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A new weighted exponential distribution is proposed using a logarithmic weight function. Mathematical properties are studied, including moments, residual life function, order statistics and record values. A parametric estimation is performed using the maximum likelihood method, the weighted least-square method and the maximum product of spacing estimators method. Applications are provided using four real data sets. It is shown that our new distribution works better than a number of classical and recent distributions.

Introduction

The general weighted exponential family of distributions has a probability density function (pdf) of the form:

f (x) = Cw(x)g(x),
where g(x) denotes a pdf of the exponential distribution with parameter λ > 0, w(x) ≥ 0 is a weight function and C represents the normalization constant given by C -1 = ∫ +∞ -∞ w(x)g(x)dx. Recent weighted exponential distributions with great ability in statistical applications include the exponentiated exponential (EE) distribution introduced by [START_REF] Gupta | Exponentiated Exponential Family; An Alternative to Gamma and Weibull[END_REF], the weighted exponential (WE) distribution introduced by [START_REF] Gupta | A new class of weighted exponential distribution[END_REF], the Gamma exponentiated exponential (GEE) distribution introduced by [START_REF] Ristić | The gamma-exponentiated exponential distribution[END_REF], the weighted generalized exponential (WGE) distribution introduced by [START_REF] Mahdavi | Two Weighted Distributions Generated by Exponential Distribution[END_REF] and the exponentiated weighted exponential (EWE) distribution introduced by [START_REF] Oguntunde | On the Exponentiated Weighted Exponential Distribution and Its Basic Statistical Properties[END_REF]. A brief review on weighted distributions (exponential or non-exponential) can be found in [START_REF] Saghir | Weighted Distributions: A Brief Review, Perspective and Characterizations[END_REF]. The statistical literature on proposing new weighted exponential distributions is vast and growing fast.

In this paper, we introduce a new weighted exponential distribution characterized by the pdf:

f (x) = λβ (β + 1) log(β + 1)
log(β + e λx )e -λx , x, β, λ > 0.

(

) 1 
Thus the associated weight is w(x) = log(β + e λx ) and C = β (β + 1) log(β + 1)

. To the best of our knowledge, the consideration of this weight is new in the literature, opening the door of new perspectives of applications. We shall refer to the distribution given by (1) as the logarithmic weighted exponential (LWE). Also, note that w(x) is an increasing and concave up, hence one of the possible shapes of the hazard rate function (hrf) of this distribution is increasing ( [START_REF] Jain | Relations for reliability measures of weighted distributions[END_REF]), as it shall be seen later.

Moreover, some plots are given to show the graphical behavior of the pdf and hrf of the distribution, illustrating its flexibility in data modeling. Other motivations to the LWE distribution are as follows.

• The pdf (1) can be written as a two-component mixture of two pdfs:

f (x) = pf 1 (x) + (1 -p)f 2 (x), x > 0,
where p = β (β + 1) log(β + [START_REF] Ahsanullah | Record Statistics[END_REF] is the mixing proportion, f 1 (x) = λ 2 xe -λx is the pdf of the Gamma distribution with parameters (2, λ), f 2 (x) = λβ (β + 1) log(β + 1) -β log

( β + 1 -β(1 -e -λx
) ) e -λx is an extension of the pdf of gamma-G distribution introduced by [START_REF] Zografos | On families of beta-and generalized gamma-generated distributions and associated inference[END_REF]. To be more specific, it is associated to a cumulative distribution function (cdf) of the form H(G(x)), belonging to the family of composition of two cdfs: H(y) and G(x) (see [START_REF] Al-Hussaini | Composition of cumulative distribution functions[END_REF]). Here G(x) depends only on λ; it is the cdf associated to the exponential distribution of parameter λ and H(y) depends only on β:

H(y) = 1 - 1 (β + 1) log(β + 1) -β [(1 + β(1 -y)) log (1 + β(1 -y)) -β(1 -y)] , y ∈ [0, 1].
One can show that H(y) is a slowly decreasing according to β > 0 with H(y) ∼ 1 -(1 -y) 2 when β → 0 and H(y) ∼ y when β → +∞.

• Let X follow the LWE distribution and consider the transformation Y = β + e λX . Then distribution of Y is characterized by the pdf given by

f (y) = β (β + 1) log(β + 1) log(y) (y -β) 2 , y ≥ β + 1, β > 0,
which is a new extension of the Pareto distribution and may be called log-Pareto distribution. The rest of the paper is organized as follows. Section 2 presents the cdf and hrf related to the LWE distribution, with some plots. Section 3 is devoted to some of its statistical properties. Residual life function is studied in Section 4. Order statistics and record values are investigated in Section 5. Three different estimation procedures are presented in Section 6. Finally, four real data applications are presented in Section 7 to show the performance of the distribution.

