A formal framework to specify and verify realtime properties on critical systems[END_REF][START_REF] Alur | A theory of timed automata[END_REF]) before the timeout. On the motion planning example, the overhead is also significant for Uppaal, e.g. 80% for µ 2 , and, for µ 3 and µ 4 , Uppaal does not respond anymore before the timeout. Finally, on the two unsatisfiable examples of the redundancy check, LTSmin and Uppaal have overheads of 70%/3% and 630%/230%, respectively.

Conclusion and perspectives

In this work, we proposed a new compositional construction from MITL to timed automata which we implemented the tool MightyL, enabling easy automatabased model-checking of full MITL. For future work, since the structure of the formula is preserved in our construction, we want to investigate antichain-based heuristics to allow more performance boost. For MightyL, we plan to add native support for ECL [START_REF] Raskin | The logic of event clocks: Decidability, complexity and expressiveness[END_REF] operators which eases the writing of specifications, as well as past operators and counting operators [START_REF] Hirshfeld | An expressive temporal logic for real time[END_REF].

Fig. 2 .

 2 Fig. 2. A run of the OCATA of Fig. 1 over (∅, 0.42)({p}, 0.42)({q}, 0.7) • • • .

Fig. 3 .

 3 Fig. 3. The automata a) Cinit and Cχ for b) χ = ϕ1 U ϕ2, and c) χ = ϕ1 R ϕ2.

Proposition 4 .Example 5 .

 45 For all LTL formulae ϕ, proj AP (C init × χ∈Φ C χ) = ϕ . Consider the LTL formula G(p ⇒ Fq) that can be rewritten into negative normal form as ϕ = ⊥ R (¬p ∨ U q). Then, the three component Büchi automata C init , C ϕ and C Fq , after the constraints on the transitions are simplified, are depicted on the top of Fig.4, The automaton C = C init × C ϕ × C Fq is depicted in the middle of the figure. Once atomic propositions in AP ϕ are projected away, one obtains an automaton isomorphic to the one at the bottom of the figure that accepts ϕ .

¬q ¬q q Fig. 4 .

 q4 Fig. 4. a) Component Büchi automata for the formula ϕ = ⊥ R (¬p ∨ U q); b) Büchi automaton obtained by the product of the components; c) Büchi automaton obtained by projecting away APϕ (and merging two identical locations).

Fig. 7 .

 7 Fig. 7. How to split cases to satisfy the formula χ = ϕ1 U [a,b] ϕ2.

Table 2 .

 2 Validity and redundancy checking of MITL formulae. [0,30] ¬p ∨ F [0,20] p (valid, i.e. satisfiable and not tautology) 13ms 1.66s 0.30s not considered F [0,30] p ∧ F [0,20] p (valid but redundant) 24ms 3.39s 0.79s 14s G [0,20] F [0,20] p ∧ G [0,40] p ∧ F [20,40] (valid but redundant) 60ms 2m58s 4.94s not considered C++ code, and the time taken by LTSmin for the actual model-checking); and Uppaal, on all these examples (for the motion planning, only finite words are relevant, hence we report only on the Uppaal running time).

	Formula	MightyL LTSmin Uppaal	[16]
	F [0,30] (p ⇒ G [0,20] p) (tautology)	7ms	0.98s	0.32s	7s
	G				

Nonetheless, it has been argued that a continuous model of time is preferable from a theoretical point of view; see e.g.[START_REF] Hirshfeld | Logics for real time: Decidability and complexity[END_REF].

In the current (infinite-word) setting, we cannot define acceptance conditions in terms of configurations as in[START_REF] Ouaknine | On the decidability and complexity of metric temporal logic over finite words[END_REF].

This is not possible for general (not very-weak) OCATAs since it might be the case that a branch alternates between several non-accepting location without ever hitting an accepting location.

The same idea underlies the antichain-based algorithms for LTL model-checking[START_REF] Wulf | Antichains: Alternative algorithms for LTL satisfiability and model-checking[END_REF], where the structure can be exploited to define a pre-order on the state space of the resulting automaton.

These numbers are only for reference and should not be taken as a direct comparison since, contrary to us,[START_REF] Dokhanchi | Formal requirement debugging for testing and verification of cyber-physical systems[END_REF] considers a bounded continuous semantics of MITL.

Acknowledgements. We thank the reviewers of this article that help us clarify its overall presentation. The third author would like to thank Andreas Engelbredt Dalsgaard, Alfons Laarman and Jeroen Meijer for their technical help with opaal and LTSmin.

This work has been supported by the FRS/F.N.R.S. PDR grant SyVeRLo, and (partially) funded by the DeLTA project (ANR-16-CE40-0007) and the SensAS project (INS2I JCJC '17).