Functions related to the LWE distribution

Survival, cumulative density and hazard rate functions

Proposition 1. Let X be a random variable with pdf f (x) [START_REF] Ahsanullah | Record Statistics[END_REF]. The associated survival function (sf ) is given by :

S(x) = P (X > x) = log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1) , x, β, λ > 0. ( 2 
)
Proof. Let us set c = λβ (β+1) log(β+1) and remark that

f (x) = c log(β + e λx )e -λx = c log ( e λx (1 + βe -λx ) ) e -λx = c ( λxe -λx + log(1 + βe -λx )e -λx
) .

Using definition of S(x), we find that

S(x) = ∫ +∞ x f (t)dt = c (∫ +∞ x λte -λt dt + ∫ +∞ x log(1 + βe -λt )e -λt dt
) .

Using this decomposition, integration by parts, change of variables and after some algebra, we obtain

S(x) = log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1) .
This ends the proof.

The cumulative distribution function follows immediately:

F (x) = 1 -S(x) = 1 - log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1) , x, β, λ > 0. (3) 
The hazard rate function is given by

h(x) = f (x) 1 -F (x) = λβ log(β + e λx )e -λx log(1 + βe -λx ) + βe -λx log(β + e λx ) , x, β, λ > 0. ( 4 
)

Behaviour of the functions

First of all, let us investigate some features of the functions inherent to the LWE distribution. For the pdf (1), we have

f (x) ∼ λβ β + 1 e -λx → λβ β + 1 , x → 0, f (x) ∼ λ 2 β (β + 1) log(β + 1) xe -λx → 0, x → +∞.
For the sf (2), we have

S(x) ∼ 1 - λ log(β + 1) x → 1, x → 0, S(x) ∼ β (β + 1) log(β + 1) (1 + λx)e -λx → 0, x → +∞.
And for the cdf (3), we have

F (x) ∼ λ log(β + 1) x → 0, x → 0, F (x) ∼ 1 - β (β + 1) log(β + 1) (1 + λx)e -λx → 1, x → +∞.
For the hrf (4), we have

h(x) ∼ λβ β + 1 e -λx → λβ β + 1 , x → 0, h(x) ∼ λ 2 x 1 + λx → λ, x → +∞.
Let us now study the change points of h(x). By denoting y = log(β + e λx ), we have

h ′ (x) = βλ 2 e -λx [ -λxe λx -(β + e λx y(-1 -λx + (1 + 2βe λx )y)) ] (β + e λx )(xλ -(1 + βe λx )y) 2 .
The change points of the hrf function are given by b * by solving the two following equations: b * λ -(1 + βe λb * )y 1 = 0 and -λb * e λb * -(β + e λb * y 1 (-1 -λb * + (1 + 2βe λb * )y 1 )) = 0. Figures 1 and2 show the graphical features of the pdf and hrf of the LWE distribution for several choices of parameters (λ, β). In particular, we see that the pdf is very flexible and highly right skewed. Interesting comportment of the hrf, with possible change-point(s), can be observed.

Statistical properties

This section is devoted to some statistical properties of the LWE distribution.

Expansion of the pdf

Proposition 2. Let f (x) be (1). Then we have the following expansion:

f (x) = λ 2 β (β + 1) log(β + 1) xe -λx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ e -λ(ℓ+1)x , ( 5 
)
with

A 0,0 = λβ (β + 1) log(β + 1) log(β + 1), A k,ℓ = λβ (β + 1) log(β + 1) ( k ℓ ) 1 k ( β β + 1 ) k (-1) ℓ+1 ,
for k > 0 or ℓ > 0. 

β β + 1 (1 -e -λx )
)) e -λx = c ( log(β + 1) + λx + log

( 1 - β β + 1 (1 -e -λx )
)) e -λx .

Using the expansion: log(1 [START_REF] Ahsanullah | Record Statistics[END_REF], noticing that 0 ≤ β β+1 (1 -e -λx ) < 1, and the binomial series expansion, we have log

-y) = - ∞ ∑ k=1 y k k , y ∈ [-1,
( 1 - β β + 1 (1 -e -λx ) ) = - ∞ ∑ k=1 1 k ( β β + 1 ) k (1 -e -λx ) k = ∞ ∑ k=1 k ∑ ℓ=0 ( k ℓ ) 1 k ( β β + 1 ) k (-1) ℓ+1 e -λℓx .
We end the proof by putting these equalities together.

Quantile function

We can obtain the quantile function using the cdf (3); it is the function Q(x) satisfying the nonlinear equation:

F (Q(x)) = x ⇔ log(1 + βe -λQ(x) ) + βe -λQ(x) log(β + e λQ(x) ) = (1 -x)(β + 1) log(β + 1). (6)
Variates of the LWE distribution can be simulated by using X = Q(U ) where U is a random variable following the uniform distribution on [0, 1].

Moments Proposition 3. Let X be a random variable with pdf f (x) given by (1). Consider the Gamma function: Γ(ν) =

∫ +∞ 0

x ν-1 e -x dx and the coefficient A k,ℓ of expansion [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF]. Then the r-th moment of X is given by

E(X r ) = βΓ(r + 2) (β + 1) log(β + 1)λ r + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ Γ(r + 1) λ r+1 (ℓ + 1) r+1 . ( 7 
)
Proof. Let us set c = λβ (β+1) log(β+1) and consider the expansion [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF]. Hence

E(X r ) = ∫ +∞ -∞ x r f (x)dx = ∫ +∞ 0 x r ( cλxe -λx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ e -λ(ℓ+1)x ) dx = cλ ∫ +∞ 0 x r+1 e -λx dx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ ∫ +∞ 0 x r e -λ(ℓ+1)x dx = c Γ(r + 2) λ r+1 + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ Γ(r + 1) λ r+1 (ℓ + 1) r+1 .
The proof is completed.

Moment generating function Proposition 4.

Let X be a random variable with pdf f (x) given by [START_REF] Ahsanullah | Record Statistics[END_REF]. Consider the coefficient A k,ℓ of expansion [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF]. Then the moment generating function of X is given by

M (t) = λ 2 β (β + 1) log(β + 1)(λ -t) + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ 1 λ(ℓ + 1) -t , t < λ.
Proof. Let us set c = λβ (β+1) log(β+1) and consider the expansion [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF]. Hence, for t < λ,

M (t) = E(e tX ) = ∫ +∞ -∞ e tx f (x)dx = ∫ +∞ 0 e tx ( cλxe -λx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ e -λ(ℓ+1)x ) dx = cλ ∫ +∞ 0 e -(λ-t)x dx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ ∫ +∞ 0 e -(λ(ℓ+1)-t)x dx = c λ λ -t + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ 1 λ(ℓ + 1) -t .
This ends the proof.

Conditional moments and mean deviations

Proposition 5. Let X be a random variable with pdf f (x) given by [START_REF] Ahsanullah | Record Statistics[END_REF]. Consider the lower incomplete Gamma function Γ(t, ν) = ∫ t 0 x ν-1 e -x dx and the coefficient A k,ℓ of expansion [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF]. Then we have

∫ t 0 x r f (x)dx = βΓ(λt, r + 2) (β + 1) log(β + 1)λ r + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ Γ(λ(ℓ + 1)t, r + 1) λ r+1 (ℓ + 1) r+1 , t > 0. ( 8 
)
Proof. Let us set c = λβ (β+1) log(β+1) and consider the expansion [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF]. Therefore

∫ t 0 x r f (x)dx = ∫ t 0 x r ( cλxe -λx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ e -λ(ℓ+1)x ) dx = cλ ∫ t 0 x r+1 e -λx dx + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ ∫ t 0 x r e -λ(ℓ+1)x dx = c Γ(λt, r + 2) λ r+1 + ∞ ∑ k=0 k ∑ ℓ=0 A k,ℓ Γ(λ(ℓ + 1)t, r + 1) λ r+1 (ℓ + 1) r+1 .
The proof is completed.

The r-th conditional moments of the LWE distribution is given by

E(X r | X > t) = 1 1 -F (t) ∫ +∞ t x r f (x)dx = 1 1 -F (t) ( E(X r ) - ∫ t 0 x r f (x)dx
) .

The r-th reversed moments of the LWE distribution is given by

E(X r | X ≤ t) = 1 F (t) ∫ t 0 x r f (x)dx.
Both moments can be expressed using [START_REF] Jain | Relations for reliability measures of weighted distributions[END_REF]. The mean deviations of X about the mean µ = E(X) can be expressed as δ = 2µF (µ) -2 ∫ µ 0 xf (x)dx and the mean deviations of X about the median M has the form

η = µ -2 ∫ M 0 xf (x)dx.

Residuals life function

Let X be a random variable having the pdf f (x) given by ( 1). The residual life is described by the conditional random variable R (t) = X -t | X > t, t ≥ 0. It naturally appears in life length studies (see [START_REF] Bryson | Some criteria for aging[END_REF] and [START_REF] Muth | Reliability models with positive memory derived from the mean residual life function[END_REF]). Using the sf S(x) (2), the sf of the residual lifetime R (t) is given by

S R (t) (x) = S(x + t) S(t) = log(1 + βe -λ(x+t) ) + βe -λ(x+t) log(β + e λ(x+t) ) log(1 + βe -λt ) + βe -λt log(β + e λt ) , x > 0.
The associated cdf is given by

F R (t) (x) = log ( 1+βe -λt 1+βe -λ(x+t) ) + βe -λt ( log(β + e λt ) -e -λx log(β + e λ(x+t) ) ) log(1 + βe -λt ) + βe -λt log(β + e λt ) , x > 0.
Then, the corresponding pdf is given by

f R (t) (x) = λβ log(β + e λ(x+t) )e -λ(x+t) log(1 + βe -λt ) + βe -λt log(β + e λt ) , x > 0.
The associated hrf is given by

h R (t) (x) = λβ log(β + e λ(x+t) )e -λ(x+t) log(1 + βe -λ(x+t) ) + βe -λ(x+t) log(β + e λ(x+t) ) , x > 0.
The mean residual life is defined as

K(t) = E(R (t) ) = E(X -t | X > t) = 1 S(t) ∫ +∞ t xf (x)dx -t = 1 S(t) ( E(X) - ∫ t 0 xf (x)dx ) -t,
where f (x) is given by (1), S(t) is given by ( 2), E(X) is given by ( 7) with r = 1 and

∫ t 0 xf (x)
dx is given by ( 8) with r = 1.

On the other hand, the variance residual life is given by

V (t) = V ar(R (t) ) = V ar(X -t | X > t) = 2 S(t) ∫ +∞ t xS(x)dx -2tK(t) -[K(t)] 2 = 1 S(t) ( E(X 2 ) - ∫ t 0 x 2 f (x)dx ) -t 2 -2tK(t) -[K(t)] 2 ,
where E(X 2 ) is given by ( 7) with r = 2 and ∫ t 0 x 2 f (x)dx is given by ( 8) with r = 2. The reverse residual life is described by the conditional random variable R (t) = t -X | X ≤ t, t ≥ 0. Using the cdf (3), the sf of the reversed residual lifetime R (t) is given by

S R (t) (x) = F (t -x) F (t) = (β + 1) log(β + 1) -log(1 + βe -λ(t-x) ) + βe -λ(t-x) log(β + e λ(t-x) ) (β + 1) log(β + 1) -log(1 + βe -λt ) + βe -λt log(β + e λt ) , 0 < x ≤ t.
The associated cdf is given by

F R (t) (x) = log(1 + βe -λ(t-x) ) + βe -λ(t-x) log(β + e λ(t-x) ) -log(1 + βe -λt ) + βe -λt log(β + e λt ) (β + 1) log(β + 1) -log(1 + βe -λt ) + βe -λt log(β + e λt ) , 0 < x ≤ t.
Therefore, the corresponding pdf is given by

f R (t) (x) = λβ log(β + e λ(t-x) )e -λ(t-x) (β + 1) log(β + 1) -log(1 + βe -λt ) + βe -λt log(β + e λt ) , 0 < x ≤ t.
The associated hrf is given by

h R (t) (x) = λβ log(β + e λ(t-x) )e -λ(t-x) (β + 1) log(β + 1) -log(1 + βe -λ(t-x) ) + βe -λ(t-x) log(β + e λ(t-x) ) , 0 < x ≤ t.
The mean reversed residual life is defined as

L(t) = E(R (t) ) = E(t -X | X ≤ t) = t - 1 F (t) ∫ t 0 xf (x)dx,
where f (x) is given by (1), F (t) is given by (3) and ∫ t 0 xf (x)dx is given by ( 8) with r = 1. The variance reversed residual life is given by

W (t) = V ar(R (t) ) = V ar(t -X | X ≤ t) = 2tL(t) -[L(t)] 2 - 2 F (t) ∫ t 0 xF (x)dx = 2tL(t) -[L(t)] 2 -t 2 + 1 F (t) ∫ t 0 x 2 f (x)dx,
where ∫ t 0 x 2 f (x)dx is given by ( 8) with r = 2.

Order statistics and record values

Order statistics naturally appear in many areas of statistics, as reliability and quality control testing. Let X 1 , X 2 , . . . , X n be n i.i.d. random variables having the pdf (1). Let us consider its order statistics is X 1:n , X 2:n , . . . , X n:n . Using the expressions of f (x) given by (1) and F (x) (3), the pdf of the i-th order statistic X i:n is given by

f i:n (x) = n! (i -1)! (n -i)! [F (x)] i-1 [1 -F (x)] n-i f (x) = n! (i -1)! (n -i)! [ 1 - log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1) ] i-1 × [ log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1)
] n-i λβ (β + 1) log(β + 1) log(β + e λx )e -λx , x > 0.

In particular, let us mention that the pdf of X 1:n = inf(X 1 , . . . , X n ) is given by

f 1:n (x) = n[1 -F (x)] n-1 f (x) = λβ (β + 1) log(β + 1) n [ log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1)
] n-1 log(β + e λx )e -λx and the pdf of X n:n = sup(X 1 , . . . , X n ) is given by

f n:n (x) = n[F (x)] n-1 f (x) = λβ (β + 1) log(β + 1) n [ 1 - log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1)
] n-1 log(β + e λx )e -λx .

The cdf of the i-th order statistic X i:n is given by

F i:n (x) = n! (i -1)! (n -i)! n-i ∑ k=0 ( n -i k ) (-1) k i + k [F (x)] i+k = n! (i -1)! (n -i)! n-i ∑ k=0 ( n -i k ) (-1) k i + k [ 1 - log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1)
] i+k , x > 0.

For i < j, the joint pdf of (X i:n , X j:n ) is given by

f (i:n,j:n) (x i , x j ) = n! (i -1)! (n -j)! (j -i -1) [F (x i )] i-1 [F (x j ) -F (x i )] j-i-1 [1 -F (x j )] n-j f (x i )f (x j ) = n! (i -1)! (n -j)! (j -i -1) [ 1 - log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) (β + 1) log(β + 1) ] i-1 ×   log ( 1+βe -λx i 1+βe -λx j ) + β(e -λxi log(β + e λxi ) -e -λxj log(β + e λxj )) (β + 1) log(β + 1)   j-i-1 × [ log(1 + βe -λxj ) + βe -λxj log(β + e λxj ) (β + 1) log(β + 1)
] n-j ( λβ (β + 1) log(β + 1)

) 2
× log(β + e λxi ) log(β + e λxj )e -λ(xi+xj ) , 0 < x i < x j .

As order statistics, record values arise in many situations in applied statistics. Theoretical and practical aspects of record values can be found in [START_REF] Ahsanullah | Record Statistics[END_REF] and [3]. Let X 1 , X 2 , . . . , be a sequence of i.i.d. random variables having the pdf (1). We define a sequence of record times U (n) as follows: U (1) = 1, U (n) = min{j; j > U (n -1), X j > X U (n-1) } for n ≥ 2. We define the i-th upper record value by R i = X U (i) , with R 1 = X 1 . Using the pdf f (x) (1) and the cdf F (x) (3), the pdf of R i is given by

f Ri (x) = [-log(1 -F (x))] i-1 (i -1)! f (x) = 1 (i -1)! [ -log ( log(1 + βe -λx ) + βe -λx log(β + e λx ) (β + 1) log(β + 1 
)

)] i-1 × λβ (β + 1) log(β + 1)
log(β + e λx )e -λx , x > 0.

Using pdf (1) and the hrf (4), the joint pdf of (R 1 , . . . , R n ) is given by

f (R1,...,Rn) (x 1 , . . . , x n ) = f (x n ) n-1 ∏ k=1 h(x k ) = λβ (β + 1) log(β + 1) log(β + e λxn )e -λxn × n-1 ∏ k=1 λβ log(β + e λx k )e -λx k log(1 + βe -λx k ) + βe -λx k log(β + e λx k ) , 0 < x 1 < . . . < x n .
For i < j, the joint pdf of (R i , R j ) is given by

f (Ri,Rj ) (x i , x j ) = [-log(1 -F (x i ))] i-1 (i -1)! [ log ( 1-F (xi) 1-F (xj ) )] j-i-1 (j -i -1)! h(x i )f (x j ) = 1 (i -1)! [ -log ( log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) (β + 1) log(β + 1) )] i-1 × 1 (j -i -1)! [ log ( log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) log(1 + βe -λxj ) + βe -λxj log(β + e λxj ) )] j-i-1
× λβ log(β + e λxi )e -λxi log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) × λβ (β + 1) log(β + 1) log(β + e λxj )e -λxj , 0 < x i < x j .

Estimation procedures

This section is devoted to three estimation procedures for the LWE model parameters: the maximum likelihood estimation, weighted least square estimation and maximum product of spacings.

Maximum likelihood estimators

Let X 1 , X 2 , . . . , X n be a random sample from the LWE distribution with parameter vector Θ = (β, λ) and x 1 , x 2 , . . . , x n are the corresponding observed values. By considering f (x) (1), the likelihood function is given by

L(Θ) = n ∏ i=1 f (x i ) = λ n β n (β + 1) n (log(β + 1)) n [ n ∏ i=1 log(β + e λxi ) ] [ n ∏ i=1 e -λxi
] .

The log-likelihood function can be expressed as

ℓ(Θ) = n log(λ) + n log(β) -n log(β + 1) -n log(log(β + 1)) + n ∑ i=1 log(log(β + e λxi )) -λ n ∑ i=1 x i .
The nonlinear log-likelihood equations given by ∂ℓ(Θ) ∂Θ = 0 are listed below

∂ℓ(Θ) ∂β = n β - n β + 1 - n (β + 1) log(β + 1) + n ∑ i=1 1 (β + e λxi ) log(β + e λxi ) = 0 and ∂ℓ(Θ) ∂λ = n λ + n ∑ i=1 x i e λxi (β + e λxi ) log(β + e λxi ) - n ∑ i=1 x i = 0.
Solving the equations above simultaneously, we obtain the maximum likelihood estimators (MLEs) of the model parameters. Some numerical iterative methods may be used to estimate the model parameters and the global maxima of the log-likelihood can be justified by considering different starting values for the parameters. To show the likelihood equations have a unique solution in the parameters, we plot the profile log-likelihood function of the model parameters in Figure 3, for one of the data sets (D1) used in the application section.

Using the asymptotic distribution of the MLEs, the information matrix is used to establish the confidence intervals for the model parameters. The elements of the 2 × 2 observed information matrix J(Θ) = Jrs(Θ) for r, s ∈ {β, λ} can be obtained from the authors upon request. 

Weighted least-square estimators

Let x 1 , x 2 , . . . , x n be an ordered sample of the random sample of size n from the LWE distribution. Let F (x) be the cdf (3). Then the weighted least square estimators (WLSE) can be obtained by minimizing

S(Θ) = n ∑ i=1 w i {F (x i ) -E(F (X i:n ))} 2 = n ∑ i=1 w i { 1 - log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) (β + 1) log(β + 1) - i n + 1 } 2 ,
with respect to the unknown parameters of the LWE distribution, where

w i = 1 V ar(F (X i:n )) = (n + 1) 2 (n + 2) i(n -i + 1
) .

The associated nonlinear equations ∂S(Θ) ∂Θ = 0 are given by

∂S(Θ) ∂β = 2 n ∑ i=1 w i { 1 - log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) (β + 1) log(β + 1) - i n + 1 } η 1 (x i , Θ) = 0 and ∂S(Θ) ∂λ = 2 n ∑ i=1 w i { 1 - log(1 + βe -λxi ) + βe -λxi log(β + e λxi ) (β + 1) log(β + 1) - i n + 1 } η 2 (x i , Θ) = 0,
where

η 1 (x i , Θ) = - 1 (β + 1) 2 (log(β + 1)) 2 ( log(β + 1) + β log(β + 1) -β log(β + e λxi ) + log(β + 1) log(β + e λxi ) -e λxi (1 + log(β + 1)) log(1 + βe -λxi ) ) e -λxi (9) 
and

η 2 (x i , Θ) = β (β + 1) log(β + 1)
x i e -λxi log(β + e λxi ). [START_REF] Mahdavi | Two Weighted Distributions Generated by Exponential Distribution[END_REF] Solving this system of nonlinear equations simultaneously will yield the WLSE's of the distribution parameters.

Maximum product of spacings estimators

The maximum product of spacings (MPS) method is a powerful alternative to MLE for the estimation of the unknown parameters of continuous univariate distributions. Let x 1 , x 2 , . . . , x n be an ordered sample of the random sample of size n from the LWE distribution. Let F (x) be the cdf (3) and D i (Θ) = F (x i ) -F (x i-1 ) for i = 1, 2, . . . , n + 1, be the uniform spacings of a random sample from the LWE distribution, where F (x 0 ) = 0 and F (x n+1 ) = 1. The maximum product spacings estimators ΘMP S are obtained by maximizing the geometric mean of the spacings given by

G (Θ) = [ n+1 ∏ i=1 D i (Θ) ] 1 n+1
, with respect to Θ. It is equivalent to maximize the logarithm of the geometric mean of sample spacings given by

ℓ (Θ) = log (G (Θ)) = 1 n + 1 n+1 ∑ i=1 log (D i (Θ)) .
Using η 1 (x i , Θ) (9) and η 2 (x i , Θ) [START_REF] Mahdavi | Two Weighted Distributions Generated by Exponential Distribution[END_REF], the estimates ΘMP S can be obtained by solving the nonlinear equations

∂ℓ(Θ) ∂β = 1 n + 1 n+1 ∑ i=1 1 D i (Θ) [η 1 (x i , Θ) -η 1 (x i-1 , Θ)] = 0 and ∂ℓ(Θ) ∂λ = 1 n + 1 n+1 ∑ i=1 1 D i (Θ) [η 2 (x i , Θ) -η 2 (x i-1 , Θ)] = 0.

Applications to real data

In this section, the potentiality of the LWE distribution is highlighted. We show that our distribution has a better fit than the compared distributions under all estimation procedures: MLE, WLSE and MPSE, for four real data sets.

We fit the two-parameter gamma (gamma), exponential logarithmic (EL) [START_REF] Tahmasbi | A two-parameter lifetime distribution with decreasing failure rate[END_REF], exponentiated exponential (EE) [START_REF] Gupta | Exponentiated Exponential Family; An Alternative to Gamma and Weibull[END_REF], weighted exponential (WE) [START_REF] Gupta | A new class of weighted exponential distribution[END_REF] and LWE distributions to four real data sets. The pdf of these models are as follows.

• The pdf of the gamma distribution is given by

f (x) = x k-1 e -x θ θ k Γ(k) , x, k, θ > 0 .
• The pdf of the exponential logarithmic distribution is given by

f (x) = - β (1 -p) e -βx log(p) (1 -(1 -p) e -βx ) , x, β > 0, p ∈ (0, 1) .
• The pdf of the exponentiated exponential distribution is given by

f (x) = α λ e -λ x ( 1 -e -λ x ) α-1 , x, α, λ > 0 .
• The pdf of the weighted exponential distribution is given by

f (x) = (α + 1) λ e -λx ( 1 -e -α λx ) α ,
x, α, λ > 0 . We check the adequacy of the fitted models via the statistics of Anderson-Darling and the Cramérvon Mises. They allow to determine how closely a specific distribution fits the associated empirical distribution for a given data set. The smaller statistics give the better fit.

The description of the considered real data sets is as follows. Time to failure in hours for non-repairable Item data Set (D1). The first data set we consider represents the time to failure in hours for non-repairable items. The data set consists of 10 sample points and is reported at [START_REF] Murthy | Weibull models[END_REF]Page 279].

Failure times data Set (D2). The second data set we consider represents the failure times of 20 components. The data set can be found in [START_REF] Murthy | Weibull models[END_REF]Page 154].

Total monthly rainfall data Set (D3). The third data set is obtained from the department of water resources and power agency manager of water resources of the State of Sao Paulo. The data represents total monthly rainfall during April at Sao Carlos from 1960 to 2014. The data set can be found at [START_REF] Bakouch | Binomial-exponential 2 distribution: Different estimation methods with weather applications[END_REF].

Fatigue fracture data Set (D4). The fourth data represents the life of fatigue fracture of Kevlar 373/epoxy subjected to constant pressure at 90% stress level until all had failed. For previous studies with the data see [START_REF] Barlow | A Bayesian analysis of stress rupture life of Kevlar 49/epoxy spherical pressure vessels[END_REF].

Table 1 provides descriptive statistics of the data sets. From this table, it can be seen that all the used data sets are right skewed. Some moments of the LWE distribution are given in Table 2. We computed the results using the definitions, where the parameters of the LWE are replaced by MLEs for D1 and WLSEs for the other three data sets respectively from Tables 3456. From Tables 1 and2, it can be noted that the considered moments of the LWE distribution are approximately close to the sample moments for all the four data sets.

Tables 3-6 list the parameter estimates for the three estimation procedures discussed in Section 6, for the four data sets with goodness-of-fit statistics. From these tables, it can be noted that LWE distribution is a powerful competitor to all the compared distributions. It provides a rather flexible mechanism for fitting a wide spectrum of positive real data sets with shape property of being right skewed. It is also observed that for small sample size MLE performs better than the WLSE and MPSE but for larger sample size WLSE performs better than MLE and MPSE.

The conclusions drawn above are confirmed by Figure 4; it can be seen that the estimated LWE density superimposed on the histogram of the data sets based on MLEs for D1 and WLSEs for D2-D4 provides a good fit to these data. 

Figure 1 :

 1 Figure 1: Plots of the LWE pdf.

Figure 2 :

 2 Figure 2: Plots of the LWE hrf.

Figure 3 :

 3 Figure 3: The profile of log-likelihood function for (λ, β).

Figure 4 :

 4 Figure 4: The fitted LWE pdfs superimposed on the histogram of data.

Table 1 :

 1 Descriptive statistics of the data sets

					D1			
	n	Mean	Median	SD	Skewness	Kurtosis	M1	M2
	10	100.1	71.6	90.5638	0.943922	2.86235	70.4	47.8
					D2			
	20	8.42945	8.662	5.32206	0.176969	2.43092	4.2029	3.663
					D3			
	53	80.883	76	52.2441	0.494003	2.51167	43.2915	41.1
					D4			
	76	1.95924	1.73615	1.57398	1.97956	8.16079	1.07026	0.7202
	SD = Standard Deviation , M1 = Mean deviation about the mean,	
	M2 = Mean deviation about the median			

Table 2 :

 2 Some moments of the LWE

	D1					D2				
	Mean	Median	SD	M1	M2	Mean	Median	SD	M1	M2
	99.9137	74.4296	91.026	69.3594	66.3962	9.13596	7.51929	7.02205	5.38507	5.22879
	D3					D4				
	Mean	Median	SD	M1	M2	Mean	Median	SD	M1	M2
	84.2705	69.9799	62.7895	48.1234	46.7521	1.89683	0.593826	1.35356	1.03643	1.00689

Table 3 :

 3 Comparison of fit of LWE using different methods of estimation for Time to Failure in Hours for Nonrepairable Item data

			MLEs		
	Distributions	Estimates		A *	W *
	Gamma(k, θ) 1.139028	87.881928	0.144832	0.016461
	EL(p, β)	0.999999	0.009990	0.146562	0.017179
	WE(λ, α)	0.010233	39.953472	0.149407	0.017899
	EE(λ, α)	0.010826	1.136636	0.143582	0.016449
	LWE(λ, β)	0.015096	1.451571	0.128042 0.014967
			WLSEs		
	Distributions	Estimates		A *	W *
	Gamma(k, θ) 0.796078	147.040746	0.187528	0.021962
	EL(p, β)	0.346263	0.006459	0.176709	0.020845
	WE(λ, α)	0.009125	1549.999999 0.129782	0.0148178
	EE(λ, α)	0.007323	0.789169	0.187466	0.021972
	LWE(λ, β)	0.010721	7.699068	0.134756 0.015240
			MPSEs		
	Distributions	Estimates		A *	W *
	Gamma(k, θ) 0.788220	146.918918	0.189559	0.022436
	EL(p, β)	0.353425	0.006614	0.172185	0.020647
	WE(λ, α)	0.008841	499.999279	0.146562	0.017179
	EE(λ, α)	0.007347	0.781233	0.189547	0.022428
	LWE(λ, β)	0.010536	7.490030	0.143201 0.016290

Table 4 :

 4 Comparison of fit of LWE using different methods of estimation for failure times of 20 components data

			MLEs	
	Distributions	Estimates	A *	W *
	Gamma(k, θ) 1.276065	6.605812 0.964807	0.173748
	EL(p, β)	0.999999	0.118626 1.20985	0.240738
	WE(λ, α)	0.237238	0.000210 1.06544	0.116016
	EE(λ, α)	0.134624	1.235388 0.997362	0.182967
	LWE(λ, β)	0.211521	0.411468 0.707688 0.126298
			WLSEs	
	Distributions	Estimates	A *	W *
	Gamma(k, θ) 1.872033	4.914790 0.925161	0.076585
	EL(p, β)	0.999999	0.104051 0.948973	0.161832
	WE(λ, α)	0.217647	0.000038 1.002540	0.074213
	EE(λ, α)	0.158061	1.918960 0.963278	0.081900
	LWE(λ, β)	0.202654	0.238868 0.605758 0.076161
			MPSEs	
	Distributions	Estimates	A *	W *
	Gamma(k, θ) 0.994138	8.962964 1.06508	0.200422
	EL(p, β)	0.999999	0.112255 1.057910	0.198708
	WE(λ, α)	0.228869	0.000494 1.004650	0.092105
	EE(λ, α)	0.109947	0.968710 1.096200	0.207921
	LWE(λ, β)	0.195684	0.587401 0.662525 0.111726

Table 5 :

 5 Comparison of fit of LWE using different methods of estimation for Rainfall data

			MLEs		
	Distributions	Estimates		A *	W *
	Gamma(k, θ) 1.539744	52.530164 0.877195	0.130219
	EL(p, β)	0.999999	0.012363	2.36462	0.425471
	WE(λ, α)	0.024726	0.000042	0.820019	0.092466
	EE(λ, α)	0.015789	1.514078	0.973941	0.147181
	LWE(λ, β)	0.023096	0.213791	0.596077 0.090642
			WLSEs		
	Distributions	Estimates		A *	W *
	Gamma(k, θ) 1.823373	46.318640 0.665771	0.060652
	EL(p, β)	0.999999	0.011138	1.83096	0.2781
	WE(λ, α)	0.023778	0.000020	0.758456	0.064999
	EE(λ, α)	0.017183	1.901809	0.727332	0.067376
	LWE(λ, β)	0.022642	0.137041	0.483161 0.053447
			MPSEs		
	Distributions	Estimates		A *	W *
	Gamma(k, θ) 1.379133	59.777856 1.00204	0.149678
	EL(p, β)	0.999999	0.012082	2.19852	0.382795
	WE(λ, α)	0.024345	0.000001	0.777771	0.0783983
	EE(λ, α)	0.014531	1.353717	1.10728	0.168091
	LWE(λ, β)	0.022328	0.277365	0.5744	0.080558

Table 6 :

 6 Comparison of fit of LWE using different methods of estimation for fatigue data

			MLEs	
	Distributions	Estimates	A *	W *
	Gamma(k, θ) 1.641076	1.193875 0.680647	0.113341
	EL(p, β)	0.999999	0.510401 3.01876	0.574565
	WE(λ, α)	0.711243	1.541313 0.580135	0.0836306
	EE(λ, α)	0.702793	1.709493 0.677809	0.113052
	LWE(λ, β)	0.970107	0.150408 0.59646	0.100525
			WLSEs	
	Distributions	Estimates	A *	W *
	Gamma(k, θ) 2.003304	0.944853 0.583048	0.063036
	EL(p, β)	0.999999	0.456246 2.60599	0.456466
	WE(λ, α)	0.847727	0.613244 0.557909	0.067250
	EE(λ, α)	0.815028	2.150388 0.569838	0.062684
	LWE(λ, β)	1.046110	0.021336 0.542988 0.066131
			MPSEs	
	Distributions	Estimates	A *	W *
	Gamma(k, θ) 1.476364	1.358301 0.906648	0.160206
	EL(p, β)	0.999998	0.496530 2.83668	0.527345
	WE(λ, α)	0.650868	2.265658 0.659052	0.101915
	EE(λ, α)	0.635134	1.658918 0.844588	0.15135
	LWE(λ, β)	0.930942	0.217076 0.727137 0.1306
			14